3,072
Views
3
CrossRef citations to date
0
Altmetric
Articles

A review of challenges and framework development for corrosion fatigue life assessment of monopile-supported horizontal-axis offshore wind turbines

, , , &
Pages 1-15 | Received 04 Aug 2022, Accepted 22 Oct 2022, Published online: 04 Nov 2022

References

  • Adedipe O, Brennan F, Kolios A. 2015. Corrosion fatigue load frequency sensitivity analysis. Marine Struct. 42:115–136. doi:10.1016/j.marstruc.2015.03.005.
  • Adedipe O, Brennan F, Kolios A. 2016. Review of corrosion fatigue in offshore structures: present status and challenges in the offshore wind sector. Renewable Sust Energ Rev [Internet]. 61:141–154. doi:10.1016/j.rser.2016.02.017.
  • Adedipe O, Brennan F, Mehmanparast A, Kolios A, Tavares I. 2017. Corrosion fatigue crack growth mechanisms in offshore monopile steel weldments. Fatigue Fract Eng Mater Struct. 40(11):1868–1881. doi:10.1111/ffe.12606.
  • Adey R, Peratta C, Baynham J. 2020. Corrosion data management using 3D visualisation and a digital twin. In: NACE international corrosion conference proceedings - NACE international. [place unknown]; p. 1–14.
  • Akid R, Miller KJ. 1991. Short fatigue crack growth behaviour of a Low carbon steel under corrosion fatigue conditions. Fatigue Fract Eng Mater Struct. 14(6):637–649. doi:10.1111/j.1460-2695.1991.tb00693.x.
  • Akid R, Richardson T. 2010. Corrosion fatigue. In: Shreir’s corrosion. Vol. 2. [place unknown]; p. 928–953.
  • Anagnostou E, Engel S, Fridline D, Hoitsma D, Madsen J, Papazian J, Nardiello J. 2010. Science-based multiscale modeling of fatigue damage for structural prognosis. In: 51st AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference 18th AIAA/ASME/AHS adaptive structures conference 12th. [place unknown]; p. 2971.
  • Ancona D, Jim M. 2001. Wind turbine - materials and manufacturing fact sheet. Princeton Energy Resources International, LLC. 19.
  • Arany L, Bhattacharya S, Macdonald J, Hogan SJ. 2017. Design of monopiles for offshore wind turbines in 10 steps. Soil Dyn Earthq Eng. 92:126–152. doi:10.1016/j.soildyn.2016.09.024.
  • Arcos Jiménez A, Muñoz CG, Márquez FG. 2017. Machine learning for wind turbine blades maintenance management. Energies (Basel) [Internet]. 11(1):13. doi:10.3390/en11010013.
  • Ata R, Kocyigit Y. 2010. An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines. Expert Syst Appl [Internet]. 37(7):5454–5460. doi:10.1016/j.eswa.2010.02.068.
  • Atkinson JD, Chen Z. 1993. Effect of temperature on corrosion fatigue crack propagation in reactor pressure vessel steels; p. 29–34.
  • Austen, IM and Walker E. 1984. Corrosion fatigue crack propagation in steels under simulated offshore conditions. In: Fatigue. [place unknown]; p. 1–457.
  • Bang HJ, Kim H, Lee KS. 2012. Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors. Int J Prec Eng Manuf . 13(12):2121–2126. doi:10.1007/s12541-012-0281-2
  • Bergara A, Dorado JI, Martin-Meizoso A, Martínez-Esnaola JM. 2017. Fatigue crack propagation in complex stress fields: experiments and numerical simulations using the extended finite element method (XFEM). Int J Fatigue [Internet]. 103:112–121. doi:10.1016/j.ijfatigue.2017.05.026.
  • Biswal R, al Mamun A, Mehmanparast A. 2021. On the performance of monopile weldments under service loading conditions and fatigue damage prediction. Fatigue Fract Eng Mater Struct. 44(November 2020):1469–1483. doi:10.1111/ffe.13442.
  • BSI. 2019. BS EN IEC 61400-1:2019: wind energy generation systems. Design Requirements. Part - 1:1–167. https://bsol.bsigroup.com/.
