1,761
Views
11
CrossRef citations to date
0
Altmetric
Science

Groundwater vulnerability of principal aquifers of the Campania region (southern Italy)

, , , , , , & ORCID Icon show all
Pages 565-576 | Received 21 Apr 2020, Accepted 23 Jun 2020, Published online: 16 Jul 2020

References

  • Al-Shatnawi, A. M. , El-Bashir, M. S. , Khalaf, R. M. B. , & Gazzaz, N. M. (2016). Vulnerability mapping of groundwater aquifer using SINTACS in Wadi Al-Waleh Catchment, Jordan. Arabian Journal of Geosciences , 9 (1), 67. https://doi.org/10.1007/s12517-015-2080-4
  • Albinet, M. , & Margat, J. (1970). Cartographie de la vulnérabilité à la pollution des nappes d’eau souterraine. [Mapping of vulnerability to pollution of groundwater]. Bull. BRGM, 2éme série, section III, 4, 13–22, Orléans.
  • Aller, L. , Bennet, T. , Lehr, J. H. , Petty, R. J. , & Hachet, G. (1987). DRASTIC: A standardised system for evaluating groundwater pollution potential using hydrogeologic settings (EPA 600/2-87) . Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency Report, Tucson, 622.
  • Allocca, V. , Celico, F. , Celico, P. , De Vita, P. , Fabbrocino, S. , Mattia, S. , Monacelli, G. , Musilli, I. , Piscopo, V. , Scalise, A. R. , Summa, G. M. , & Tranfaglia, G. (2007). Illustrative notes of the hydrogeological map of southern Italy. Istituto Poligrafico e Zecca Dello Stato , 211. ISBN 88-448-0215-5.
  • Allocca, V. , Coda, S. , De Vita, P. , Di Rienzo, B. , Ferrara, L. , Giarra, A. , Mangoni, O. , Stellato, L. , Trifuoggi, M. , & Arienzo, M. (2018a). Hydrogeological and hydrogeochemical study of a volcanic-sedimentary coastal aquifer in the archaeological site of Cumae (Phlegraean Fields, southern Italy). Journal of Geochemical Exploration , 185 , 105–115. https://doi.org/10.1016/j.gexplo.2017.11.004
  • Allocca, V. , Coda, S. , De Vita, P. , Iorio, A. , & Viola, R. (2016). Rising groundwater levels and impacts in urban and semirural areas around Naples (southern Italy). Rendiconti Online Della Società Geologica Italiana, 41 , 14–17. https://doi.org/10.3301/ROL.2016.81
  • Allocca, V. , De Vita, P. , Manna, F. , & Nimmo, J. R. (2015). Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy. Journal of Hydrology , 529 , 843–853. https://doi.org/10.1016/j.jhydrol.2015.08.032
  • Allocca, V. , Manna, F. , & De Vita, P. (2014). Estimating annual groundwater recharge coefficient for karst aquifers of the southern Apennines (Italy). Hydrology and Earth System Sciences , 18 (2), 803–817. https://doi.org/10.5194/hess-18-803-2014
  • Allocca, V. , Marzano, E. , Tramontano, M. , & Celico, F. (2018b). Environmental impact of cattle grazing on a karst aquifer in the southern Apennines (Italy): quantification through the grey water footprint. Ecological Indicators , 93 , 830–837. https://doi.org/10.1016/j.ecolind.2018.05.075
  • Ascione, A. , Ciarcia, S. , Di Donato, V. , Mazzoli, S. , & Vitale, S. (2012). The Pliocene-quaternary wedge-top basins of southern Italy: An expression of propagating lateral slab tear beneath the Apennines. Basin Research , 24 (4), 456–474. https://doi.org/10.1111/j.1365-2117.2011.00534.x
  • Bonacci, O. (1993). Karst springs hydrographs as indicators of karst aquifers. Hydrological Sciences Journal , 38 (1), 51–62. https://doi.org/10.1080/02626669309492639
  • Carminati, E. , Lustrino, M. , & Doglioni, C. (2012). Geodynamic evolution of the central and western Mediterranean: Tectonics vs. Igneous petrology constraints. Tectonophysics , 579 , 173–192. https://doi.org/10.1016/j.tecto.2012.01.026
  • Casciello, C. , De Vita, P. , Stanzione, D. , & Vallario, A. (1995). Hydrogeology and hydrogeochemistry of the Mount della Stella (Cilento–campania meridionale). Quaderni di Geologia Applicata , 2 , 327–334.
  • Celico, F. , Naclerio, G. , Bucci, A. , Nerone, V. , Capuano, P. , Carcione, M. , Allocca, V. , & Celico, P. (2010). Influence of pyroclastic soil on epikarst formation: A test study in southern Italy. Terra Nova , 22 (2), 110–115. https://doi.org/10.1111/j.1365-3121.2009.00923.x
  • Celico, F. , Petrella, P. , & Celico, P. (2006). Hydrogeological behavior of some fault zones in a carbonate aquifer of southern Italy: An experimentally based model. Terra Nova , 18 (5), 308–313. https://doi.org/10.1111/j.1365-3121.2006.00694.x
  • Celico, P. (1978). . Schema idrogeologico dell’Appennino carbonatico centro-meridionale. [Hydrogeological scheme of the central-southern carbonate Appennine]. Memorie e Note Istituto di Geologia Applicata di Napoli , 14 , 1–97.
  • Celico, P. (1983). Idrogeologia dei massicci carbonatici, delle piane quaternarie e delle aree vulcaniche dell’Italia centro-meridionale (Marche e Lazio meridionali, Abruzzo, Molise e Campania). [Hydrogeology of carbonate massifs, quaternary plains and volcanic areas of centra-southern Italy (Marche and southern Lazio, Abruzzo, Molise and Campania)]. Quaderni CASMEZ , 4 (2), 225.
