258
Views
1
CrossRef citations to date
0
Altmetric
Articles

Short-crestedness effect on the dynamic response of offshore floating wind turbines

ORCID Icon & ORCID Icon
Pages 2272-2281 | Received 30 Aug 2019, Accepted 22 Sep 2021, Published online: 15 Oct 2021

References

  • Bachynski EE, Kvittem MI, Luan C, Moan T. 2014. Wind-wave misalignment effects on floating wind turbines: motions and tower load effects. J Offshore Mech Arct Eng. 136(4):041902. doi: 10.1115/1.4028028
  • Barj L, Stewart S, Stewart G, Lackner M, Jonkman J, Robertson A, Matha D. 2014 Jan 13–17. Wind/wave misalignment in the loads analysis of a floating offshore wind turbine. Proceedings of the 32nd ASME Wind Energy Symposium.
  • Beels C, Troch P, Kofoed JP, Frigaard P, Kringelum JV, Kromann PC, Donovan MH, De Rouck J, De Backer G. 2011. A methodology for production and cost assessment of a farm of wave energy converters. Renew Energy 36:3402–3416. doi: 10.1016/j.renene.2011.05.019
  • Coulling AJ, Goupee AJ, Robertson AN, Jonkman JM. 2013. Importance of second-order difference-frequency wave-diffraction forces in the validation of a FAST semi-submersible floating wind turbine model. Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering; American Society of Mechanical Engineers.
  • Coulling AJ, Goupee AJ., Robertson AN, Jonkman JM., Dagher HJ. 2013. Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data. J Renew Sustain Energy. 5(2):023116. doi: 10.1063/1.4796197
  • DNV. 1994. WADAM—wave analysis by diffraction and Morison theory.
  • Faltinsen OM. 1993. Sea loads on ships and offshore structures. Cambridge: Cambridge University Press.
  • Han Y, Le C, Ding H, Cheng Z, Zhang P. 2017. Stability and dynamic response analysis of a submerged tension leg platform for offshore wind turbines. Ocean Eng. 129:68–82. doi: 10.1016/j.oceaneng.2016.10.048
  • International Electrotechnical Commission. 2009. IEC 61400-3 Wind turbines part 3: Design requirement for offshore wind turbine.
  • Jian Y, Zhan J, Zhu Q. 2008. Short crested wave–current forces around a large vertical circular cylinder. Eur J Mech B Fluids. 27:346–360. doi: 10.1016/j.euromechflu.2007.08.001
  • Jiao J, Chen C, Ren H. 2019. A comprehensive study on ship motion and load responses in short-crested irregular waves. Int J Naval Archit Ocean Eng. 11:364–379. doi: 10.1016/j.ijnaoe.2018.07.003
  • Jonkman JM, Butterfield S, Musial W, Scott G. 2009. Definition of a 5-MW reference wind turbine for offshore system development.
  • Karimirad M, Michailides C. 2016. V-shaped semisubmersible offshore wind turbine subjected to misaligned wave and wind. J Renew Sustain Energy. 8:023305. doi: 10.1063/1.4944964
  • Kvittem MI, Moan T. 2015. Time domain analysis procedures for fatigue assessment of a semi-submersible wind turbine. Mar Struct. 40:38–59. doi: 10.1016/j.marstruc.2014.10.009
  • Li L, Gao Y, Hu ZQ, Yuan ZM, Day S, Li HR. 2018a. Model test research of a semisubmersible floating wind turbine with an improved deficient thrust force correction approach. Renew Energy 119:95–105. doi: 10.1016/j.renene.2017.12.019
  • Li L, Gao Y, Yuan Z, Day S, Hu Z. 2018b. Dynamic response and power production of a floating integrated wind, wave and tidal energy system. Renew Energy 116:412–422. doi: 10.1016/j.renene.2017.09.080
  • Li L, Liu Y, Yuan Z, Gao Y. 2018c. Wind field effect on the power generation and aerodynamic performance of offshore floating wind turbines. Energy. 157(157):379–390. doi: 10.1016/j.energy.2018.05.183
  • Li X, Zhu C, Fan Z, Chen X, Tan J. 2020. Effects of the yaw error and the wind-wave misalignment on the dynamic characteristics of the floating offshore wind turbine. Ocean Eng. 199:106960. doi: 10.1016/j.oceaneng.2020.106960
  • Naess A. 1990. Statistical analysis of nonlinear, second-order forces and motions of offshore structures short-crested random seas. Probab Eng Mech. 5:192–203. doi: 10.1016/0266-8920(90)90020-K
  • Naess A, Gaidai O. 2008 Aug. Monte Carlo methods for estimating the extreme response of dynamical systems. J Eng Mech. 134:628–636.
  • NWTC. 2017. Mlife. Available from https://nwtc.nrel.gov/MLife.
  • Øye S. 1991. Dynamic stall simulated as time lag of separation. Proceedings of the 4th IEA Symposium on the Aerodynamics of Wind Turbines.
  • Robertson A, Jonkman J, Masciola M, Song H, Goupee A, Coulling A, Luan C. 2014. Definition of the semisubmersible floating system for phase II of OC4.
  • SINTEF Ocean. 2019. RIFLEX theory manual.
  • Sørum SH, Krokstad JR, Amdahl J. 2019. Wind-wave directional effects on fatigue of bottom-fixed offshore wind turbine. J Phys Conf Ser. 1356:012011. doi: 10.1088/1742-6596/1356/1/012011
  • Viuff T, Leira BJ, Xiang X, Øiseth O. 2019. Effects of wave directionality on extreme response for a long end-anchored floating bridge. Appl Ocean Res. 90:101843. doi: 10.1016/j.apor.2019.05.028
  • Vugts JH. 2005 Jun. Fatigue damage assessments and the influence of wave directionality. Appl Ocean Res. 27:173–185. doi: 10.1016/j.apor.2005.11.003
  • Wan L, Greco M, Lugni C, Gao Z, Moan T. 2017. A combined wind and wave energy-converter concept in survival mode: numerical and experimental study in regular waves with a focus on water entry and exit. Appl Ocean Res. 63:200–216. doi: 10.1016/j.apor.2017.01.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.