  • Castelluccio GM, McDowell DL. 2015. Microstructure-sensitive small fatigue crack growth assessment: effect of strain ratio, multiaxial strain state, and geometric discontinuities. Int J Fatigue [Internet]. 82:521–529. doi:10.1016/j.ijfatigue.2015.09.007.
  • Chehouri A, Younes R, Ilinca A, Perron J. 2015. Review of performance optimization techniques applied to wind turbines. Appl Energy [Internet]. 142:361–388. doi:10.1016/j.apenergy.2014.12.043.
  • Chen GS, Wan KC, Gao G, Wei RP, Flournoy TH. 1996. Transition from pitting to fatigue crack growth - modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy. Mater Sci Eng A. 219(1–2):126–132. doi:10.1016/S0921-5093(96)10414-7.
  • Chen S, Zhang R, Jia LJ, Wang JY, Gu P. 2018. Structural behavior of UHPC filled steel tube columns under axial loading. Thin-Walled Structures [Internet]. 130(June):550–563. doi:10.1016/j.tws.2018.06.016.
  • Córdoba-Torres P, Nogueira RP, de Miranda L, Brenig L, Wallenborn J, Fairén V. 2001. Cellular automaton simulation of a simple corrosion mechanism: mesoscopic heterogeneity versus macroscopic homogeneity. Electrochim Acta. 46(19):2975–2989. doi:10.1016/S0013-4686(01)00524-2.
  • Cui C, Ma R, Chen A, Pan Z, Tian H. 2019. Experimental study and 3D cellular automata simulation of corrosion pits on Q345 steel surface under salt-spray environment. Corros Sci [Internet]. 154:80–89. doi:10.1016/j.corsci.2019.03.011.
  • Deng D. 2009. FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Mater Des. 30(2):359–366. doi:10.1016/j.matdes.2008.04.052.
  • Devriendt C, Magalhães F, Weijtjens W, de Sitter G, Cunha Á, Guillaume P. 2014. Structural health monitoring of offshore wind turbines using automated operational modal analysis. Struct Health Monit. 13(6):644–659. doi:10.1177/1475921714556568.
  • Dhillon BS. 2002. Engineering maintenance: A modern approach. [place unknown].
  • Dong W, Moan T, Gao Z. 2012. Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection. Reliab Eng Syst Saf [Internet]. 106:11–27. doi:10.1016/j.ress.2012.06.011.
  • Durodola JF, Li N, Ramachandra S, Thite AN. 2017. A pattern recognition artificial neural network method for random fatigue loading life prediction. Int J Fatigue [Internet]. 99:55–67. doi:10.1016/j.ijfatigue.2017.02.003.
  • Ekoyuncu J, Addepalli S, Smith C, Keedwell E, Penver S, Mk A, Amico DD, Addepalli S. 2019. Conceptual framework of a digital twin to evaluate the degradation status of complex engineering systems. Procedia CIRP. 86:61–67. doi:10.1016/j.procir.2020.01.043.
  • Errandonea I, Beltrán S, Arrizabalaga S. 2020. Digital twin for maintenance: A literature review. Comput Ind [Internet]. 123:103316. doi:10.1016/j.compind.2020.103316.
  • European Committee for Standarization. 2019. EN-10225 Weldable structural steels for fixed offshore structures - Technical delivery conditions.
  • Fatoba O. 2015. Corrosion fatigue damage in a Linepipe Steel. [place unknown]: University of Manchester.
  • Fatoba OO, Leiva-Garcia R, Lishchuk Sv, Larrosa NO, Akid R. 2018. Simulation of stress-assisted localised corrosion using a cellular automaton finite element approach. Corros Sci [Internet]. 137:83–97. doi:10.1016/j.corsci.2018.03.029.
  • Gartner. 2018. Gartner Top 10 Strategic Technology Trends for 2019 [Internet]; [accessed 2021 Mar 28]. https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends.
  • Gentils T, Wang L, Kolios A. 2017. Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm. Appl Energy [Internet]. 199:187–204. doi:10.1016/j.apenergy.2017.05.009.
  • Georgoulias K, Arkouli Z, Makris S, Stief P, Dantan J, Etienne A, Siadat A. 2019. Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance. Procedia CIRP [Internet]. 81:417–422. doi:10.1016/j.procir.2019.03.072.
  • Gope D, Chandra P, Thakur A, Yadav A. 2015. Application of artificial neural network for predicting crack growth direction in multiple cracks geometry. Appl Soft Comput J [Internet]. 30:514–528. doi:10.1016/j.asoc.2015.02.003.
