1,595
Views
8
CrossRef citations to date
0
Altmetric
Science

Flooding in ephemeral streams: incorporating transmission losses

, , , &
Pages 350-357 | Received 19 Aug 2016, Accepted 08 Mar 2017, Published online: 10 Apr 2017

References

  • Aguilar, F. J., & Mills, J. (2008). Accuracy assessment of LiDAR-derived digital elevation models. The Photogrammetric Record, 23(122), 148–169. doi:10.1111/j.1477-9730.2008.00476.x
  • Bates, P. D., Marks, K. J., & Horrit, M. S. (2003). Optimal use of high-resolution topographic data in flood inundation models. Hydrological Processes, 17, 537–557. doi: 10.1002/hyp.1113
  • Begnudelli, L., Sanders, B. F., & Bradford, S. F. (2008). Adaptive Gudunov-based model for flood simulation. Journal of Hydraulic Engineering, 134(6), 714–725. doi:10.1061/(ASCE)0733-9429(2008)134:6(714)
  • Bilskie, M. V., & Hagen, S. C. (2013). Topographic accuracy assessment of bare earth LiDAR-derived unstructured meshes. Advances in Water Resources, 52, 165–177. doi: 10.1016/j.advwatres.2012.09.003
  • Casas, A., Benito, G., Thorndycraft, V., & Rico, M. (2006). The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modeling. Earth Surface Processes and Landforms, 31, 444–456. doi: 10.1002/esp.1278
  • Cobby, D. M., Mason, D. C., Horrit, M. S., & Bates, P. D. (2003). Two-dimensional hydraulic flood modeling using a finite element mesh decomposed according to vegetation and topographic features derived from airborne scanning laser altimetry. Hydrological Processes, 17, 1979–2000. doi: 10.1002/hyp.1201
  • Duan, J., & Yu, C. (2014). Two-Dimensional hydrodynamic model for surface-flow routing. Journal of Hydraulic Engineering, 04014045, 1–13.
  • French, J.R. (2003). Airborne LiDAR in support of geomorphological and hydraulic modelling. Earth Surface Processes and Landforms, 28, 321–335. doi:10.1002/esp.484
  • Garcia-Navarro, P., Hubbard, M., & Priestley, A. (1995). Genuinely multidimensional upwinding for the 2D shallow water equations. Journal of Computational Physics, 121, 79–93. doi: 10.1006/jcph.1995.1180
  • Goodrich, D. C., Burns, I. S., Unkrich, C. L., Semmens, D. J., Guertin, D. P., Hernandez, M., … Levick, L. R. (2012). KINEROS2/AGWA: Model Use, calibration, and validation. Transactions of the American Society of Agricultural and Biological Engineers, 55(4), 1561–1574.
  • Goodrich, D. C., Williams, D. G., Unkrich, C. L., Hogan, J. F., & Scott, R. L. (2004). Comparison of methods to estimate ephemeral channel recharge, Walnut Gulch, San Pedro river basin, Arizona. Water Science and Application, 9, 77–99. doi: 10.1029/009WSA06
  • Hladik, C., & Alber, M. (2012). Accuracy assessment and correction of a LiDAR-derived salt marsh digital elevation model. Remote Sensing of Environment, 121, 224–235. doi: 10.1016/j.rse.2012.01.018
  • Hopkinson, C., Hayashhi, M., & Peddle, D. (2009). Comparing alpine watershed attributes from LiDAR photogrammetric, and contour-based digital elevation models. Hydrological Processes, 23, 451–463. doi: 10.1002/hyp.7155
  • Horrit, M. S., Bates, P. D., & Mattinson, M. J. (2006). Effects of mesh resolution and topographic representation in 2D finite volume models of shallow water fluvial flow. Journal of Hydrology, 329, 306–314. doi: 10.1016/j.jhydrol.2006.02.016
  • Hutton, C., Brazier, R., Nicholas, A., & Nearing, M. (2012). On the effects of improved cross-section representation in one-dimensional flow routing models applied to ephemeral rivers. Water Resources Research, 48, W04509. doi:10.1029/2011WR011298
