289
Views
1
CrossRef citations to date
0
Altmetric
Articles

Hydrodynamic analysis of a hybrid modular floating structure system and its expansibility

, &
Pages 2367-2377 | Received 01 Sep 2021, Accepted 18 Oct 2021, Published online: 22 Dec 2021

References

  • American Petroleum Institute. 1996. Recommended Practice for Design and Analysis of Station keeping System for Floating Structure.
  • Ding J, Tian C, Wu YS, Li ZW, Ling HJ, Ma XZ. 2017. Hydroelastic analysis and model tests of a single module VLFS deployed near islands and reefs. Ocean Eng. 144:224–234. doi: 10.1016/j.oceaneng.2017.08.043
  • Ding R, Liu CR, Zhang HC, Xu DL, Shi QJ, Yan DL, Yang WY, Chen WP, Wu YS. 2020. Experimental investigation on characteristic change of a scale-extendable chain-type floating structure. Ocean Eng. 213:1–11. doi: 10.1016/j.oceaneng.2020.107778
  • Drummen I, Olbert G. 2021. Conceptual design of a modular floating multi-purpose island. Front Mar Sci. 8:1–16. doi: 10.3389/fmars.2021.615222
  • Du SX, Ertekin CR. 1991. Dynamic response analysis of a flexibly joined, multi-module Very Large Floating structure. Honolulu, Hawaii, USA: OEANS.
  • Fujikubo M, Yao T. 2001. Structural modeling for global response analysis of VLFS. Mar Struct. 14:295–310. doi: 10.1016/S0951-8339(00)00062-9
  • Kashiwagi M. 2000. Hydrodynamic interactions among a great number of columns supporting a very large flexible structure. J Fluids Struct. 14:1013–1034. doi: 10.1006/jfls.2000.0306
  • Kim BW, Sa YH, Jo HK, Kyu Cho S. 2007. Evaluation of bending moments and shear forces at unit connections of very large floating structures using hydroelastic and rigid body analyses. Ocean Eng. 34:1668–1679. doi: 10.1016/j.oceaneng.2006.10.018
  • Lamas-Pardo M, Iglesias G, Carral L. 2015. A review of Very Large Floating Structures (VLFS) for coastal and offshore uses. Ocean Eng. 109:677–690. doi: 10.1016/j.oceaneng.2015.09.012
  • Liu C, Yang Q, Bao G. 2017. Performance investigation of a two-raft-type wave energy converter with hydraulic power take-off unit. Appl Ocean Res. 62:139–155. doi: 10.1016/j.apor.2016.12.002
  • López I, Andreu J, Ceballos S, Martínez de Alegría I, Kortabarria I. 2013. Review of wave energy technologies and the necessary power-equipment. Renewable Sustainable Energy Rev. 27:413–434. doi: 10.1016/j.rser.2013.07.009
  • Mcallister KR. 1997. Mobile offshore bases- an overview of recent research. J Mar Sci Technol. 2:173–181. doi: 10.1007/BF02489808
  • Michailides C, Angelides DC. 2012. Modeling of energy extraction and behavior of a flexible floating breakwater. Appl Ocean Res. 35:77–94. doi: 10.1016/j.apor.2011.11.004
  • Mustapa MA, Yaakob OB, Ahmed YM, Rheem CK, Koh KK, Adnan FA. 2017. Wave energy device and breakwater integration: A review. Renewable Sustainable Energy Rev. 77:43–58. doi: 10.1016/j.rser.2017.03.110
  • Newman JN. 1998. Wave effects on hinged bodies part III- hinge loads vs. number of modules.
  • Nguyen HP, Wang CM, Flocard F, Pedroso DM. 2019b. Extracting energy while reducing hydroelastic responses of VLFS using a modular raft wec-type attachment. Appl Ocean Res. 84:302–316. doi: 10.1016/j.apor.2018.11.016
  • Nguyen HP, Wang CM, Pedroso DM. 2019a. Optimization of modular raft WEC-type attachment to VLFS and module connections for maximum reduction in hydroelastic response and wave energy production. Ocean Eng. 172:407–421. doi: 10.1016/j.oceaneng.2018.12.014