  • Grbovic A, Rasuo B. 2012. FEM based fatigue crack growth predictions for spar of light aircraft under variable amplitude loading. Eng Fail Anal [Internet]. 26:50–64. doi:10.1016/j.engfailanal.2012.07.003.
  • Guo T, Frangopol DM, Chen Y. 2012. Fatigue reliability assessment of steel bridge details integrating weigh-in-motion data and probabilistic finite element analysis. Comput Struct [Internet]. 112–113:245–257. doi:10.1016/j.compstruc.2012.09.002.
  • Haque ME, Sudhakar K. 2001. Prediction of corrosion–fatigue behavior of DP steel through artificial neural network. Int J Fatigue [Internet]. 23:1–4. doi:10.1016/S0142-1123(00)00074-8.
  • Healy J, Billingham J. 1998. A review of the corrosion fatigue behaviour of structural steels in the strength range 350-900 MPa and associated high strength weldments.
  • Healy J, Chubb J, Billingham J. 1990. Further assessment of cast steel for use in offshore structures. Int J Fatigue. 12(3):191–197.
  • Hertz JA. 2018. Introduction to the theory of neural computation. [place unknown]: CRC Press.
  • Higgins P, Foley A. 2014. The evolution of offshore wind power in the United Kingdom. Renewable and Sustainable Energy Reviews [Internet]. 37:599–612. doi:10.1016/j.rser.2014.05.058.
  • Hoeppner D. 1979. Model for prediction of fatigue lives based upon a pitting corrosion fatigue process. In: Committee E08, editor. Fatigue mechanisms [Internet]. Fong, JT; West Conshohocken, PA: ASTM International; p. 841–870. doi:10.1520/STP35917S.
  • Hou P, Enevoldsen P, Hu W, Chen C, Chen Z. 2017. Offshore wind farm repowering optimization. Appl Energy. 208(September):834–844. doi:10.1016/j.apenergy.2017.09.064.
  • Huang G-B, Zhu Q-Y, Siew C-K. 2006. Extreme learning machine: theory and applications. Neurocomputing. 70:489–501. doi:10.1016/j.neucom.2005.12.126.
  • Igwemezie V, Mehmanparast A. 2020. Waveform and frequency effects on corrosion-fatigue crack growth behaviour in modern marine steels. Int J Fatigue [Internet]. 134(October 2019):105484. doi:10.1016/j.ijfatigue.2020.105484
  • Igwemezie V, Mehmanparast A, Kolios A. 2018. Materials selection for XL wind turbine support structures: A corrosion-fatigue perspective. Marine Struct. 61(June 2018):381–397. doi:10.1016/j.marstruc.2018.06.008
  • Igwemezie V, Mehmanparast A, Kolios A. 2019. Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures – A review. Renewable Sustainable Energy Rev. 101(October 2018):181–196. doi:10.1016/j.rser.2018.11.002.
  • Jacob A, Mehmanparast A. 2021. Crack growth direction effects on corrosion-fatigue behaviour of offshore wind turbine steel weldments. Marine Struct. 75:1–12. doi:10.1016/j.marstruc.2020.102881.
  • Jacob A, Oliveira J, Mehmanparast A, Hosseinzadeh F, Kelleher J, Berto F. 2018. Residual stress measurements in offshore wind monopile weldments using neutron diffraction technique and contour method. Theoretical and Applied Fracture Mechanics [Internet]. 96(April):418–427. doi:10.1016/j.tafmec.2018.06.001.
  • James R, Ros MC. 2015. Floating offshore wind: market and technology review. The Carbon Trust. 439.
  • Jammes F-X, Cespedes X, Resplendino J. 2013. Design of Offshore Wind Turbines. RILEM-fib-AFGC Int Symposium on Ultra-High Performance Fibre-Reinforced Concrete UHPFRC 2013 (1):443–452.
  • Jaske C, Payer J, Balint V. 1981. Corrosion fatigue of metals in marine environments. [place unknown].
  • Jeong S, Kim EJ, Shin DH, Park JW, Sim SH. 2020. Data fusion-based damage identification for a monopile offshore wind turbine structure using wireless smart sensors. Ocean Eng. 195:1–9. doi:10.1016/j.oceaneng.2019.106728.
