1,922
Views
26
CrossRef citations to date
0
Altmetric
Mapping Environmental Risks - Quantitative And Spatial Modelling Approaches

Landslide susceptibility, Peloponnese Peninsula in South Greece

, &
Pages 211-222 | Received 19 Jan 2013, Accepted 09 Jan 2014, Published online: 06 Feb 2014

References

  • Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides, 9(1), 93–106. doi:10.1007/s10346-011-0283-7 doi: 10.1007/s10346-011-0283-7
  • Alcántara-Ayala, I. (2002). Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology, 47(2–4), 107–124. doi:10.1016/S0169-555X(02)00083-1 doi: 10.1016/S0169-555X(02)00083-1
  • Aleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58, 21–44. doi:10.1007/s100640050066 doi: 10.1007/s100640050066
  • Atkinson, P. M., German, S. E., Sear, D. A., & Clark, M. J. (2003). Exploring the relations between river bank erosion and geomorphological controls using geographically weighted logistic regression. Geographical Analysis, 35(1), 58–82. doi:10.1111/j.1538-4632.2003.tb01101.x doi: 10.1353/geo.2002.0028
  • Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains Central Japan. Geomorphology, 65, 15–31. doi:10.1016/j.geomorph.2004.06.010 doi: 10.1016/j.geomorph.2004.06.010
  • Ayalew, L., Yamagishi, H., Marui, H., & Takami, K. (2005). Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Engineering Geology, 81(4), 432–445. doi:10.1016/j.enggeo.2005.08.004 doi: 10.1016/j.enggeo.2005.08.004
  • Bornovas, J., & Rondogianni-Tsiambaou, T. (Eds.) (1983). Geological map of Greece, Scale: 1:500.000. Athens: Division of general geology and economic geology: Institute of Geology and Mineral Exploration (IGME).
  • Carrara, A., Guzzetti, F., Cardinali, M., & Reichenbach, P. (1999). Use of GIS technology in the prediction and monitoring of landslide hazard. Natural Hazards, 20, 117–135. doi:10.1023/A:1008097111310 doi: 10.1023/A:1008097111310
  • Chalkias, C., Kalogirou, S., & Ferentinou, M. (2011). Global and local statistical modeling for landslide susceptibility assessment: A comparative analysis. In S. Kalogirou (Eds.), Proceedings of the 17th European Colloquium on Quantitative and Theoretical Geography (pp. 88–97). Athens: Harokopio University. ISBN: 978–960-87751-1-4.
  • Chang, H., & Kim, N. K. (2004). The evaluation and the sensitivity analysis of GIS-based landslide susceptibility models. Geosciences Journal, 8(4), 415–423. doi: 10.1007/BF02910477 doi: 10.1007/BF02910477
  • Corominas, J., Esgleas, J., & Baeza, C. (1990). Risk mapping in the Pyrenees area: a case study. In R. Sinniger, & M. Mombaron (Eds.), Hydrology in Mountainous Regions II: Artificial Reservoirs: Water and Slopes (pp. 425–428). Wallingford: IAHS Press.
  • Dai, F. C., & Lee, C. F. (2003). A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surface Processes and Landforms, 28(5), 527–545. doi:10.1002/esp.456 doi: 10.1002/esp.456
  • Ercanoglu, M., & Gokceoglu, C. (2002). Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology, 41, 720–730. doi:10.1007/s00254-001-0454-2 doi: 10.1007/s00254-001-0454-2
  • Ercanoglu, M., & Temiz, F. A. (2011). Application of logistic regression and fuzzy operators to landslide susceptibility assessment in Azdavay (Kastamonu, Turkey). Environmental Earth Sciences, 64(4), 949–964. doi:10.1007/s12665-011-0912-4 doi: 10.1007/s12665-011-0912-4
  • Erener, A., & Düzgün, H. S. B. (2010). Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway). Landslides, 7(1), 55–68. doi:10.1007/s10346-009-0188-x doi: 10.1007/s10346-009-0188-x
  • Ferentinou, M., & Chalkias, C. (2013). Mapping Mass Movement Susceptibility across Greece with GIS, ANN, and Statistical Methods. In C. Margottini, P. Canuti, & K. Sassa (Eds.), Landslide Science and Practice: Volume 1: Landslide Inventory and Susceptibility and Hazard Zoning (pp. 321–327). Berlin: Springer-Verlag.
