273
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Process design and energy assessment of an onboard carbon capture system with boilers or heat pumps for additional steam generation

, , , ORCID Icon &
Received 30 Mar 2023, Accepted 20 Jul 2023, Published online: 07 Aug 2023

References

  • Alkhaledi AN, Sampath S, Pilidis P. 2022. A hydrogen fuelled LH2 tanker ship design. Ships Offshore Struct. 17(7):1555–1564. doi:10.1080/17445302.2021.1935626.
  • Ammar NR, Seddiek IS. 2020. Enhancing energy efficiency for new generations of containerized shipping. Ocean Eng. 215:107887. doi:10.1016/j.oceaneng.2020.107887.
  • Arpagaus C, Bless F, Uhlmann M, Schiffmann J, Bertsch SS. 2018. High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials. Energy. 152:985–1010. doi:10.1016/j.energy.2018.03.166.
  • Bless F, Arpagaus C, Bertsch SS, Schiffmann J. 2017. Theoretical analysis of steam generation methods – energy, CO2 emission, and cost analysis. Energy. 129:114–121. doi:10.1016/j.energy.2017.04.088.
  • Cousins A, Feron P, Hayward J, Jiang K, Zhai R. 2019. Further assessment of emerging CO2 capture technologies for the power sector and their potential to reduce cost. CSIRO Report ep189975.
  • DNV. 2022. Maritime forecast to 2050 – energy transition outlook 2022. Høvik: Det Norske Veritas.
  • Du Y, Gao T, Rochelle GT, Bhown AS. 2021. Zero- and negative-emissions fossil-fired power plants using CO2 capture by conventional aqueous amines. Int J Greenhouse Gas Control. 111:103473. doi:10.1016/j.ijggc.2021.103473.
  • Einbu A, Pettersen T, Morud J, Tobiesen A, Jayarathna CK, Skagestad R, Nysæther G. 2022. Energy assessments of onboard CO2 capture from ship engines by MEA-based post combustion capture system with flue gas heat integration. Int J Greenhouse Gas Control. 113:103526. doi:10.1016/j.ijggc.2021.103526.
  • Feenstra M, Monteiro J, van den Akker JT, Abu-Zahra MRM, Gilling E, Goetheer E. 2019. Ship-based carbon capture onboard of diesel or LNG-fuelled ships. Int J Greenhouse Gas Control. 85:1–10. doi:10.1016/j.ijggc.2019.03.008.
  • Feron PHM, Cousins A, Jiang K, Zhai R, Garcia M. 2020. An update of the benchmark post-combustion CO2-capture technology. Fuel. 273:117776. doi:10.1016/j.fuel.2020.117776.
  • Fotopoulos AG, Margaris DP. 2020. Computational analysis of air lubrication system for commercial shipping and impacts on fuel consumption. Computation. 8(2):38. doi:10.3390/computation8020038.
  • GPSA. 2016. GPSA engineering data book – SI version. Section 13. Tulsa: Gas Processors Suppliers Association (GPSA); 13–21.
  • Güler E, Ergin S. 2021. An investigation on the solvent based carbon capture and storage system by process modeling and comparisons with another carbon control methods for different ships. Int J Greenhouse Gas Control. 110:103438. doi:10.1016/j.ijggc.2021.103438.
  • IEAGHG. 2010. Corrosion and materials selection in CCS systems (IEAGHG Technical Report 2010–03). Cheltenham.: IEA greenhouse gas R&D programme (IEAGHG).
  • IEAGHG. 2022. Prime Solvent candidates for next generation of PCC plants (IEAGHG Technical Report 2022–03). Cheltenham.: IEA greenhouse gas R&D programme (IEAGHG).
  • IMO. 2021a. Guidelines for determining minimum propulsion power to maintain the manoeuvrability of ships in adverse conditions. London: International Maritime Organization (IMO) (MEPC. Circ.850/Rev.3).
  • IMO. 2021b. Amendments to the annex of the protocol of 1997 to amend the international convention for the prevention of pollution from ships, 1973, as modified by the protocol of 1978 relating thereto 2021 revised MARPOL annex VI. London: International Maritime Organization (IMO) (MEPC. Resolution 328(76)).