  • Korichi, K., & Hazzab, A. (2010). Application of shock capturing method for free surface flow simulation. Jordan Journal of Civil Engineering, 4, 310–320.
  • Legleiter, C. J., Kyriakidis, P. C., McDonald, R. R., & Nelson, J. M. (2011). Effects of uncertain topographic input data on two-dimensional flow modeling in a gravel-bed river. Water Resources Research, 47, W03518. doi:10.1029/2010WR009618
  • Looper, J. P., Vieux, B. E., & Moreno, M. A. (2012). Assessing the impacts of precipitation bias on distributed hydrologic model calibration and prediction accuracy. Journal of Hydrology, 418–419, 110–122. doi: 10.1016/j.jhydrol.2009.09.048
  • Marks, K., & Bates, P. (2000). Integration of high-resolution topographic data with floodplain flow models. Hydrological Processes, 14, 2109–2122. doi: 10.1002/1099-1085(20000815/30)14:11/12<2109::AID-HYP58>3.0.CO;2-1
  • Mason, D. C., Cobby, D. M., Horrit, M. S., & Bates, P. D. (2003). Floodplain friction parameterization in two-dimensional river flood models using vegetation heights derived from airborne scanning laser altimetry. Hydrological Processes, 17, 1711–1732. doi: 10.1002/hyp.1270
  • Miller, S. N., Semmens, D. J., Goodrich, D. C., Hernandez, M., Miller, R. C., Kepner, W. C., & Guertin, D. P. (2007). The automated geospatial watershed assessment tool. Environmental Modelling & Software, 22, 365–377. doi: 10.1016/j.envsoft.2005.12.004
  • Moran, M. S., Holifield, C., Goodrich, D. C., Qi, J., Shannon, D. T., & Olsson, A. (2008). Long-term remote sensing database, Walnut Gulch experimental watershed, Arizona, United States. Water Resources Research, 44, W05S10. doi:10.1029/2006WR005689
  • Murphy, P., Ogilvie, J., Meng, F.-R., & Arp, P. (2008). Stream network modelling using LiDAR and photogrammetric digital elevation models: A comparison and field verification. Hydrological Processes, 22, 1747–1754. doi: 10.1002/hyp.6770
  • Parlange, J.-Y., Lisle, I., Braddock, R. D., & Smith, R. E. (1982). The three-parameter infiltration equation. Soil Science, 133(6), 337–341. doi: 10.1097/00010694-198206000-00001
  • Roberts, A. J. (2003). A holistic finite difference approach models linear dynamics consistently. Mathematics of Computation, 72(241), 247–263. doi: 10.1090/S0025-5718-02-01448-5
  • Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43, 357–372. doi: 10.1016/0021-9991(81)90128-5
  • Smith, R. E., Chery, D. L., Renard, K. G., & Gwinn, W. R. (1982). Supercritical flow flumes for measuring sediment-laden flow. Technical Bulletin Number 1655. Agricultural Research Service. U.S. Department of Agriculture.
  • Toro, E. (2009). Riemann solvers and numerical methods for fluid dynamics: A practical introduction (3rd ed.). Berlin: Springer.
  • Toro, E., & Navarro-Garcia, P. (2007). Godunov-type methods for free-surface shallow flows: A review. Journal of Hydraulic Research, 45(6), 736–751. doi:10.1080/00221686.2007.9521812
  • Wise, S. (2000). Assessing the quality for hydrological applications of digital elevation models derived from contours. Hydrological Processes, 14, 1909–1929. doi: 10.1002/1099-1085(20000815/30)14:11/12<1909::AID-HYP45>3.0.CO;2-6
  • Yoon, T. H., & Kang, S.-K. (2004). Finite volume model for two-dimensional shallow water flows on unstructured grids. Journal of Hydraulic Engineering, 130(7), 678–688. doi:10.1061/(ASCE)0733-9429(2004)130:7(678)