226
Views
2
CrossRef citations to date
0
Altmetric
Articles

A model-based multidisciplinary conceptual design for blended-wing-body underwater gliders

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1519-1527 | Received 16 May 2022, Accepted 14 Sep 2022, Published online: 23 Sep 2022

References

  • Bachmayer R, Leonard NE, Graver J, Fiorelli E, Bhatta P, Paley D. 2004. Underwater gliders: recent developments and future applications. In: Proceedings of the 2004 International Symposium on Underwater Technology. Berlin: Springer; p. 195–200. doi:10.1109/UT.2004.1405540.
  • Chen W, Wang P, Dong H. 2022. Surrogate-based bilevel shape optimization for blended-wing–body underwater gliders. Eng Optim. 1–22. doi:10.1080/0305215X.2022.2057480.
  • Chen X, Wang P, Zhang D, Dong C. 2018. Gradient-based multidisciplinary design optimization of an autonomous underwater vehicle. Appl Ocean Res. 80:101–111. doi:10.1016/j.apor.2018.08.006.
  • Cramer EJ, DennisJrJE, Frank PD. 1994. Problem formulation for multidisciplinary optimization. SIAM J Optim. 4(4):754–776. doi:10.1137/0804044.
  • Dong H, Wang P, Yu X, Song B. 2020. Surrogate-assisted teaching-learning-based optimization for high-dimensional and computationally expensive problems. Appl Soft Comput. 99(2):106934. doi:10.1016/j.asoc.2020.106934.
  • Dong H, Wang P, Zhang YJ. 2021. Discrete optimization design for cabin-skeleton coupling structure of blended-wing-body underwater glider. Chin J Sh Res. 16(4):70–78. doi:10.19693/j.issn.1673-3185.02178.
  • D’spain GL, Zimmerman R, Jenkins SA. 2007. Underwater acoustic measurements with a flying wing glider. J Acoust Soc Am. 121(5):3107–3107. doi:10.1121/1.4782033.
  • Eriksen CC, Osse TJ, Light RD, Wen T, Lehman TW, Sabin PL, Ballard JW, Chiodi AM. 2001. Sea glider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J Oceanic Eng. 26(4):424–436. doi:10.1109/48.972073.
  • He Y, Song B, Dong H. 2018. Multi-objective optimization design for the multi-bubble pressure cabin in BWB underwater glider. Int J Nav Archit Ocean Eng. 10(4):439–449. doi:10.1016/j.ijnaoe.2017.08.007.
  • Hicks RM, Henne PA. 1978. Wing design by numerical optimization. J Aircr. 15(7):407–412. doi:10.2514/3.58379.
  • Hu F, Huang Y, Xie Z, Yu J, Wang Z, Qiao J. 2022. Conceptual design of a long-range autonomous underwater vehicle based on multidisciplinary optimization framework. Ocean Eng. 248:110684. doi:10.1016/j.oceaneng.2022.110684.
  • Hussein R, Deb K. 2016. A generative kriging surrogate model for constrained and unconstrained multi-objective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference; 2016 Jul; p. 573–580. doi:10.1145/2908812.2908866.
  • Lambe AB, Martins JRRA. 2012. Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Struct Multidiscipl Optim. 46(2):273–284. doi:10.1007/s00158-012-0763-y.
  • Leonard NE, Graver JG. 2001. Model-based feedback control of autonomous underwater gliders. IEEE J Oceanic Eng. 26(4):633–645. doi:10.1109/48.972106.
  • Li C, Wang P, Li T, Dong H. 2020a. Performance study of a simplified shape optimization strategy for blended-wing-body underwater gliders. Int J Nav Archit Ocean Eng. 12:455–467. doi:10.1016/j.ijnaoe.2020.05.002.
  • Li J, Wang P, Dong H, Wu X, Chen X, Chen C. 2020b. Shape optimization of blended-wing-body underwater gliders based on free-form deformation. Ships Offsh Struct. 15(3):227–235. doi:10.1080/17445302.2019.1611989.
  • Liu J, Dong H, Wang P. 2021. Multi-fidelity global optimization using a data-mining strategy for computationally intensive black-box problems. Knowl Based Syst. 227:107212. doi:10.1016/j.knosys.2021.107212.
  • Sobieski IP, Kroo IM. 2000. Collaborative optimization using response surface estimation. AIAA J. 38(10):1931–1938. doi:10.2514/2.847.
  • Sobieszczanski-Sobieski J, Morris A, Van Tooren M. 2015. Multidisciplinary design optimization supported by knowledge based engineering. Hoboken, NJ, United States.
  • Sun C, Song B, Peng W. 2015. Parametric geometric model and shape optimization of an underwater glider with blended-wing-body. Int J Nav Archit Ocean Eng. 7(6):995–1006. doi:10.1515/ijnaoe-2015-0069.
  • Sun C, Song B, Wang P, Wang X. 2017. Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target. Int J Nav Archit Ocean Eng. 9(6):693–704. doi:10.1016/j.ijnaoe.2016.12.003.
  • Sun S, Song B, Wang P, Dong H, Chen X. 2020. Shape optimization of underwater wings with a new multi-fidelity bi-level strategy. Struct Multidiscipl Optim. 61(1):319–341. doi:10.1007/s00158-019-02362-z.
  • Wang S, Yang M, Niu W, Wang Y, Yang S, Zhang L, Deng J. 2021. Multidisciplinary design optimization of underwater glider for improving endurance. Struct Multidiscipl Optim. 63(6):2835–2851. doi:10.1007/s00158-021-02844-z.
  • Wang Z, Ye L, Wang A, Wang X. 2015. Flying wing underwater glider: design, analysis, and performance prediction. In: 2015 International Conference on Control, Automation and Robotics; May. IEEE; p. 74–77. doi:10.1109/ICCAR.2015.7166005.
  • Wang Z, Yu J, Zhang A, Wang Y, Zhao W. 2017. Parametric geometric model and hydrodynamic shape optimization of a flying-wing structure underwater glider. China Ocean Eng. 31(006):709–715. doi:10.1007/s13344-017-0081-7.
  • Webb C, Simonetti PJ, Jones CP. 2001. Slocum: an underwater glider propelled by environmental energy. IEEE J Oceanic Eng. 26(4):447–452. doi:10.1109/48.972077.
  • Yang M, Wang Y, Liang Y, Wang C. 2022. A new approach to system design optimization of underwater gliders. IEEE/ASME Trans Mechatron. doi:10.1109/TMECH.2022.3143125.
  • Yu J, Zhang F, Zhang A, Jin W, Tian Y. 2013. Motion parameter optimization and sensor scheduling for the sea-wing underwater glider. IEEE J Oceanic Eng. 38(2):243–254. doi:10.1109/JOE.2012.2227551.
  • Zhang D, Song B, Wang P, Chen X. 2017. Multidisciplinary optimization design of a new underwater vehicle with highly efficient gradient calculation. Struct Multidiscipl Optim. 55(4):1483–1502. doi:10.1007/s00158-016-1575-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.