  • Quevedo E, Carton M, Delory E, Castro A, Hernández J, Llinás O, de Lara J, Papandroulakis N, Anastasiadis P, Bard J, et al. 2013. Multi-use offshore platform configurations in the scope of the FP7 TROPOS project. Bergen, Norway: OCEANS.
  • Ren NX, Wu HB, Ma Z, Ou Jinping. 2019b. Hydrodynamic analysis of a novel modular floating structure system with central tension-leg platforms. Ships Offsh Struct. 15(9):1011–1022. doi: 10.1080/17445302.2019.1700035
  • Ren NX, Zhang C, Magee AR, Hellan Øyvind, Dai Jian, Ang Kok Keng. 2019a. Hydrodynamic analysis of a modular multi-purpose floating structure system with different outermost connector types. Ocean Eng. 176:158–168. doi: 10.1016/j.oceaneng.2019.02.052
  • Riggs HR, Ertekin RC. 1999b. Characteristics of the wave response of mobile offshore bases. 18th International Conference on Offshore Mechanics and Arctic engineering; St. Johns, Newfoundland.
  • Riggs HR, Ertekin RC, Mills TRJ. 1998. Wave induced response of a 5 module Mobile Offshore base. 17th International Conference on Offshore Mechanics and Arctic engineering; Lisbon, Portugal.
  • Riggs HR, Ertekin RC, Mills TRJ. 1999a. Impact of stiffness on the response of a multimodule mobile offshore base. Int J Offshore Polar Eng. 9(2):126–133.
  • Riggs HR, Ertekin RC, Mills TRJ. 2000. A comparative study of RMFC and FEA models for the wave-induced response of a MOB. Ocean Eng. 13:217–232.
  • Suzuki H. 2005. Overview of megafloat: concept, design criteria, analysis, and design. Marine Structures. 18(2):111–132. doi: 10.1016/j.marstruc.2005.07.006
  • Tajali Z, Shafieefar M. 2011. Hydrodynamic analysis of multi-body floating piers under wave action. Ocean Eng. 38:1925–1933. doi: 10.1016/j.oceaneng.2011.09.025
  • Tavana H, Khanjani MJ. 2013. Reducing hydroelastic response of very large floating structure: A literature review. Int J Comput Appl. 71(5):12–17.
  • Tay ZY. 2019. Energy extraction from an articulated plate anti-motion device of a very large floating structure under irregular waves. Renewable Energy. 130:206–222. doi: 10.1016/j.renene.2018.06.044
  • Wang CM, Tay ZY. 2011. Very large floating structures: applications, research and development. Procedia Eng. 14:62–72. doi: 10.1016/j.proeng.2011.07.007
  • Wang CM, Wang BT. 2015. Large floating structure technology advances. Singapore: Springer.
  • Wang ZF, Zhou LM, Dong S, Wu Lunyu, Li Zhanbin, Mou Lin, Wang Aifang. 2014. Wind wave characteristics and Engineering environment of the South China Sea. J Ocean Univ China. 13(06):893–900. doi: 10.1007/s11802-014-2331-0
  • Watanabe E, Utsunomiya T, Wang CM. 2004. Hydroelastic analysis of pontoon-type VLFS: a literature survey. Eng Struct. 26(2):245–256. doi: 10.1016/j.engstruct.2003.10.001
  • Zhang H, Xu D, Zhao H, Xia S, Wu Y. 2018. Energy extraction of wave energy converters embedded in a very large modularized floating platform. Energy. 158:317–329. doi: 10.1016/j.energy.2018.06.031
  • Zhang Y, Liu H. 2021. Methodology for the assessment and optimization of connection parameter combinations for modular floating structures. J Offshore Mech Arct Eng. 143(2):1–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.