0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative evaluation of floating OWC and BBDB wave energy converters by regular and irregular waves using numerical approach

Received 11 Oct 2023, Accepted 27 May 2024, Published online: 07 Aug 2024

References

  • Brito M, Canelas RB, García-Feal O, Domínguez JM, Crespo AJC, Ferreira RML, Neves MG, Teixeira L. 2020. A numerical tool for modelling oscillating wave surge converter with nonlinear mechanical constraints. Renewable Energy. 146:2024–2043. doi:10.1016/j.renene.2019.08.034.
  • Bull D, Jenne DS, Smith CS, Copping AE, Copeland G. 2016. Levelized cost of energy for a backward bent duct buoy. Int J Marine Energy. 16:220–234. doi:10.1016/j.ijome.2016.07.002.
  • Chen T, Wu B, Li M. 2017. Flume experiment study on capture width ratio of a new backward bent duct buoy with a pentagon buoyancy cabin. Ocean Eng. 141:12–17. doi:10.1016/j.oceaneng.2017.06.013.
  • Chen X, Cui J, Li M-Y. 2023. Numerical simulation and energy extraction power fitting of OWSCs under regular waves using SPH method. Ocean Eng. 283:115077. doi:10.1016/j.oceaneng.2023.115077.
  • Crespo AJC, Altomare C, Domínguez JM, González-Cao J, Gómez-Gesteira M. 2017. Towards simulating floating offshore oscillating water column converters with smoothed particle hydrodynamics. Coastal Eng. 126:11–26. doi:10.1016/j.coastaleng.2017.05.001.
  • Cui J, Chen X, Sun P-N, Li M-Y. 2022. Numerical investigation on the hydrodynamic behavior of a floating breakwater with moon pool through a coupling SPH model. Ocean Eng. 248:110849. doi:10.1016/j.oceaneng.2022.110849.
  • Didier E, Neves DRCB, Teixeira PRF, Dias J, Neves MG. 2016. Smoothed particle hydrodynamics numerical model for modeling an oscillating water chamber. Ocean Eng. 123:397–410. doi:10.1016/j.oceaneng.2016.07.035.
  • Elhanafi A, Macfarlane G, Fleming A, Leong Z. 2017. Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter. Appl Energy. 205:369–390. doi:10.1016/j.apenergy.2017.07.138.
  • González-Cao J, Altomare C, Crespo AJC, Domínguez JM, Gómez-Gesteira M, Kisacik D. 2019. On the accuracy of DualSPHysics to assess violent collisions with coastal structures. Comput Fluids. 179:604–612. doi:10.1016/j.compfluid.2018.11.021.
  • Green MD, Zhou Y, Dominguez JM, Gesteira MG, Peiró J. 2021. Smooth particle hydrodynamics simulations of long-duration violent three-dimensional sloshing in tanks. Ocean Eng. 229:108925. doi:10.1016/j.oceaneng.2021.108925.
  • Gunn DF, Rudman M, Cohen RCZ. 2018. Wave interaction with a tethered buoy: SPH simulation and experimental validation. Ocean Eng. 156:306–317. doi:10.1016/j.oceaneng.2018.03.001.
  • He M, Liang D, Ren B, Li J, Shao S. 2023. Wave interactions with multi-float structures: SPH model, experimental validation, and parametric study. Coastal Eng. 184:104333. doi:10.1016/j.coastaleng.2023.104333.
  • Hong DC, Hong SY, Hong SW. 2004. Numerical study on the reverse drift force of floating BBDB wave energy absorbers. Ocean Eng. 31:1257–1294. doi:10.1016/j.oceaneng.2003.12.007.
  • Howe D, Nader J-R, Macfarlane G. 2020. Experimental investigation of multiple oscillating water column wave energy converters integrated in a floating breakwater: wave attenuation and motion characteristics. Appl Ocean Res. 99:102160. doi:10.1016/j.apor.2020.102160.
  • Iturrioz A, Guanche R, Lara JL, Vidal C, Losada IJ. 2015. Validation of OpenFOAM® for oscillating water column three-dimensional modeling. Ocean Eng. 107:222–236. doi:10.1016/j.oceaneng.2015.07.051.
