92
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The aerodynamic performances of the wing-shaped poop sail

, , , &
Received 07 Sep 2022, Accepted 12 Jun 2023, Published online: 19 Jun 2023

References

  • Ampah JD, Yusuf AA, Afrane S, Jin C, Liu H. 2021. Reviewing two decades of cleaner alternative marine fuels: towards IMO's decarbonization of the maritime transport sector. J Cleaner Prod. 320:128871. doi:10.1016/j.jclepro.2021.128871.
  • Atkinson G, Nguyen H, Binns J. 2018. Considerations regarding the use of rigid sails on modern powered ships. Cogent Eng. 5(1):1543564. doi:10.1080/23311916.2018.1543564.
  • Atkinson GM. 2019. Analysis of lift, drag and CX polar graph for a 3D segment rigid sail using CFD analysis. J Mar Sci Technol. 18(1):36–45. doi:10.1080/20464177.2018.1494953.
  • Atkinson GM, Binns J. 2018(a). Analysis of drag, airflow and surface pressure characteristics of a segment rigid sail. J Mar Sci Technol. 17(3):143–152. doi:10.1080/20464177.2018.1492341.
  • Atkinson GM, Binns J, 2018(b). Power profile for segment rigid sail. J Mar Sci Technol. 17(2), 99–105. doi:10.1080/20464177.2017.1319997.
  • Babarit A, Ghani NA, Brouillette E, Delvoye S, Weber M, Merrien A, Gilloteaux JC. 2021. Experimental validation of the energy ship concept for far-offshore wind energy conversion. Ocean Eng. 239:109830. doi:10.1016/j.oceaneng.2021.109830.
  • Banks J, Cocard M, Jaspe J. 2021. Assessing the impact of membrane deformations on wing sail performance. J Sail Technol. 6(1):73–90. doi:10.5957/jst/2021.6.1.73.
  • Bicer Y, Dincer I. 2018. Environmental impact categories of hydrogen and ammonia driven transoceanic maritime vehicles: a comparative evaluation. Int J Hydrogen Energy. 43(9):4583–4596. doi:10.1016/j.ijhydene.2017.07.110.
  • Bin Mohamed Nadzri MAA, Ahmed YA. 2021. Feasibility study of wing sail technology for commercial ship. Jurnal Mekanikal. 44:26–45.
  • Fiumara A, Gourdain N, Chapin V, Senter J, Bury Y. 2016. Numerical and experimental analysis of the flow around a two-element wingsail at Reynolds number 0.53×106. Int J Heat Fluid Flow. 62:538–551. doi:10.1016/j.ijheatfluidflow.2016.08.005.
  • Fujiwara T, Hearn GE, Kitamura F, Ueno M. 2005. Sail–sail and sail–hull interaction effects of hybrid-sail assisted bulk carrier. J Mar Sci Technol. 10(2):82–95. doi:10.1007/s00773-005-0191-4.
  • Hamid Y, Koay MH, Halim G, Aliff FMY, Muhammad RR, Wan MWM, Siti NAMH. 2022. The evolution of induced drag of multi-winglets for aerodynamic performance of NACA23015. J Adv Res Fluid Mech. 93:100–110. doi:10.37934/arfmts.93.2.100110.
  • He JH, Hu YH, Tang JJ, Xue SY. 2015. Research on sail aerodynamics performance and sail-assisted ship stability. J Wind Eng Ind Aerodyn. 146:81–89. doi:10.1016/j.jweia.2015.08.005.
  • Hu YH, Zeng XM, Li SY. 2012. Research on the aerodynamic characteristics of ellipse wing sail. Adv Mat Res. 347:2249–2254.
  • Johnston C, Khan MHA, Amal R, Daiyan R, MacGill L. 2022. Shipping the sunshine: an open-source model for costing renewable hydrogen transport from Australia. Int J Hydrogen Energy. 47(47):20362–20377. doi:10.1016/j.ijhydene.2022.04.156.
  • Kaya MN, Kok AR, Kurt H. 2021. Comparison of aerodynamic performances of various airfoils from different airfoil families using CFD. Wind Struct. 32(3):239–248. doi:10.12989/was.2021.32.3.239.
  • Li BY, Zhang R, Li YJ, Zhang BS, Guo C. 2021(a). Study of a new type of flettner rotor in merchant ships. Pol Marit Res. 28(1):28–41. doi:10.2478/pomr-2021-0003.
  • Li BY, Zhang R, Zhang BS, Yang QQ, Guo C. 2021(b). An assisted propulsion device of vessel utilizing wind energy based on Magnus effect. Appl Ocean Res. 114:102788. doi:10.1016/j.apor.2021.102788.
  • Li C, Wang HM, Sun PT. 2020. Numerical investigation of a two-element wingsail for ship auxiliary propulsion. J Mar Sci Eng. 8(5):333. doi:10.3390/jmse8050333.
  • Li DQ, Zhang YL, Li P, Dai JJ, Li GH. 2019. Aerodynamic performance of a new double-flap wing sail. Pol Marit Res. 26:61–68. doi:10.2478/pomr-2019-0067.
