0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of drainage conditions on piezocone penetration mechanism in offshore clays

ORCID Icon, , ORCID Icon & ORCID Icon
Received 11 Aug 2023, Accepted 28 May 2024, Published online: 07 Aug 2024

References

  • Abu-Farsakh M, Tumay M, Voyiadjis G. 2003. Numerical parametric study of piezocone penetration test in clays. Int J Geomech. 3(2):170–181. doi:10.1061/(ASCE)1532-3641(2003)3:2(170).
  • Al-Tabbaa A. 1987. Permeability and stress-strain response of speswhite kaolin. Cambridge: University of Cambridge.
  • Atkinson J. 2000. Non-linear soil stiffness in routine design. Géotechnique. 50(5):487–508. doi:10.1680/geot.2000.50.5.487.
  • Aubram D, Rackwitz F, Wriggers P, Savidis SA. 2015. An ALE method for penetration into sand utilizing optimization-based mesh motion. Comput Geotech. 65:241–249. doi:10.1016/j.compgeo.2014.12.012.
  • Benz T, Vermeer P, Schwab R. 2009. A small-strain overlay model. Int J Numer Anal Methods Geomech. 33(1):25–44. doi:10.1002/nag.701.
  • Borst D. 1982. Finite element analysis of static penetration tests. Proc 2nd Eur Symp on Penetration Testing.
  • Ceccato F, Beuth L, Simonini P. 2016a. Analysis of piezocone penetration under different drainage conditions with the two-phase material point method. J Geotech Geoenvironmental Eng. 142(12):04016066. doi:10.1061/(ASCE)GT.1943-5606.0001550.
  • Ceccato F, Beuth L, Vermeer PA, Simonini P. 2016b. Two-phase material point method applied to the study of cone penetration. Comput Geotech. 80:440–452. doi:10.1016/j.compgeo.2016.03.003.
  • Chen F, Liu L, Lai F, Gavin K, Flynn KN, Li Y. 2022. Numerical analyses of energy balance and installation mechanisms of large-diameter tapered monopiles by impact driving. Ocean Eng. 266:113017. doi:10.1016/j.oceaneng.2022.113017.
  • DeJong JT, Randolph M. 2012. Influence of partial consolidation during cone penetration on estimated soil behavior type and pore pressure dissipation measurements. J Geotech Geoenvironmental Eng. 138(7):777–788. doi:10.1061/(ASCE)GT.1943-5606.0000646.
  • Finnie IMS, Randolph M. 1994. Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments. In: Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments. Massachusetts: Pergamon; p. 217–230.
  • Huang W, Sheng D, Sloan S, Yu H. 2004. Finite element analysis of cone penetration in cohesionless soil. Comput Geotech. 31(7):517–528. doi:10.1016/j.compgeo.2004.09.001.
  • Kim K, Prezzi M, Salgado R, Lee W. 2008. Effect of penetration rate on cone penetration resistance in saturated clayey soils. J Geotech Geoenvironmental Eng. 134(8):1142–1153. doi:10.1061/(ASCE)1090-0241(2008)134:8(1142).
  • Lai F, Liu S, Deng Y, Sun Y, Wu K, Liu H. 2020. Numerical investigations of the installation process of giant deep-buried circular open caissons in undrained clay. Comput Geotech. 118:103322. doi:10.1016/j.compgeo.2019.103322.
  • Lehane B, O'loughlin C, Gaudin C, Randolph M. 2009. Rate effects on penetrometer resistance in kaolin. Géotechnique. 59(1):41–52. doi:10.1680/geot.2007.00072.
  • Lu Q, Randolph M, Hu Y, Bugarski I. 2004. A numerical study of cone penetration in clay. Géotechnique. 54(4):257–267. doi:10.1680/geot.2004.54.4.257.
  • Lunne T, Powell JJ, Robertson PK. 2002. Cone penetration testing in geotechnical practice. London: Spon Press.
  • Mahmoodzadeh H, Randolph MF. 2014. Penetrometer testing: effect of partial consolidation on subsequent dissipation response. J Geotechnical Geoenvironmental Eng. 140(6):04014022. doi:10.1061/(ASCE)GT.1943-5606.0001114.
  • Mašín D. 2005. A hypoplastic constitutive model for clays. Int J Numer Anal Methods Geomech. 29(4):311–336. doi:10.1002/nag.416.