  • Johansen SS, Nejad AR. 2019. On digital twin condition monitoring approach for drivetrains in marine applications. In: ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. [place unknown]: American Society of Mechanical Engineers Digital Collection; p. 1–10.
  • Kallehave D, Byrne BW, LeBlanc Thilsted C, Mikkelsen KK. 2015. Optimization of monopiles for offshore wind turbines. philosophical transactions of the royal society A: mathematical. Phys Eng Sci. 373:2035. doi:10.1098/rsta.2014.0100.
  • Kang DH, Kim S, Lee C, Lee JK, Kim TW. 2013. Corrosion fatigue behaviors of HSB800 and its HAZs in air and seawater environments. Materials Sci Eng A [Internet]. 559:751–758. doi:10.1016/j.msea.2012.09.019.
  • Kawai S, Kasai K. 1985. Considerations of allowable stress of corrosion fatigue (focused on the influence of pitting). Fatigue Fract Eng Mater Struct. 8(2):115–127. doi:10.1111/j.1460-2695.1985.tb01198.x.
  • Kim HG, Kim BJ. 2018. Feasibility study of new hybrid piled concrete foundation for offshore wind turbine. Appl Ocean Res [Internet]. 76(April):11–21. doi:10.1016/j.apor.2018.04.005.
  • Knezevic D, Fakas E, Shell RD, Riber HJ, Engineering LIC. 2019. Predictive digital twins for structural integrity management and asset life extension–JIP concept and results. In: SPE offshore Europe conference and exhibition. [place unknown]: Society of Petroleum Engineers; p. 1–6.
  • Kolawole SK, Kolawole FO, Soboyejo ABO, Soboyejo WO. 2019. Modeling studies of corrosion fatigue in a low carbon steel. Cogent Eng. 6:1. doi:10.1080/23311916.2019.1695999.
  • Kondo Y. 1989. Prediction of fatigue crack initiation life based on pit growth. Corrosion. 45(1):7–11. doi:10.5006/1.3577891.
  • Kovalov D, Fekete B, Engelhardt GR, Macdonald DD. 2018. Prediction of corrosion fatigue crack growth rate in alloys. part I: general corrosion fatigue model for aero-space aluminum alloys. Corros Sci [Internet]. 141:22–29. doi:10.1016/j.corsci.2018.06.034.
  • Larrosa NO, Akid R, Ainsworth RA. 2018. Corrosion-fatigue: a review of damage tolerance models. Int Mater Rev. 63(5):283–308. doi:10.1080/09506608.2017.1375644.
  • Lavanya C, Kumar ND. 2020. Foundation types for land and offshore sustainable wind energy turbine towers. E3S Web Conf. 184:1–6. doi:10.1051/e3sconf/202018401094.
  • Lee J, Zhao F. 2021. Global offshore wind report 2021. Global Wind Energy Council. 1(February):1–80. http://www.gwec.net/global-figures/wind-energy-global-status/.
  • Leser PE, Warner JE, Leser WP, Bomarito GF, Newman JA, Hochhalter JD. 2020. A digital twin feasibility study (Part II): Non-deterministic predictions of fatigue life using in-situ diagnostics and prognostics [Internet]. 229(February). doi:10.1016/j.engfracmech.2020.106903.
  • Lin Z, Liu X. 2020. Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network. Energy [Internet]. 201:117693. doi:10.1016/j.energy.2020.117693.
  • Lindley C, Rudd WJ. 2001. Influence of the level of cathodic protection on the corrosion fatigue properties of high-strength welded joints. Marine Struct. 14(4–5):397–416. doi:10.1016/S0951-8339(00)00048-4.
  • Lindley TC, McIntyre P, Trant PJ. 1982. Fatigue-crack initiation at corrosion pits. Metals Technol. 9(1):135–142. doi:10.1179/030716982803286403.
  • Lishchuk Sv, Akid R, Worden K, Michalski J. 2011. A cellular automaton model for predicting intergranular corrosion. Corros Sci [Internet]. 53(8):2518–2526. doi:10.1016/j.corsci.2011.04.027.
  • Lu J, Becker A, Sun W, Tanner D. 2014. Simulation of cyclic plastic behavior of 304L steel using the crystal plasticity finite element method. Procedia Materials Sci [Internet]. 3:135–140. doi:10.1016/j.mspro.2014.06.025.
