0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

High-temperature aging and long-term mechanical properties of polyphenylene sulfide composites for marine use

ORCID Icon, , &
Received 27 Jun 2024, Accepted 24 Jul 2024, Published online: 07 Aug 2024

References

  • Bertagna S, Braidotti L, Laurini E, Marinò A, Pricl S, Bucci V. 2022. Thermoplastic materials for the metal replacement of non-structural components in marine engines. Appl Sci. 12(17):8766. doi:10.3390/app12178766.
  • De Bortoli LS, De Farias R, Mezalira DZ, Schabbach LM, Fredel MC. 2022. Functionalized carbon nanotubes for 3D-printed PLA-nanocomposites: effects on thermal and mechanical properties. Mater Today Commun. 31:103402. doi:10.1016/j.mtcomm.2022.103402.
  • Díez-Pascual AM, Naffakh M. 2012. Synthesis and characterization of nitrated and aminated poly (phenylene sulfide) derivatives for advanced applications. Mater Chem Phys. 131(3):605–614. doi:10.1016/j.matchemphys.2011.10.025.
  • El Magri A, El Mabrouk K, Vaudreuil S, Ebn Touhami M. 2021. Experimental investigation and optimization of printing parameters of 3D printed polyphenylene sulfide through response surface methodology. J Appl Polym Sci. 138(1):49625. doi:10.1002/app.49625.
  • Gao Y, Picot OT, Bilotti E, Peijs T. 2017. Influence of filler size on the properties of poly (lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. Eur Polym J. 86:117–131. doi:10.1016/j.eurpolymj.2016.10.045.
  • Garmabi MM, Shahi P, Tjong J, Sain M. 2022. 3D printing of polyphenylene sulfide for functional lightweight automotive component manufacturing through enhancing interlayer bonding. Addit Manuf. 56:102780. doi:10.1016/j.addma.2022.102780.
  • Geng P, Zhao J, Gao Z, Wu W, Ye W, Li G, Qu H. 2021. Effects of printing parameters on the mechanical properties of high-performance polyphenylene sulfide three-dimensional printing. 3D Print Addit Manuf. 8(1):33–41. doi:10.1089/3dp.2020.0052.
  • Hart KR, Dunn RM, Sietins JM, Mock CMH, Mackay ME, Wetzel ED. 2018. Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing. Polymer. 144:192–204. doi:10.1016/j.polymer.2018.04.024.
  • Hassan EA, Elagib TH, Ahmed MA, Bashier EO. 2022. Nonisothermal crystallization kinetics and its effect on the mechanical properties mechanical of carbon fiber/polyphenylene sulfide composites.
  • Hu J, Mubarak S, Li K, Huang X, Huang W, Zhuo D, Wang J. 2022. The micro–macro interlaminar properties of continuous carbon fiber-reinforced polyphenylene sulfide laminates made by thermocompression to simulate the consolidation process in FDM. Polymers (Basel). 14(2):301. doi:10.3390/polym14020301.
  • Korsmik R, Tsybulskiy I, Rodionov A, Klimova-Korsmik O, Gogolukhina M, Ivanov S, Mendagaliev R. 2020. The approaches to design and manufacturing of large-sized marine machinery parts by direct laser deposition. Procedia CIRP. 94:298–303. doi:10.1016/j.procir.2020.09.056.
  • Kotsilkova R, Petrova-Doycheva I, Menseidov D, Ivanov E, Paddubskaya A, Kuzhir P. 2019. Exploring thermal annealing and graphene-carbon nanotube additives to enhance crystallinity, thermal, electrical and tensile properties of aged poly (lactic) acid-based filament for 3D printing. Compos Sci Technol. 181:107712. doi:10.1016/j.compscitech.2019.107712.
  • Li J, Dong H, Long W, Wang P, Wang X. 2023. Digital twin exploration of a blended-wing-body underwater glider skeleton in the laboratory environment. Ships Offsh Struct. 1–11. https://www.tandfonline.com/doi/full/10.1080/17445302.2023.2238391?scroll=top&needAccess=true.
  • Marand H, Alizadeh A, Farmer R, Desai R, Velikov V. 2000. Influence of structural and topological constraints on the crystallization and melting behavior of polymers. 2. Poly (arylene ether ether ketone). Macromolecules. 33(9):3392–3403. doi:10.1021/ma9913562.
  • Masarra NA, Batistella M, Quantin JC, Regazzi A, Pucci MF, El Hage R, Lopez-Cuesta JM. 2022. Fabrication of PLA/PCL/graphene nanoplatelet (GNP) electrically conductive circuit using the fused filament fabrication (FFF) 3D printing technique. Materials (Basel). 15(3):762. doi:10.3390/ma15030762.
