994
Views
33
CrossRef citations to date
0
Altmetric
Science

Mapping the annual evolution of snow depth in a small catchment in the Pyrenees using the long-range terrestrial laser scanning

, , , , &
Pages 379-393 | Received 19 Apr 2013, Accepted 21 Nov 2013, Published online: 17 Jan 2014

References

  • Abellán, A., Calvet, J., Vilaplana, J. M., & Blanchard, J. (2010). Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology, 119(3–4), 162–171. doi: 10.1016/j.geomorph.2010.03.016
  • Abellán, A., Jaboyedoff, M., Oppikofer, T., & Vilaplana, J. M. (2009). Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Nat. Hazards Earth Syst. Sci., 9(2), 365–372. doi: 10.5194/nhess-9-365-2009
  • Abellán, A., Vilaplana, J. M., & Martínez, J. (2006). Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain). Engineering Geology, 88(3–4), 136–148. doi: 10.1016/j.enggeo.2006.09.012
  • Avian, M., & Bauer, A. (2006). First results on monitoring glacier dynamics with the aid of terrestrial laser scanning on Pasterze glacier (Hohe Tauem, Austria). Grazer Schriften der Geographie und Raumforschung, 41, 27–36.
  • Bales, R. C., & Harrington, R. F. (1995). Recent progress in snow hydrology. Reviews of Geophysics Supplement, 33, 1011–1020. doi: 10.1029/95RG00340
  • Bavera, D., & De Michele, C. (2009). Snow water equivalent estimation in the Mallero basin using snow gauge data and MODIS images and fieldwork validation. Hydrological Processes, 23(14), 1961–1972. doi: 10.1002/hyp.7328
  • Birkeland, K. W., Hansen, K. J., & Brown, R. L. (1995). The spatial variability of snow resistance on potential avalanche slopes. Journal of Glaciology, 41(137), 183–190.
  • Bitelli, G., Dubbini, M., & Zanutta, A. (2004). Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. In International archieves of photogrammetry, remote sensing and spatial information sciences, 35 Congress, Commission V, WG V/2 (pp. 246–251).
  • Colbeck, S. C., Anderson, E. A., Bissell, V. C., Crock, A. G., Male, D. H., Slaughter, C. W., & Wiesnet, D. R. (1979). Snow accumulation, distribution, melt, and runoff. Eos, Transactions American Geophysical Union, 60(21), 465–468. doi: 10.1029/EO060i021p00465
  • Deems, J. S., Fassnacht, S. R., & Elder, K. J. (2006). Fractal Distribution of Snow Depth from Lidar Data. Journal of Hydrometeorology, 7(2), 285–297. doi: 10.1175/JHM487.1
  • Egli, L., Jonas, T., Grünewald, T., Schirmer, M., & Burlando, P. (2012). Dynamics of snow ablation in a small Alpine catchment observed by repeated terrestrial laser scans. Hydrological Processes, 26(10), 1574–1585. doi: 10.1002/hyp.8244
  • Erickson, T. A., Williams, M. W., & Winstral, A. (2005). Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water Resources Research, 41(4). doi: 10.1029/2003WR002973
  • Erxleben, J., Elder, K., & Davis, R. (2002). Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains. Hydrological Processes, 16(18), 3627–3649. doi: 10.1002/hyp.1239
  • Fassnacht, S. R., & Deems, J. S. (2006). Measurement sampling and scaling for deep montane snow depth data. Hydrological Processes, 20(4), 829–838. doi: 10.1002/hyp.6119
  • Groffman, P. M., Driscoll, C. T., Fahey, T. J., Hardy, J. P., Fitzhugh, R. D., & Tierney, G. L. (2001). Colder soils in a warmer world: A snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry, 56(2), 135–150. doi: 10.1023/A:1013039830323
  • Gross, M. F., Hardisky, M. A., Doolittle, J. A., & Klemas, V. (1990). Relationships among depth to Frozen soil, soil wetness, and vegetation type and biomass in Tundra near Bethel, Alaska, U.S.A. Arctic and Alpine Research, 22(3), 275–282. doi: 10.2307/1551590
  • Grünewald, T., Schirmer, M., Mott, R., & Lehning, M. (2010). Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment. The Cryosphere, 4(2), 215–225. doi: 10.5194/tc-4-215-2010
  • Heritage, G., & Hetherington, D. (2007). Towards a protocol for laser scanning in fluvial geomorphology. Earth Surface Processes and Landforms, 32(1), 66–74. doi: 10.1002/esp.1375
  • Hodge, R., Brasington, J., & Richards, K. (2009). In situ characterization of grain-scale fluvial morphology using Terrestrial Laser Scanning. Earth Surface Processes and Landforms, 34(7), 954–968. doi:10.1002/esp.1780.