  • Ma H, Yang J. 2020. A novel hybrid monopile foundation for offshore wind turbines. Ocean Eng. 198:1–17. doi:10.1016/j.oceaneng.2020.106963.
  • Ma Y, Martinez-Vazquez P, Baniotopoulos C. 2019. Wind turbine tower collapse cases: a historical overview. Proceed Inst Civil Eng - Struct Build [Internet]. 172(8):547–555. doi:10.1680/jstbu.17.00167.
  • Marugán AP, Pedro F, Márquez G, María J, Perez P, Ruiz-hernández D. 2018. A survey of artificial neural network in wind energy systems. Appl Energy [Internet]. 228(April):1822–1836. doi:10.1016/j.apenergy.2018.07.084.
  • Masi G, Matteucci F, Tacq J, Balbo A. 2019. State of the Art study on materials and solutions against corrosion in offshore structures. NeSSIE Project Consort. 3(February):1–93. http://nessieproject.com/library/reports-and-researches/NeSSIE.
  • Mathiesen T, Black A, Gronvold F. 2016. Monitoring and inspection options for evaluating corrosion in offshore wind foundations. NACE - Int Corrosion Conf Ser. 5(7702):3777–3787.
  • Mehmanparast A, Adedipe O, Brennan F, Chahardehi A. 2016. Welding sequence effects on residual stress distribution in offshore wind monopile structures. Frattura ed Integrita Strutturale. 10(35):125–131. doi:10.3221/IGF-ESIS.35.15.
  • Mehmanparast A, Brennan F, Tavares I. 2017. Fatigue crack growth rates for offshore wind monopile weldments in air and seawater: SLIC inter-laboratory test results. Mater Des [Internet]. 114:494–504. doi:10.1016/j.matdes.2016.10.070.
  • Melchers RE. 2010. The changing character of long term marine corrosion of mild steel. UON Research report No 277042010.(277).
  • Moghaddam BT, Hamedany AM, Mehmanparast A, Brennan F, Nikbin K, Davies CM. 2019. Numerical analysis of pitting corrosion fatigue in floating offshore wind turbine foundations. Procedia Struct Integrity [Internet]. 17:64–71. doi:10.1016/j.prostr.2019.08.010.
  • Mohammadi E, Fadaeinedjad R, Moschopoulos G. 2018. Implementation of internal model based control and individual pitch control to reduce fatigue loads and tower vibrations in wind turbines. J Sound Vib [Internet]. 421:132–152. doi:10.1016/j.jsv.2018.02.004.
  • Momber A. 2011. Corrosion and corrosion protection of support structures for offshore wind energy devices (OWEA). Mater Corros. 62(5):391–404. doi:10.1002/maco.201005691.
  • Mortazavi SNS, Ince A. 2020. An artificial neural network modeling approach for short and long fatigue crack propagation. Comput Mater Sci [Internet]. 185(August):109962. doi:10.1016/j.commatsci.2020.109962.
  • Morthorst PE, Kitzing L. 2016. Economics of building and operating offshore wind farms. [place unknown]: Elsevier Ltd. doi:10.1016/B978-0-08-100779-2.00002-7.
  • Muskulus M, Schafhirt S. 2014. Design optimization of wind turbine support structures — A review. J Ocean Wind Energy. 1(1):12–22.
  • Nicolas A, Co NEC, Burns JT, Sangid MD. 2019. Predicting fatigue crack initiation from coupled microstructure and corrosion morphology effects. Eng Fract Mech [Internet]. 220(May):106661. doi:10.1016/j.engfracmech.2019.106661.
  • Oakley Steel. 2021. S355G10 + M TMCP offshore steel plates EN10225 [Internet]. [accessed 2021 Mar 10]. https://www.oakleysteel.co.uk/offshore-steel-plate/s355g10m-s355g10n.
  • Oh KY, Kim JY, Lee JS. 2013. Preliminary evaluation of monopile foundation dimensions for an offshore wind turbine by analyzing hydrodynamic load in the frequency domain. Renew Energy [Internet]. 54:211–218. doi:10.1016/j.renene.2012.08.007.
  • O’Kelly BC, Arshad M. 2016. Offshore wind turbine foundations - analysis and design. [place unknown]: Elsevier Ltd. doi:10.1016/B978-0-08-100779-2.00020-9.