  • Ferentinou, M. D., & Sakellariou, M. G. (2005). Assessing landslide hazard on medium and large scales using self-organising maps. In O. Hungr, R. Fell, R. Couture, & E. Eberhardt (Eds.), Landslide risk Management (pp. 639–648). Abingdon: Taylor & Francis.
  • Fotheringham, A. S., & Brunsdon, C. (1999). Local Forms of Spatial Analysis. Geographical Analysis, 31(4), 340–358. doi:10.1111/j.1538-4632.1999.tb00989.x doi: 10.1111/j.1538-4632.1999.tb00989.x
  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically Weighted Regression: the analysis of spatially varying relationships. Chichester: John Wiley and Sons.
  • Glade, T., & Crozier, M. J. (2005). A review of scale dependency in landslide hazard and risk analysis. In T. Glade, M. G. Anderson, & M. J. Crozier (Eds.), Landslide risk assessment (pp. 75–138). New York: John Wiley.
  • Hellenic Statistical Authority (2013). Announcement of the demographic and social characteristics of the Resident Population of Greece according to the 2011 Population - Housing Census. Retrieved from http://www.statistics.gr/portal/page/portal/ESYE/BUCKET/General/nws_SAM01_EN.PDF.
  • Hosmer, D. W., & Lemeshow, S. (1989). Applied Logistic Regression. New York: Wiley.
  • Jibson, R. W., Harp, E. L., & Michael, J. A. (2000). A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology, 58, 271–289. doi:10.1016/S0013-7952(00)00039-9 doi: 10.1016/S0013-7952(00)00039-9
  • Jiménez-Perálvarez, J. D., Irigaray, C., El. Hamdouni, R., & Chacón, J. (2009). Building models for automatic landslide-susceptibility analysis, mapping and validation in ArcGIS. Natural Hazards, 50(3), 571–590. doi:10.1007/s11069-008-9305-8 doi: 10.1007/s11069-008-9305-8
  • Kalogirou, S., & Hatzichristos, T. (2007). A spatial modelling framework for income estimation. Spatial Economic Analysis 2(3), 297–316. doi:10.1080/17421770701576921 doi: 10.1080/17421770701576921
  • Koukis, G., Rozos, D., & Hadzinakos, I. (1997). Relationship between rainfall and landslides in the formations of Achaia county, Greece. In P. G. Marinos, G. C. Koukis, G. C. Tsiambaos, & G. C. Stournaras (Eds.), Proceedings of the International Symposium of I.A.E.G. in Engineering Geology and the Environment (pp. 793–798). Rotterdam: Balkema.
  • Lee, S. (2007). Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environmental Geology, 52, 615–623. doi:10.1007/s00254-006-0491-y doi: 10.1007/s00254-006-0491-y
  • Lee, E. M., & Jones, D. K. C. (Eds.). (2004). Landslide risk assessment. London: Thomas Telford.
  • Lee, S., Ryu, J-H., Lee, M-J., & Won, J-S. (2003). Use of an artificial neural network for analysis of the susceptibility to landslides at Boun, Korea. Environmental Geology, 44, 820–833. doi:10.1007/s00254-003-0825-y doi: 10.1007/s00254-003-0825-y
  • Lee, S., & Sambath, T. (2006). Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology 50, 847–855. doi:10.1007/s00254-006-0256-7 doi: 10.1007/s00254-006-0256-7
  • Leroi, E. (1996). Landslide hazard – Risk maps at different scales: objectives, tools and developments. In K. Senneset (Eds.), Landslides: Proc. Int. Symp. on Landslides (pp. 35–52). Trondheim.
  • Liao, Q., Li, M., Chen, Z., Shao, Y., & Yang, K. (2010). Spatial simulation of regional land use patterns based on GWR and CLUE-S model. Proceedings of the 18th International Conference on Geoinformatics (pp. 1–6). Beijing, China. doi:10.1109/GEOINFORMATICS.2010.5567963.