  • Murdy P, Dolson J, Miller D, Hughes S, Beach R. 2021. Leveraging the advantages of additive manufacturing to produce advanced hybrid composite structures for marine energy systems. Appl Sci. 11(3):1336. doi:10.3390/app11031336.
  • Pan S, Shen H, Zhang L. 2021. Effect of carbon nanotube on thermal, tribological and mechanical properties of 3D printing polyphenylene sulfide. Addit Manuf. 47:102247. doi:10.1016/j.addma.2021.102247.
  • Peterson E. 2021. Technical challenges to adopting large scale additive manufacturing for the production of yacht hulls. In Human Systems Engineering and Design III: Proceedings of the 3rd International Conference on Human Systems Engineering and Design (IHSED2020): Future Trends and Applications, September 22–24, 2020, Juraj Dobrila University of Pula, Croatia 3. Springer International Publishing; p. 15–20.
  • Peterson E. 2022. Recent innovations in additive manufacturing for marine vessels. Marit Technol Res. 4(4):257491–257491. doi:10.33175/mtr.2022.257491.
  • Praveen DC, Kumar S, Bhattacharyya A, Sha OP. 2022. Design study of stern tunnel wedge shapes for a low draft shallow water vessel. Ships Offsh Struct. 17(5):1114–1131. doi:10.1080/17445302.2021.1894730.
  • Retolaza J, Gondra K, Ansola R, Allue A. 2022. Mechanical research to optimize parameter selection for PPS material processed by FDM. Mater Manuf Processes. 37(11):1332–1338. doi:10.1080/10426914.2022.2072875.
  • Sakai T, Shamsudim NSB, Fukushima R, Kageyama K. 2021. Effect of matrix crystallinity of carbon fiber reinforced polyamide 6 on static bending properties. Adv Compos Mater. 30(sup2):71–84. doi:10.1080/09243046.2020.1802805.
  • Saravanan M, Kumar DB. 2021. A review on navy ship parts by advanced composite material. Mater Today Proc. 45:6072–6077. doi:10.1016/j.matpr.2020.10.074.
  • Scattareggia Marchese S, Epasto G, Crupi V, Garbatov Y. 2023. Tensile response of fibre-reinforced plastics produced by additive manufacturing for marine applications. J Mar Sci Eng. 11(2):334. doi:10.3390/jmse11020334.
  • Somireddy M, Czekanski A. 2020. Anisotropic material behavior of 3D printed composite structures–Material extrusion additive manufacturing. Mater Des. 195:108953. doi:10.1016/j.matdes.2020.108953.
  • Staiano G, Gloria A, Ausanio G, Lanzotti A, Pensa C, Martorelli M. 2018. Experimental study on hydrodynamic performances of naval propellers to adopt new additive manufacturing processes. Int J Interact Des Manuf. 12:1–14. doi:10.1007/s12008-016-0344-1.
  • Vaudreuil S, Kel M, Touhami ME. 2020. Printing temperature effects on the structural and mechanical performances of 3d printed poly-(phenylen e sulfide) material. IOP Conf Ser: Mater Sci Eng. 783:1–6.
  • Wang J, Song F, Ding Y, Shao M. 2020. The incorporation of graphene to enhance mechanical properties of polypropylene self-reinforced polymer composites. Mater Des. 195:109073. doi:10.1016/j.matdes.2020.109073.
  • Wang Z, Xu P, Zhou K, Bi C, Sun JA. 2023. Flexural property characterization and structure analysis of graphene-reinforced polyphenylene sulfide prepared via low-cost pellet-based material extrusion additive manufacturing. Poly Eng Sci. 63(10):3382–3397. doi:10.1002/pen.26453.
  • Xing J, Xu Z, Ni QQ, Ke H. 2020. Preparation and characterization of polyphenylene sulfide/graphene nanoplatelets composite fibers with enhanced oxidation resistance. High Perform Polym. 32(4):394–405. doi:10.1177/0954008319867748.
  • Yilmaz M, Yilmaz NF, Kalkan MF. 2022. Rheology, crystallinity, and mechanical investigation of interlayer adhesion strength by thermal annealing of polyetherimide (PEI/ULTEM 1010) parts produced by 3D printing. J Mater Eng Perform. 31(12):9900–9909. doi:10.1007/s11665-022-07049-z.
  • Yu W, Wang X, Yin X, Ferraris E, Zhang J. 2023. The effects of thermal annealing on the performance of material extrusion 3D printed polymer parts. Mater Des. 226:111687. doi:10.1016/j.matdes.2023.111687.
  • Ziółkowski M, Dyl T. 2020. Possible applications of additive manufacturing technologies in shipbuilding: a review. Machines. 8(4):84. doi:10.3390/machines8040084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.