  • Mašín D. 2012. Hypoplastic Cam-clay model. Géotechnique. 62(6):549–553. doi:10.1680/geot.11.T.019.
  • Mašín D. 2013. Clay hypoplasticity with explicitly defined asymptotic states. Acta Geotech. 8:481–496. doi:10.1007/s11440-012-0199-y.
  • Mašín D. 2014. Clay hypoplasticity model including stiffness anisotropy. Géotechnique. 64(3):232–238. doi:10.1680/geot.13.P.065.
  • Mašín D. 2019. Modelling of soil behaviour with hypoplasticity. Vienna: Springer Series in Geomechanics and Geoengineering. doi:10.1007/978-3-030-03976-9.
  • Mesri G, Hayat T. 1993. The coefficient of earth pressure at rest. Can Geotech J. 30(4):647–666. doi:10.1139/t93-056.
  • Niemunis A. 2003. Extended hypoplastic models for soils. Vol. 34. Inst. für Grundbau und Bodenmechanik Vienna.
  • Oliveira JR, Almeida MS, Motta HP, Almeida MC. 2011. Influence of penetration rate on penetrometer resistance. J Geotech Geoenvironmental Eng. 137(7):695–703. doi:10.1061/(ASCE)GT.1943-5606.0000480.
  • Phuong N, van Tol A, Elkadi A, Rohe A. 2014. Modelling of pile installation using the material point method (MPM). Numer Methods Geotech Eng. 271:271–276.
  • Qiu G, Grabe J. 2011. Explicit modeling of cone and strip footing penetration under drained and undrained conditions using a visco-hypoplastic model. Geotechnik. 34(3):205–217.
  • Qiu G, Henke S, Grabe J. 2011. Application of a Coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations. Comput Geotech. 38(1):30–39. doi:10.1016/j.compgeo.2010.09.002.
  • Rott J, Mašín D, Boháč J, Krupička M, Mohyla T. 2015. Evaluation of K0 in stiff clay by back-analysis of convergence measurements from unsupported cylindrical cavity. Acta Geotech. 10:719–733. doi:10.1007/s11440-015-0395-7.
  • Schneider JA, Lehane BM, Schnaid F. 2007. Velocity effects on piezocone measurements in normally and over consolidated clays. Int J Phys Modell Geotech. 7(2):23–34. doi:10.1680/ijpmg.2007.070202.
  • Silva MF, White DJ, Bolton MD. 2006. An analytical study of the effect of penetration rate on piezocone tests in clay. Int J Numer Anal Methods Geomech. 30(6):501–527. doi:10.1002/nag.490.
  • Staubach P, Machaček J, Tafili M, Wichtmann T. 2022. A high-cycle accumulation model for clay and its application to monopile foundations. Acta Geotech. 17(3):677–698. doi:10.1007/s11440-021-01446-9.
  • Teh CI, Houlsby GT. 1991. Analytical study of the cone penetration test in clay. Géotechnique. 41(1):17–34.
  • Tho KK, Leung CF, Chow YK, Swaddiwudhipong S. 2012. Eulerian finite-element technique for analysis of jack-up spudcan penetration. Int J Geomech. 12(1):64–73. doi:10.1061/(ASCE)GM.1943-5622.0000111.
  • Wang L, Chen K, Hong Y, Ng CWW. 2015. Effect of consolidation on responses of a single pile subjected to lateral soil movement. Can Geotech J. 52(6):769–782. doi:10.1139/cgj-2014-0157.
  • Yi J, Goh S, Lee F, Randolph M. 2012. A numerical study of cone penetration in fine-grained soils allowing for consolidation effects. Géotechnique. 62(8):707–719. doi:10.1680/geot.8.P.155.
  • Yu H. 1993. Discussion: “singular plastic fields in steady penetration of a rigid cone” (Durban, D., and Flek, NA, 1992, ASME J. Appl Mech., 59, pp. 706–710). J Appl Mech. 60(4):1061.
  • Zhang W, Zou J-Q, Zhang X-W, Yuan W-H, Wu W. 2021. Interpretation of cone penetration test in clay with smoothed particle finite element method. Acta Geotech. 16(8):2593–2607. doi:10.1007/s11440-021-01217-6.
  • Zheng J, Hossain MS, Wang D. 2018. Estimating spudcan penetration resistance in stiff-soft-stiff clay. J Geotech Geoenvironmental Eng. 144(3):04018001. doi:10.1061/(ASCE)GT.1943-5606.0001820.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.