  • Hopkinson, C., Chasmer, L., Young-Pow, C., & Treitz, P. (2004). Assessing forest metrics with a ground-based scanning lidar. Canadian Journal of Forest Research, 34(3), 573–583. doi: 10.1139/x03-225
  • Jaboyedoff, M., Oppikofer, T., Abellan, A., Derron, M.-H., Loye, A., Metzger, R., & Pedrazzini, A. (2012). Use of LIDAR in landslide investigations: A review. Natural hazards, 61(1), 5–28. doi: 10.1007/s11069-010-9634-2
  • Jörg, P., Fromm, R., Sailer, R., & Schaffhauser, A. (2006). Measuring snow depth with a terrestrial laser ranging system. In International snow science workshop (pp. 425–460). Presented at the International Snow Science Workshop, Telluride, Colorado.
  • Jost, G., Weiler, M., Gluns, D. R., & Alila, Y. (2007). The influence of forest and topography on snow accumulation and melt at the watershed-scale. Journal of Hydrology, 347(1–2), 101–115. doi: 10.1016/j.jhydrol.2007.09.006
  • Keller, F., Kienast, F., & Beniston, M. (2000). Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Regional Environmental Change, 1(2), 70–77. doi: 10.1007/PL00011535
  • Körner, C. (1994). Impact of atmospheric changes on high mountain vegetation. In Mountain environments in changing climates (pp. 155–166). London: Routledge.
  • Lane, S. N., Westaway, R. M., & Murray Hicks, D. (2003). Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surface Processes and Landforms, 28(3), 249–271. doi: 10.1002/esp.483
  • Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T. A., Stähli, M., & Zappa, M. (2006). ALPINE3D: a detailed model of mountain surface processes and its application to snow hydrology. Hydrological Processes, 20(10), 2111–2128. doi: 10.1002/hyp.6204
  • Lichti, D. D., & Jamtsho, S. (2006). Angular resolution of terrestrial laser scanners. The Photogrammetric Record, 21(114), 141–160. doi: 10.1111/j.1477-9730.2006.00367.x
  • Liston, G. E., & Sturm, M. (2002). Winter precipitation patterns in arctic alaska determined from a blowing-snow model and snow-depth observations. Journal of Hydrometeorology, 3, 646–659. doi: 10.1175/1525-7541(2002)003<0646:WPPIAA>2.0.CO;2
  • López-Moreno, J. I., Fassnacht, S. R., Beguería, S., & Latron, J. B. P. (2011). Variability of snow depth at the plot scale: Implications for mean depth estimation and sampling strategies. The Cryosphere, 5(3), 617–629. doi: 10.5194/tc-5-617-2011
  • López-Moreno, J. I., Latron, J., & Lehmann, A. (2010). Effects of sample and grid size on the accuracy and stability of regression-based snow interpolation methods. Hydrological Processes, 24(14), 1914–1928. .
  • López-Moreno, J. I., Pomeroy, J. W., Revuelto, J., & Vicente-Serrano, S. M. (2012). Response of snow processes to climate change: Spatial variability in a small basin in the Spanish Pyrenees. Hydrological Processes. 27(18), 2637–2650. doi: 10.1002/hyp.9408
  • Lundberg, A., Gustafsson, V., & Granlund, N. (2008). “Ground Truth” Snow Measurements–Review. of operational and New measurement methods fos Sweeden, Norway and Finland. In 65th eastern snow conference (pp. 215–237). Presented at the 65th Eastern Snow Conference, Fairlee (Lake Money), Vermont, USA.