  • Ji C, Yuan S, Huffman M, El-Halwagi MM, Wang Q. 2021. Post-combustion carbon capture for tank to propeller via process modeling and simulation. J CO2 Util. 51:101655. doi:10.1016/j.jcou.2021.101655.
  • Joung T-H, Kang S-G, Lee J-K, Ahn J. 2020. The IMO initial strategy for reducing greenhouse gas (GHG) emissions, and its follow-up actions towards 2050. J Int Marit Saf Environ Aff Ship. 4(1):1–7. doi:10.1080/25725084.2019.1707938.
  • Jung J, Seo Y. 2022. Onboard CO2 capture process design using rigorous rate-based model. J Ocean Eng Technol. 36(3):168–180. doi:10.26748/KSOE.2022.006.
  • Kearns D, Liu H, Consoli C. 2021. Technology readiness and costs of CCS. Melbourne: Global CCS institute.
  • Kittel J, Gonzalez S. 2014. Corrosion in CO2 post-combustion capture with alkanolamines–a review. Oil Gas Sci Technol – Revue d’IFP Energies Nouvelles. 69(5):915–929. doi:10.2516/ogst/2013161.
  • Kolodziejski M, Michalska-Pozoga I. 2023. Battery energy storage systems in ships’ hybrid/electric propulsion systems. Energies. 16(3):1122. doi:10.3390/en16031122.
  • Kristensen HO. 2017. Ship-desmo-tool [accessed 24 Mar 2023]. Available from: https://gitlab.gbar.dtu.dk/oceanwave3d/Ship-Desmo/tree/master.
  • Lee J, Choi Y, Che S, Choi M, Chang D. 2022. Integrated design evaluation of propulsion, electric power, and re-liquefaction system for large-scale liquefied hydrogen tanker. Int J Hydrog Energy. 47(6):4120–4135. doi:10.1016/j.ijhydene.2021.11.004.
  • Lee S, Yoo S, Park H, Ahn J, Chang D. 2021. Novel methodology for EEDI calculation considering onboard carbon capture and storage system. Int J Greenhouse Gas Control. 105:103241. doi:10.1016/j.ijggc.2020.103241.
  • Luo X, Wang M. 2017. Study of solvent-based carbon capture for cargo ships through process modelling and simulation. Appl Energy. 195:402–413. doi:10.1016/j.apenergy.2017.03.027.
  • MAN ES. 2019. Propulsion of 2,200–3,000 TEU container vessels. Augsburg: MAN Energy Solutions.
  • Mangalapally HP. 2014. Pilot plant study of post combustion capture of carbon dioxide with aqueous amine solutions. University of Kaiserslautern.
  • Mateu-Royo C, Arpagaus C, Mota-Babiloni A, Navarro-Esbrí J, Bertsch SS. 2021. Advanced high temperature heat pump configurations using low GWP refrigerants for industrial waste heat recovery: a comprehensive study. Energy Convers Manag. 229:113752. doi:10.1016/j.enconman.2020.113752.
  • Mateu-Royo C, Sawalha S, Mota-Babiloni A, Navarro-Esbrí J. 2020. High temperature heat pump integration into district heating network. Energy Convers Manag. 210:112719. doi:10.1016/j.enconman.2020.112719.
  • Nagy T, Mizsey P. 2013. Effect of fossil fuels on the parameters of CO2 capture. Environ Sci Technol. 47(15):8948–8954. doi:10.1021/es400306u.
  • Nwaoha C, Beaulieu M, Tontiwachwuthikul P, Gibson MD. 2018. Techno-economic analysis of CO2 capture from a 1.2 million MTPA cement plant using AMP-PZ-MEA blend. Int J Greenhouse Gas Control. 78:400–412. doi:10.1016/j.ijggc.2018.07.015.
  • Oh J, Anantharaman R, Zahid U, Lee P, Lim Y. 2022. Process design of onboard membrane carbon capture and liquefaction systems for LNG-fueled ships. Sep Purif Technol. 282:120052. doi:10.1016/j.seppur.2021.120052.