  • Ólafsson ÓM, Berggreen C, Jensen JJ. 2016. Improved design basis of welded joints in seawater. Lyngby: Technical University of Denmark.
  • Pippan R, Hohenwarter A. 2017. Fatigue crack closure: a review of the physical phenomena. Fatigue Fract Eng Mater Struct. 40(4):471–495. doi:10.1111/ffe.12578.
  • Price SJ, Figueira RB. 2017. Corrosion protection systems and fatigue corrosion in offshore wind structures: current status and future perspectives. Coatings. 7(2):1–51. doi:10.3390/coatings7020025.
  • Prithivirajan V, Ravi P, Naragani D, Sangid MD. 2021. Direct comparison of microstructure-sensitive fatigue crack initiation via crystal plasticity simulations and in situ high-energy X-ray experiments. Mater Des [Internet]. 197:109216. doi:10.1016/j.matdes.2020.109216.
  • Qiu B, Lu Y, Sun L, Qu X, Xue Y, Tong F. 2020. Research on the damage prediction method of offshore wind turbine tower structure based on improved neural network. Measurement [Internet]. 151:107141. doi:10.1016/j.measurement.2019.107141.
  • Rejovitzky E, Altus E. 2013. On single damage variable models for fatigue. Int J Damage Mech. 22(2):268–284. doi:10.1177/1056789512443902.
  • Rozumek D, Marciniak Z, Lesiuk G, Correia JA, de Jesus AMP. 2018. Experimental and numerical investigation of mixed mode I + II and I + III fatigue crack growth in S355J0 steel. Int J Fatigue. 113(April):160–170. doi:10.1016/j.ijfatigue.2018.04.005.
  • Saucedo-Mora L, Marrow TJ. 2014. 3D cellular automata finite element method with explicit microstructure: modeling quasi-brittle fracture using meshfree damage propagation. Procedia Materials Sci [Internet]. 3:1143–1148. doi:10.1016/j.mspro.2014.06.186.
  • Scheu MN, Tremps L, Smolka U, Kolios A, Brennan F. 2019. A systematic failure mode effects and criticality analysis for offshore wind turbine systems towards integrated condition based maintenance strategies. Ocean Eng [Internet]. 176(October 2018):118–133. doi:10.1016/j.oceaneng.2019.02.048.
  • Sharma P, Knezevic D, Huynh P, Malinowski G. 2018. RB-FEA based digital twin for structural integrity assessment of offshore structures. Proc Ann Offshore Technol Conf. 4:2942–2947. doi:10.4043/29005-ms.
  • Shittu AA, Mehmanparast A, Hart P, Kolios A. 2021. Comparative study between S-N and fracture mechanics approach on reliability assessment of offshore wind turbine jacket foundations. Reliab Eng Syst Saf. 215:1–15. doi:10.1016/j.ress.2021.107838.
  • Signor L, Villechaise P, Ghidossi T, Lacoste E, Gueguen M, Courtin S. 2016. Influence of local crystallographic configuration on microcrack initiation in fatigued 316LN stainless steel: experiments and crystal plasticity finite elements simulations. Mater Sci Eng A. 649:239–249. doi:10.1016/j.msea.2015.09.119.
  • Sivalingam K, Sepulveda M, Spring M, Davies P. 2018. A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective. In: 2018 2nd international conference on green energy and applications (ICGEA) [Internet]. [place unknown]: IEEE; p. 197–204. doi:10.1109/ICGEA.2018.8356292
  • Smaili F, Lojen G, Vuherer T. 2019a. Fatigue crack initiation and propagation of different heat affected zones in the presence of a microdefect. Int J Fatigue [Internet]. 128:105191. doi:10.1016/j.ijfatigue.2019.105191.
  • Smaili F, Vuherer T, Samardžić I. 2019b. Resistivity during cycle loading of fine grain heat affected zone (HAZ) of 17CrNiMo7 steel prepared into laboratory furnace. Metalurgija. 58(1–2):87–90.
  • Srinivasan VS, Valsan M, Rao KBS, Mannan SL, Raj B. 2003. Low cycle fatigue and creep–fatigue interaction behavior of 316L (N) stainless steel and life prediction by artificial neural network approach. Int J Fatigue. 25:1327–1338. doi:10.1016/S0142-1123(03)00064-1.