  • Jalani MA, Saad MR, Huda Samion MK, Imai Y, Nagata S, Abdul Rahman MR. 2023. Numerical study on a hybrid WEC of the backward bent duct buoy and point absorber. Ocean Eng. 267:113306. doi:10.1016/j.oceaneng.2022.113306.
  • Kim S-J, Koo W, Kim M-H. 2015. Nonlinear time-domain NWT simulations for two types of a backward bent duct buoy (BBDB) compared with 2D wave-tank experiments. Ocean Eng. 108:584–593. doi:10.1016/j.oceaneng.2015.08.038.
  • Lee K-R, Koo W, Kim M-H. 2013. Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method. Int J Naval Architecture Ocean Eng. 5:513–528. doi:10.2478/IJNAOE-2013-0150.
  • Liang J-m, Chen Y-k, Liu Y, Li A-j. 2022. Hydrodynamic performance of a new box-type breakwater with superstructure: experimental study and SPH simulation. Ocean Eng. 266:112819. doi:10.1016/j.oceaneng.2022.112819.
  • Liu Z, Zhang X, Xu C. 2023. Hydrodynamic and energy-harvesting performance of a BBDB-OWC device in irregular waves: an experimental study. Appl Energy. 350:121737. doi:10.1016/j.apenergy.2023.121737.
  • Mohapatra P, Bhattacharyya A, Sahoo T. 2021. Performance of a floating oscillating water column wave energy converter over a sloping bed. Ships Offsh Struct. 16:659–669. doi:10.1080/17445302.2020.1772665.
  • Ng KC, Low WC, Chen H, Tafuni A, Nakayama A. 2022. A three-dimensional fluid-structure interaction model based on SPH and lattice-spring method for simulating complex hydroelastic problems. Ocean Eng. 260:112026. doi:10.1016/j.oceaneng.2022.112026.
  • Quartier N, Crespo AJC, Domínguez JM, Stratigaki V, Troch P. 2021. Efficient response of an onshore Oscillating Water Column Wave Energy Converter using a one-phase SPH model coupled with a multiphysics library. Appl Ocean Res. 115:102856. doi:10.1016/j.apor.2021.102856.
  • Roselli RAR, Vernengo G, Brizzolara S, Guercio R. 2019. SPH simulation of periodic wave breaking in the surf zone – a detailed fluid dynamic validation. Ocean Eng. 176:20–30. doi:10.1016/j.oceaneng.2019.02.013.
  • Sheng W. 2019a. Motion and performance of BBDB OWC wave energy converters: I, hydrodynamics. Renewable Energy. 138:106–120. doi:10.1016/j.renene.2019.01.016.
  • Sheng W. 2019b. Power performance of BBDB OWC wave energy converters. Renewable Energy. 132:709–722. doi:10.1016/j.renene.2018.07.111.
  • Soleimani K, Ketabdari MJ, Bingham HB. 2022. WCSPH simulation of the forced response of an attenuator oscillating water column wave energy converter. Eur J Mech B Fluids. 95:38–51. doi:10.1016/j.euromechflu.2022.04.003.
  • Wu B, Chen T, Jiang J, Li G, Zhang Y, Ye Y. 2018. Economic assessment of wave power boat based on the performance of “Mighty Whale” and BBDB. Renewable Sustainable Energy Rev. 81:946–953. doi:10.1016/j.rser.2017.08.051.
  • Zeng Y, Shi W, Michailides C, Ren Z, Li X. 2022. Turbulence model effects on the hydrodynamic response of an oscillating water column (OWC) with use of a computational fluid dynamics model. Energy. 261:124926. doi:10.1016/j.energy.2022.124926.
  • Zhou Y, Ning D, Liang D, Qiao D. 2022. Nonlinear wave loads on an offshore oscillating-water-column wave energy converter array. Appl Ocean Res. 118:103003. doi:10.1016/j.apor.2021.103003.
  • Zhu G, Graham D, Zheng S, Hughes J, Greaves D. 2020. Hydrodynamics of onshore oscillating water column devices: a numerical study using smoothed particle hydrodynamics. Ocean Eng. 218:108226. doi:10.1016/j.oceaneng.2020.108226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.