  • Rochelle Gary, Chen Eric, Freeman Stephanie, Van Wagener David, Xu Qing, Voice Alexander. 2011. Aqueous piperazine as the new standard for CO2 capture technology. Chemical Engineering Journal. 171(3):725–733. doi:10.1016/j.cej.2011.02.011.
  • Rochelle GT. 2009. Amine scrubbing for CO2 capture. Science. 325(5948):1652–1654. doi:10.1126/science.1176731.
  • Ros JA, Skylogianni E, Doedée V, van den Akker JT, Vredeveldt AW, Linders MJG, Goetheer ELV, Monteiro JGM-S. 2022. Advancements in ship-based carbon capture technology on board of LNG-fuelled ships. Int J Greenhouse Gas Control. 114:103575. doi:10.1016/j.ijggc.2021.103575.
  • Ship & Bunker. 2023. Bunker prices [accessed 28 Jun 2023]. Available from: https://shipandbunker.com/.
  • Ship Technol. 2013. Onboard carbon capture: dream or reality? [accessed 24 Mar 2023]. Available from: https://www.ship-technology.com/analysis/featureonboard-carbon-capture-dream-or-reality.
  • Shu G, Liang Y, Wei H, Tian H, Zhao J, Liu L. 2013. A review of waste heat recovery on two-stroke IC engine aboard ships. Renew Sustain Energy Rev. 19:385–401. doi:10.1016/j.rser.2012.11.034.
  • Sindagi S, Vijayakumar R. 2021. Succinct review of MBDR/BDR technique in reducing ship’s drag. Ships Offshore Struct. 16(9):968–979. doi:10.1080/17445302.2020.1790296.
  • Stec M, Tatarczuk A, Iluk T, Szul M. 2021. Reducing the energy efficiency design index for ships through a post-combustion carbon capture process. Int J Greenhouse Gas Control. 108:103333. doi:10.1016/j.ijggc.2021.103333.
  • Thies F, Ringsberg JW. 2022. Wind-assisted, electric, and pure wind propulsion – the path towards zero-emission RoRo ships. Ships Offshore Struct. 1–8. doi:10.1080/17445302.2022.2111923.
  • Turton R, Bailie RC, Whiting WB, Shaeiwitz JA. 2018. Analysis, synthesis and design of chemical processes. Pearson Education.
  • van der Spek M, Arendsen R, Ramirez A, Faaij A. 2016. Model development and process simulation of postcombustion carbon capture technology with aqueous AMP/PZ solvent. Int J Greenhouse Gas Control. 47:176–199. doi:10.1016/j.ijggc.2016.01.021.
  • Von Harbou I, Mangalapally HP, Hasse H. 2013. Pilot plant experiments for two new amine solvents for post-combustion carbon dioxide capture. Int J Greenhouse Gas Control. 18:305–314. doi:10.1016/j.ijggc.2013.08.002.
  • Weir Henry, Sanchez-Fernandez Eva, Charalambous Charithea, Ros Jasper, Monteiro Juliana Garcia Moretz-Sohn, Skylogianni Eirini, Wiechers Georg, Moser Peter, van der Spek Mijndert, Garcia Susana. 2023. Impact of high capture rates and solvent and emission management strategies on the costs of full-scale post-combustion CO2 capture plants using long-term pilot plant data. International Journal of Greenhouse Gas Control. 126:103914. doi:10.1016/j.ijggc.2023.103914.
  • Xing K, Huang H, Guo X, Wang Y, Tu Z, Li J. 2022. Thermodynamic analysis of improving fuel consumption of natural gas engine by combining Miller cycle with high geometric compression ratio. Energy Convers Manag. 254:115219. doi:10.1016/j.enconman.2022.115219.
  • Zhang Weiyu, Chen Jian, Luo Xiaobo, Wang Meihong. 2017. Modelling and process analysis of post-combustion carbon capture with the blend of 2-amino-2-methyl-1-propanol and piperazine. International Journal of Greenhouse Gas Control. 63:37–46. doi:10.1016/j.ijggc.2017.04.018.
  • Zincir B. 2022. Environmental and economic evaluation of ammonia as a fuel for short-sea shipping: a case study. Int J Hydrog Energy. 47(41):18148–18168. doi:10.1016/j.ijhydene.2022.03.281.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.