  • Stieng LES, Muskulus M. 2020. Reliability-based design optimization of offshore wind turbine support structures using analytical sensitivities and factorized uncertainty modeling. Wind Energy Sci - Copernicus GmbH. 5(1):171–198.
  • Stump J. 2020. Offshore Industry Embraces Digital Twin Technology. Offshore Mag [Internet]. [accessed 2021 Mar 10] (Nov). https://www.offshore-mag.com/production/article/14185502/offshore-industry-embraces-digital-twin-technology.
  • Sun C, Jahangiri V. 2019. Fatigue damage mitigation of offshore wind turbines under real wind and wave conditions. Eng Struct [Internet]. 178(March 2018):472–483. doi:10.1016/j.engstruct.2018.10.053.
  • Suresh S. 1992. Fatigue of materials. [place unknown]: Cambridge University Press.
  • Tchakoua P, Wamkeue R, Ouhrouche M, Slaoui-Hasnaoui F, Tameghe TA, Ekemb G. 2014. Wind turbine condition monitoring: state-of-the-art review, new trends, and future challenges. Energies (Basel). 7(4):2595–2630. doi:10.3390/en7042595.
  • Thompson JWC. 1984. Phenomenological investigation of the influence of Cathodic Protection on corrosion fatigue crack propagation behaviour, sn a BS 4360 50D type structural steel and associated veUment micro- in a marine environment structures. [place unknown]: Cranfield Institute of Technology.
  • Tian Z, Jin T, Wu B, Ding F. 2011. Condition based maintenance optimization for wind power generation systems under continuous monitoring. Renew Energy [Internet]. 36(5):1502–1509. doi:10.1016/j.renene.2010.10.028.
  • Topaç MM, Ercan S, Kuralay NS. 2012. Fatigue life prediction of a heavy vehicle steel wheel under radial loads by using finite element analysis. Eng Fail Anal. 20:67–79. doi:10.1016/j.engfailanal.2011.10.007.
  • Trudel A, Sabourin M, Lévesque M, Brochu M. 2014. Fatigue crack growth in the heat affected zone of a hydraulic turbine runner weld. Int J Fatigue [Internet]. 66:39–46. doi:10.1016/j.ijfatigue.2014.03.006.
  • Tsay LW, Chern TS, Gau CY, Yang JR. 1999. Microstructures and fatigue crack growth of EH36 TMCP steel weldments. Int J Fatigue. 21(8):857–864. doi:10.1016/S0142-1123(99)00021-3.
  • Veritas DN. 2009. DNV-OS-B101: offshore standard, metallic materials. [place unknown].
  • Veritas DN. 2014. DNV-OS-J101: Design of Offshore Wind Turbine Structures. May, 212–214.
  • Veritas DN. 2016. DNVGL-RP-0416: Corrosion protection for wind turbines [Internet]. [place unknown]. https://www.dnv.com/energy/standards-guidelines/dnv-rp-0416-corrosion-protection-for-wind-turbines.html.
  • Veritas DN, Risø. 2002. Guidelines for Design of Wind Turbines 2nd Edition. Copenhagen and Wind Energy Department, Risø National Laboratory [Internet]; p. 115–128. http://scholar.google.com/scholar?hl = en&btnG = Search&q = intitle:Guidelines+for+Design+of+Wind+Turbines#3
  • Vestas. 2021. Vestas launches the V236-15.0 MW to set new industry benchmark and take next step toward leadership in offshore Wind [Internet]. [accessed 2021 Feb 10]:6. https://www.vestas.com/en/media/company-news?l = 42&n = 3886820#!NewsView.
  • Wang K, Ma X, Wang Y, He R. 2017. Study on the time-dependent evolution of pitting corrosion in flowing environment. J Electrochem Soc. 164(7):C453–C463. doi:10.1149/2.0161709jes.
  • Wang Z. 2020. Digital twin technology. In: Felice TB, De APF, editors. Industry 40 [Internet]. Rijeka: IntechOpen; p. 95–114. doi:10.5772/intechopen.80974.
  • Wei R, Speidel M. 1972. Phenomenological aspects of corrosion fatigue, critical introduction. Corrosion Fatigue: Chem Mech Microstruct NACE-2. 380:379–380.