  • Molotch, N. P., Colee, M. T., Bales, R. C., & Dozier, J. (2005). Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: The impact of digital elevation data and independent variable selection. Hydrological Processes, 19(7), 1459–1479. doi: 10.1002/hyp.5586
  • Oppikofer, T., Jaboyedoff, M., & Keusen, H.-R. (2008). Collapse at the eastern Eiger flank in the Swiss Alps. Nature Geoscience, 1(8), 531–535. doi: 10.1038/ngeo258
  • Pomeroy, J., Essery, R., & Toth, B. (2004). Implications of spatial distributions of snow mass and melt rate for snow-cover depletion: Observations in a subarctic mountain catchment. Annals of Glaciology, 38(1), 195–201. doi: 10.3189/172756404781814744
  • Pomeroy, J. W., & Gray, D. M. (1995). Snowcover accumulation, relocation, and management. Saskatoon, Sask. Canada: National Hydrology Research Institute. ISBN: 06601581679780660158167.
  • Prokop, Alexander. (2008). Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements. Cold Regions Science and Technology, 54(3), 155–163. doi: 10.1016/j.coldregions.2008.07.002
  • Prokop, A. (2009). Terrestrial laser scanning for snow depth observations: An update on technical developments and applications. In International snow science workshop (Vol. 27, pp. 192–196). Presented at the International Snow Science Workshop, Davos Swizerland.
  • Prokop, A., Schirmer, M., Rub, M., Lehning, M., & Stocker, M. (2008). A comparison of measurement methods: Terrestrial laser scanning, tachymetry and snow probing for the determination of the spatial snow-depth distribution on slopes. Annals of Glaciology, 49(1), 210–216. doi: 10.3189/172756408787814726
  • Reshetyuk, Y. (2006). Investigation and calibration of pulsed time-of-flight terrestrial laser scanners (dissertation). KTH.
  • Romanescu, G., Venedict, B., Cotiuga, V., & Asandulesei, A. (2011). Use of the 3-D scanner in mapping and monitoring the dynamic degradation of soils. Case study of the Cucuteni-Baiceni Gully on the Moldavian Plateau (Romania). Hydrology and Earth System Sciences Discussions, 8(4), 6907–6937. doi: 10.5194/hessd-8-6907-2011
  • Rub, M. (2007). Terrestrial long range laser scanning for snow distribution monitoring. Zurich: Swiss Federal Institute of Technology.
  • Schaffhauser, A., Adams, M., Fromm, R., Jörg, P., Luzi, G., Noferini, L., & Sailer, R. (2008). Remote sensing based retrieval of snow cover properties. Cold Regions Science and Technology, 54(3), 164–175. doi: 10.1016/j.coldregions.2008.07.007
  • Schürch, P., Densmore, A. L., Rosser, N. J., Lim, M., & McArdell, B. W. (2011). Detection of surface change in complex topography using terrestrial laser scanning: Application to the Illgraben debris-flow channel. Earth Surface Processes and Landforms, 36(14), 1847–1859. doi: 10.1002/esp.2206
  • Schwalbe, E., Mass, H. G., Dietrichb, R., & Ewert, H. (2008). Glacier velocity determination from multi temporal terrestrial long range scanner point clouds. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Commission V, WG V/3 (Vol. 37, pp. 457–462).
  • Siegel, S., & Castelan, N. J. (1988). Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill.
  • Sovilla, B. (2004). Field experiments and numerical modelling of mass entrainment and deposition processes in snow avalanches - ETH E-Collection. ETH Zürich. Diss., Technische Wissenschaften, Nr 15462.
  • Ullrich, A. (2005). Atmospheric and geometric scaling correction. Internal paper of the company RIEGL laser measurement systems GmbH. Horn, Austria.
  • Wagner, W., Ullrich, A., Melzer, T., Breise, C., & Kraus, K. (2004). From single-pulse to full-waveform airborne laser scanners: Potencial and practical challenges. In International Achives of Photogrametry and Remote Sciences 35. B3 (Vol. 35, pp. 201–206).
  • Wehr, A., and Lohr, U. (1999). Airborne laser scanning—An introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3), 68–82. doi: 10.1016/S0924-2716(99)00011-8
  • Wheaton, J. M., Brasington, J., Darby, S. E., & Sear, D. A. (2010). Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surface Processes and Landforms, 35(2), 136–156. doi:10.1002/esp.1886.
  • Williams, K. E. (2012). Accuracy assessment of LiDAR point cloud geo-referencing (Master Thesis/Dissertation). School of Civil and Construction Engineering, Oregon State Univeristy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.