171
Views
3
CrossRef citations to date
0
Altmetric
Articles

Damping characteristic study of ship bionic anti-rolling device

, , , , ORCID Icon, & show all
Pages 1067-1077 | Received 19 May 2020, Accepted 09 Aug 2020, Published online: 11 Sep 2020

References

  • Aiello BR, Hardy AR, Cherian C, et al. 2017. The relationship between pectoral fin ray stiffness and swimming behavior in Labridae: Insights into design, performance and ecology. J Exp Bio. 221(Pt 1):jeb163360. doi:https://doi.org/10.1242/jeb.163360.
  • Alujevic N, Catipovic I. 2019. Stability, performance and power flow of active U-tube anti-roll tank. Eng Struct. doi:https://doi.org/10.1016/j.engstruct.2020.110267.
  • Avalos GOG, Wanderley JBV, Fernandes AC, et al. 2014. Roll damping decay of a FPSO with bilge keel. Ocean Eng. 87:111–120.
  • Baniela SI. 2008. Roll motion of a ship and the roll stabilising effect of bilge keels. J Navig. 61(04):667.
  • Cai Y, Bi S, Zheng L. 2010. Design and experiments of a robotic fish imitating cow-nosed ray. J Bionic Eng. 7(2):120–126.
  • Consalvo I, Sareri DI, Bottaro M, et al. 2010. Diet composition of juveniles of rough ray Raja radula (Chondrichthyes: Rajidae) from the Ionian Sea. Ital J Zool (Modena). 77(4):438–442.
  • Fish FE, Dong H, Zhu JJ, et al. 2017. Kinematics and hydrodynamics of mobuliform swimming: oscillatory winged propulsion by large pelagic batoids. Mar Technol Soc J. 51(5):35–47.
  • Gao Y, Jin H, Zhou S. 2012. Application of a zero-speed fin stabilizer for roll reduction of a marine robot near the surface. J Mar Sci Appl. 11(2):228–235.
  • Irkal MAR, Nallayarasu S, Bhattacharyya SK. 2016. CFD approach to roll damping of ship with bilge keel with experimental validation. Appl Ocean Res. 55:1–17.
  • Karakas S, Ucer E, Pesman E. 2012. Control design of fin roll stabilization in beam seas based on Lyapunov's direct method. Polish Marit Res. 19(2):25–30.
  • Katayama T, Matsuoka M, et al. 2019. Effects of half breadth to draught ratio of hull under water surface on bilge keel roll damping component. Ocean Eng. 188:106283.
  • Kato N. 2000. Control performance in the horizontal plane of a fish robot with mechanical pectoral fins. IEEE J Ocean Eng. 25(1):121–129.
  • Kawamura Y, Ohtsubo H, Suzuki K. 1997. Development of a finite element modeling system for ship structures. J Mar Sci Technol. 2(1):35–51.
  • Kreuzer E, Wendt M, et al. 2000. Ship capsizing analysis using advanced hydrodynamic modeling. Phys Eng Sci. 358(1771):1835–1851.
  • Lee S, Rhee KP, Choi JW. 2011. Design of the roll stabilization controller, using fin stabilizers and pod propellers. Appl Ocean Res. 33(4):229–239.
  • Liang C, Zhang X. 2020. Concise and economical control implemented on ship fin stabilizer system based on nonlinear feedback algorithm. J Mar Sci Technol. doi:https://doi.org/10.1007/s00773-020-00723-8.
  • Liang L, Zhao P, Zhang S, et al. 2018. Simulation analysis of fin stabilizer on ship roll control during turning motion. Ocean Eng. 164:733–748.
  • Liu F, Lee KM, Yang CJ. 2012. Hydrodynamics of an Undulating Fin for a wave-like Locomotion system design. IEEE ASME Trans on Mechatron. 17(3):554–562.
  • Lu H, Yeo KS, Chew CM. 2018. Effect of pectoral fin kinematics on manta ray propulsion. Mod Phys Lett B. doi:https://doi.org/10.1142/S0217984918400250.
  • Maki A, Umeda N, Shiotani S, et al. 2011. Parametric rolling prediction in irregular seas using combination of deterministic ship dynamics and probabilistic wave theory. J Mar Sci Technol. 16(3):294–310.