  • Wei RP, Gao M. 1983. Reconsideration of the superposition model for environmentally assisted fatigue crack growth. Scripta Metall [Internet]. 17(7):959–962. doi:10.1016/0036-9748(83)90270-3.
  • Wind Europe. 2017. Wind energy in Europe: Outlook to 2020. [place unknown].
  • Wood Mackenzie. 2020. Wind Energy and Economic Recovery in Europe. [place unknown].
  • Wright L, Davidson S. 2020. How to tell the difference between a model and a digital twin. Adv Model Simul Eng Sci [Internet]. 7:1. doi:10.1186/s40323-020-00147-4.
  • Wu Q, Liu X, Liang Z, Wang Y, Wang X. 2020. Fatigue life prediction model of metallic materials considering crack propagation and closure effect. J Braz Soc Mech Sci Eng [Internet]. 42(8):1–11. doi:10.1007/s40430-020-02512-1.
  • Wu Y, Lee C, Chen C, Member S, Hsu K, Tseng H. 2014. Optimization of the wind turbine layout and transmission system planning for a large-scale offshore windfarm by AI technology. IEEE Trans Ind Appl. 50(3):2071–2080. doi:10.1109/TIA.2013.2283219.
  • Xin H, Correia JAFO, Veljkovic M. 2021. Three-dimensional fatigue crack propagation simulation using extended finite element methods for steel grades S355 and S690 considering mean stress effects. Eng Struct [Internet]. 227(May 2020):111414. doi:10.1016/j.engstruct.2020.111414.
  • Xin H, Veljkovic M. 2019. Fatigue crack initiation prediction using phantom nodes-based extended finite element method for S355 and S690 steel grades. Eng Fract Mech. 214(April):164–176. doi:10.1016/j.engfracmech.2019.04.026.
  • Xin H, Veljkovic M. 2020. Residual stress effects on fatigue crack growth rate of mild steel S355 exposed to air and seawater environments. Mater Des [Internet]. 193:108732. doi:10.1016/j.matdes.2020.108732.
  • Xu Q, Shao F, Bai L, Ma Q, Shen M. 2021. Corrosion fatigue crack growth mechanisms in welded joints of marine steel structures. J Cent South Univ. 28(1):58–71. doi:10.1007/s11771-021-4586-0.
  • Ye S, Zhang XC, Gong JG, Tu ST, Zhang CC. 2017. Multi-scale fatigue crack propagation in 304 stainless steel: experiments and modelling. Fatigue Fract Eng Mater Struct. 40(11):1928–1941. doi:10.1111/ffe.12615.
  • Yeter B, Garbatov Y, Soares CG. 2013. Fatigue damage analysis of a fixed offshore wind turbine supporting structure. Develop Maritime Transp Exp Sea Resourc. 1(January):415–424. doi:10.1201/b15813-51.
  • Zhao T, Liu Z, Du C, Dai C, Li X, Zhang B. 2017. Corrosion fatigue crack initiation and initial propagation mechanism of E690 steel in simulated seawater. Materials Sci Eng A [Internet]. 708(June):181–192. doi:10.1016/j.msea.2017.09.078.
  • Zhidchenko V, Handroos H, Kovartsev A. 2019. Fatigue life estimation of hydraulically actuated mobile working machines using internet of things and digital twin concepts. In: J phys conf Ser. [place unknown]: IOP Publishing; p. 042025. doi:10.1088/1742-6596/1368/4/042025
  • Zhou L, Li Y, Liu F, Jiang Z, Yu Q, Liu L. 2019. Investigation of dynamic characteristics of a monopile wind turbine based on sea test. Ocean Eng [Internet]. 189(238):106308. doi:10.1016/j.oceaneng.2019.106308.
  • Ziane K, Ilinca A, Karganroudi SS, Dimitrova M. 2021. Neural network optimization algorithms to predict wind turbine blade fatigue life under variable hygrothermal conditions. Eng. 2(3):278–295. doi:10.3390/eng2030018.
  • Ziegler L, Smolka U, Cosack N, Muskulus M. 2017. Brief communication: structural monitoring for lifetime extension of offshore wind monopiles: can strain measurements at one level tell us everything? Wind Energy Science [Internet]. 2(2):469–476. doi:10.5194/wes-2-469-2017.