  • Mathew, J., Jha, V. K., & Rawat G. S. (2009). Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides, 6, 17–26. doi:10.1007/s10346-008-0138-z doi: 10.1007/s10346-008-0138-z
  • Melchiorre, C., Matteucci, M., & Remondo, J. (2006). Artificial Neural Networks and Robustness Analysis in Landslide Susceptibility Zonation. International joint Conference on Neural Networks, (pp. 4375–4381). Vancouver, Canada: IEEE. doi:10.1109/IJCNN.2006.247036
  • Piacentini, D., Troiani, F., Soldati, M., Notarnicola, C., Savelli, D., Schneiderbauer, S., & Strada, C. (2012). Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy). Geomorphology, 151–152, 196–206. doi:10.1016/j.geomorph.2012.02.003 doi: 10.1016/j.geomorph.2012.02.003
  • Pourghasemi, H. R., Mohammady, M., & Pradhan, B. (2012). Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena, 97, 71–84. doi:10.1016/j.catena.2012.05.005 doi: 10.1016/j.catena.2012.05.005
  • Pradhan, B., & Lee, S. (2009). Landslide risk analysis using artificial neural network model focusing on different training sites. International Journal of Physical Sciences, 4, 1–015.
  • Soeters, R., & van Westen, C. J. (1996). Slope instability recognition, analysis, and zonation. In A. K. Turner & R. L. Schuster (Eds.), Landslides, investigation and mitigation (pp. 129–177). Washington, DC: National Academy Press.
  • Süzen, M. L., & Doyuran, V. (2004). Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Engineering Geology, 71(3–4), 303–321. doi:10.1016/S0013-7952(03)00143-1 doi: 10.1016/S0013-7952(03)00143-1
  • Thiebes, B., Bell, R., & Glade, T. (2007). Deterministic landslide susceptibility analysis using SINMAP – case study in the Swabian Alb Germany. In Geomorphology for the Future: Conference Proceedings (pp. 177–184). Obergurgl: ÖGC/IAG Working Group on Geomorphology.
  • Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(2), 234–240. doi:10.2307/143141 doi: 10.2307/143141
  • Tsagas, D. (2011). Geomorphological investigation and mass movements in northern Peloponnese: area of Xylokastro – Diakofto (Unpublished doctoral dissertation – in Greek). University of Athens: Athens, Greece.
  • Van Westen, C. J., Rengers, N., & Soeters, R. (2003). Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards, 30, 399–419. doi:10.1023/B:NHAZ.0000007097.42735.9e doi: 10.1023/B:NHAZ.0000007097.42735.9e
  • Varnes, D. J. (1984). Landslide Hazard Zonation: a renew of principles and practice, Commission on Landslides of the IAEG, UNESCO, Natural Hazards, No 3. Paris: UNESCO.
  • Vergari, F., Della Seta, M., Del Monte, M., Fredi, P., & Lupia Palmieri, E. (2011). Landslide susceptibility assessment in the Upper Orcia Valley (Southern Tuscany, Italy) through conditional analysis: A contribution to the unbiased selection of causal factors. Natural Hazards and Earth System Science, 11(5), 1475–1497. doi:10.5194/nhess-11-1475-2011 doi: 10.5194/nhess-11-1475-2011
  • Wang, W. D., Xie, C. M., & Du, X. G. (2009). Landslides susceptibility mapping based on geographical information system, GuiZhou, south-west China. Environmental Geology, 58, 33–43. doi:10.1007/s00254-008-1488-5 doi: 10.1007/s00254-008-1488-5
  • Windle, M. J. S., Rose, G. A., Devillers, R., & Fortin, M. J. (2010). Exploring spatial non-stationarity of fisheries survey data using geographically weighted regression (GWR): an example from the Northwest Atlantic. ICES Journal of Marine Science, 67, 145–154. doi:10.1093/icesjms/fsp224 doi: 10.1093/icesjms/fsp224
  • Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena, 72, 1–12. doi:10.1016/j.catena.2007.01.003 doi: 10.1016/j.catena.2007.01.003
  • Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A comparison of logistic regression and natural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3–4), 251–266. doi:10.1016/j.enggeo.2005.02.002 doi: 10.1016/j.enggeo.2005.02.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.