  • Malekizade H, Jahed-Motlagh M, Moaveni B, et al. 2016. Robust model predictive control employed to the container ship roll motion using fin-stabilizer. Cogent Eng. doi:https://doi.org/10.1080/23311916.2016.1235478.
  • Malekizade H, Moaveni B, Jahed MR, et al. 2018. Coefficients Extraction of model and Constrained Controller design for Fin-roll Stabilizer system in a fishing boat. J Ship Prod Des. doi:https://doi.org/10.5957/JSPD.160021.
  • Mao L, Wang HD, et al. 2019. Force model of flapping foil stabilizers based on CFD parameterization. Ocean Eng. 187. doi:https://doi.org/10.1016/j.oceaneng.2019.106151.
  • Mills NJ, Stämpfli R, Marone F, et al. 2009. Finite element micromechanics model of impact compression of closed-cell polymer foams. Int J Solids Struct. 46(3):677–697.
  • Mittal R. 2004. Computational modeling in biohydrodynamics: trends, challenges, and recent advances. IEEE J Ocean Eng. 29(3):595–604.
  • Moaleji R, Greig AR. 2007. On the development of ship anti-roll tanks. Ocean Eng. 34(1):103–121.
  • Niu C, Zhang L, Bi S, et al. 2012. IEEE International Conference on Robotics and Biomimetics (ROBIO) - Development and depth control of a robotic fish mimicking cownose ray. IEEE International Conference on Robotics & Biomimetics IEEE. 814–818.
  • Paik JK. 2007. Practical techniques for finite element modelling to simulate structural crashworthiness in ship collisions and grounding. Ships Offshore Struct. 2(1):81–85.
  • Perez T, Blanke M. 2012. Ship roll damping control. Annu Rev Control. 36(1):129–147.
  • Rosenberger LJ. 2001. Pectoral fin locomotion in batoid fishes: Undulation versus oscillation. J Exp Biol. 204(Pt 2):379–394.
  • Sames PC, Marcouly D, Schellin TE. 2002. Sloshing in rectangular and cylindrical tanks. J Ship Res. 46(3):186–200.
  • Subramanian R, Jyothish PV, Anantha SV. 2020. Genetic Algorithm based design Optimization of a passive anti-roll tank in a Sea Going vessel. Ocean Eng. 203:107216.
  • Tao ZX. 1996. Theoretical and experimental investigations of large amplitude ship motions and loads in regular head seas. Fiber Integr Opt. 13(3):247–260.
  • Treakle TW, Mook DT, Liapis SI, Nayfeh AH. 2000. A time domain method to evaluate the use of moving weights to reduce the roll motion of a ship. Ocean Eng. 27:1321–1343.
  • Udaykumar HS, Mittal R, Rampunggoon P, et al. 2001. A Sharp Interface Cartesian Grid method for simulating flows with complex Moving Boundaries. J Comput Phys. 174(1):345–380.
  • Xiang XJ, Hu TJ, et al. 2014. Evaluating the Fin-ray Trajectory Tracking of Bio-inspired Robotic Undulating Fins via an experimental-numerical Approach. Int J Adv Robot Syst. 11:98. doi:https://doi.org/10.5772/58400.
  • Yamamoto I, Terada Y, Nagamatu T, et al. 1995. Propulsion system with flexible/rigid oscillating fin. IEEE J Ocean Eng. 20(1):23–30.
  • Yang B, Wang ZC, Wu M. 2012. Numerical simulation of Naval ship's roll damping based on CFD. Procedia Eng. 37(37):14–18.
  • Zhang HY, Brown L, Barrans S, et al. 2009. Investigation of relative micromotion at the stem-cement interface in total hip replacement. Proc Inst Mech Eng H. 223(8):955–964.
  • Zhang XH, Gu XC, et al. 2020. Bilge keel load and hull pressure distribution on a rolling ship section with a high-order fractional step finite volume solver. Ocean Eng. doi:https://doi.org/10.1016/j.oceaneng.2020.107014.
  • Zhu Q, Bi X. 2017. Effects of stiffness distribution and spanwise deformation on the dynamics of a ray-supported caudal fin. Bioinspir Biomim. 12(2):026011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.