  • Li Q, Nihei Y, Nakashima T, Ikeda Y. 2015. A study on the performance of cascade hard sails and sail-equipped vessels. Ocean Eng. 98:23–31. doi:10.1016/j.oceaneng.2015.02.005.
  • Li YC, Zhang N, Pan ZY. 2021b. Propulsive performance of a newly conceptual design of flapping foil with fixed gurney plate- A numerical study. Ocean Eng. 239:109800. doi:10.1016/j.oceaneng.2021.109800.
  • Lu RH, Ringsberg JW. 2020. Ship energy performance study of three wind-assisted ship propulsion technologies including a parametric study of the Flettner rotor technology. Ships Offsh Struct. 15(3):249–258. doi:10.1080/17445302.2019.1612544.
  • Ma Y, Bi H, Hu M, Zheng Y, Gan L. 2019. Hard sail optimization and energy efficiency enhancement for sail-assisted vessel. Ocean Eng. 173:687–699. doi:10.1016/j.oceaneng.2019.01.026.
  • Ma Y, Bi HX, Gan RZ, Li X, Yan XP. 2018. New insights into airfoil sail selection for sail-assisted vessel with computational fluid dynamics simulation. Adv Mech Eng. 10(4):1687814018771254.
  • Matyushenko AA, Kotov EV, Garbaruk AV. 2017. Calculations of flow around airfoils using two-dimensional RANS: an analysis of the reduction in accuracy. St. Petersburg Polytechnical University Journal: Phys and Math. 3(1):15–21. doi:10.1016/j.spjpm.2017.03.004.
  • Nyanya MN, Vu HB, Schönborn A, Ölçer AI. 2021. Wind and solar assisted ship propulsion optimisation and its application to a bulk carrier. Sustain Energy Technol Assess. 47:101397. doi:10.1016/j.seta.2021.101397.
  • Ouchi K, Uzawa K, Kanai A, Katori M. 2013. “Wind challenger” the next generation hybrid sailing vessel. In: Ouchi Kazuyuki, Uzawa Kiyoshi, Kanai Akihiro, Katori Masanobu, editors. The third international symposium on marine propulsors. Tasmania, Australia: Launceston; p. 562–567.
  • Pascual CV, García JP, García RG. 2021. Wind energy ships: global analysis of operability. J Mar Sci Eng. 9(5):517. doi:10.3390/jmse9050517.
  • Schönborn A. 2022. Combination of propulsive thrust and rotational power for ships from a cyclic pitch Darrieus rotor sail. Sustain Energy Technol Assess. 52:102008. doi:10.1016/j.seta.2022.102008.
  • Seddiek IS, Ammar NR. 2021. Harnessing wind energy on merchant ships: case study Flettner rotors onboard bulk carriers. Environ Sci Pollut Res. 28(25):32695–32707. doi:10.1007/s11356-021-12791-3.
  • Seok J, Park JC. 2020. Comparative study of air resistance with and without a superstructure on a container ship using numerical simulation. J Mar Sci Eng. 8(4):267. doi:10.3390/jmse8040267.
  • Silva MF, Friebe A, Malheiro B, Guedes P, Ferreira P, Waller M. 2019. Rigid wing sailboats: a state of the art survey. Ocean Eng. 187:106150. doi:10.1016/j.oceaneng.2019.106150.
  • Sun Z, Hu F, Yu J, Zhao W, Zhang A. 2022. Influence of autonomous sailboat dual-wing sail interaction on lift coefficients. J Ocean Univ China. 21(3):656–668. doi:10.1007/s11802-022-4752-5.
  • Terziev M, Tezdogan T, Incecik A. 2021. Modelling the hydrodynamic effect of abrupt water depth changes on a ship travelling in restricted waters using CFD. Ships Offsh Struct, 16(10), 1087–1103. doi:10.1080/17445302.2020.1816731.
  • Van TC, Ramirez J, Rainey T, Ristovski Z, Brown RJ. 2019. Global impacts of recent IMO regulations on marine fuel oil refining processes and ship emissions. Transp Res Part D: Transp Environ. 70:123–134. doi:10.1016/j.trd.2019.04.001.
  • Wu B, Yip TL, Xie L, Wang Y. 2018. A fuzzy-MADM based approach for site selection of offshore wind farm in busy waterways in China. Ocean Eng. 168:121–132. doi:10.1016/j.oceaneng.2018.08.065.
  • Xuan H, Liu Q, Wang L, Yang L. 2022. Decision-making on the selection of clean energy technology for green ships based on the rough set and TOPSIS method. J Mar Sci Eng. 10(5):579. doi:10.3390/jmse10050579.
  • Zhang HW, Hu YH, He JH. 2021. Wind tunnel experiment of multi-mode arc sail device. Pol Marit Res. 28:20–29. doi:10.2478/pomr-2021-0046.
  • Zhao J, Wei Q, Wang S, Ren X. 2021. Progress of ship exhaust gas control technology. Sci Total Environ, 799, 149437. doi:10.1016/j.scitotenv.2021.149437.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.