  • Celico, P. , Dall’Aglio, M. , Ghiara, M. R. , Stanzione, D. , Brondi, M. , & Prosperi, M. (1992). Geochemical monitoring of the thermal fluids in the Phlegraean Fields from 1970 to 1990. Bollettino Della Societa Geologica Italiana , 111 , 409–422.
  • Celico, P. , De Vita, P. , & Aloia, A. (1993). Caratterizzazione idrogeologica della formazione di Monte Sacro (Cilento-Campania meridionale). [Hydrogeological characterization of the Monte Sacro formation (Cilento-southern Campania)]. Geologia Applicata e Idrologia , 28 , 243–251.
  • Celico, P. , Stanzione, D. , Esposito, L. , Formica, F. , Piscopo, V. , & De Rosa, B. (1999). La complessità idrogeologica di un’area vulcanica attiva: L’isola d’Ischia (Napoli-Campania). Bollettino Della Societa Geologica Italiana , 118 , 485–504.
  • Celico, P. , Stanzione, D. , Esposito, L. , Ghiara, M. R. , Piscopo, V. , Caliro, S. , & La Gioia, P. (1998). Caratterizzazione idrogeologica e idrogeochimica dell’area vesuviana. Bollettino Della Societa Geologica Italiana , 117 , 3–20.
  • Civita, M. (1994). Aquifer vulnerability maps to pollution . Pitagora Editor.
  • Civita, M. (2010). The combined approach when assessing and mapping groundwater vulnerability to contamination. Journal of Water Resource and Protection , 02 ((01|1)), 14–28. https://doi.org/10.4236/jwarp.2010.21003
  • Civita, M. , & De Maio, M. (2000). SINTACS r5 a new parametric system for the assessment and automatic mapping of groundwater vulnerability to contamination , 226. Pitagora Editor.
  • Coda, S. , Confuorto, P. , De Vita, P. , Di Martire, D. , & Allocca, V. (2019b). Uplift Evidences related to the Recession of groundwater Abstraction in a pyroclastic-alluvial aquifer of southern Italy. Geosciences , 9 (5), 215–215. https://doi.org/10.3390/geosciences9050215
  • Coda, S. , Tessitore, S. , Di Martire, S. , Calcaterra, D. , De Vita, P. , & Allocca, V. (2019a). Coupled ground uplift and groundwater rebound in the metropolitan city of Naples (southern Italy). Journal of Hydrology , 569 , 470–482. https://doi.org/10.1016/j.jhydrol.2018.11.074
  • Cosentino, D. , Cipollari, P. , Marsili, P. , & Scrocca, D. (2010). Geology of the central Apennines: A regional review. Journal of the Virtual Explorer , 36 (11), 1–37. https://doi.org/10.3809/jvirtex.2010.00223
  • De Maio, M. , Civita, M. , Farina, M. , & Zavatti, A. (2001). Linee-guida per la redazione e l’uso delle carte della vulnerabilità degli acquiferi all’inquinamento. [Guidelines for editing and use of aquifer vulnerability maps to pollution]. Agenzia Nazionale per la Protezione Dell’Ambiente (ANPA).–Roma , 4.
  • De Vita, P. , Allocca, V. , Celico, F. , Fabbrocino, S. , Mattia, C. , Monacelli, G. , Musilli, I. , Piscopo, V. , Scalise, A. R. , Summa, G. , Tranfaglia, G. , & Celico, P. (2018). Hydrogeology of continental southern Italy. Journal of Maps , 14 (2), 230–241. https://doi.org/10.1080/17445647.2018.1454352
  • De Vita, P. , Allocca, V. , Di Clemente, E. , Fusco, F. , Manna, F. , Mastrogiovanni, G. , Napolitano, E. , et al. (2015). The Instability of Colluvial Mantle in turbidite flysch series of the Cilento region (Campania–southern Italy): the November 26, 2010, Ostigliano Translational Slide. In G. Lollino (Ed.), Engineering Geology for Society and territory , (Vol. 2, pp. 1045–1048). Springer.
  • De Vita, P. , Allocca, V. , Manna, F. , & Fabbrocino, S. (2012). Coupled decadal variability of the north Atlantic Oscillation, regional rainfall and karst spring discharges in the Campania region (southern Italy). Hydrology and Earth System Sciences Discussions , 8 (5), 11233. https://doi.org/10.5194/hessd-8-11233-2011
  • De Vita, P. , & Nappi, M. (2013). Regional distribution of ash-fall pyroclastic soils for landslide susceptibility assessment. In C. Margottini , P. Canuti , & K. Sassa (Eds.), Landslide Science and Practice (pp. 103–109). Springer.
  • Di Gennaro, A. , Aronne, G. , De Mascellis, R. , Vingiani, S. , Sarnataro, M. , Abalsamo, P. , Cona, F. , Vitelli, L. , & Arpaia, G. (2002). I sistemi di terre della Campania. Monografia e carta, 1:250.000, con legenda. [The land systems of Campania. Monograph and map, 1:250.000, with legend].
  • Drogue, C. (1992). Hydrodynamics of karstic aquifers: Experimental sites in the Mediterranean karst, southern France. International Contributions to Hydrogeology , 13 , 133–149.
  • Ducci, D. , Della Morte, R. , Mottola, A. , Onorati, G. , & Pugliano, G. (2019). Nitrate trends in groundwater of the Campania region (southern Italy). Environmental Science and Pollution Research , 26 (3), 2120–2131. https://doi.org/10.1007/s11356-017-0978-y
  • European Parliament . (2000). Directive 2000/60/EC of the European Parliament and the Council of 23 October 2000. Establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, L327, 22.12.2000.
  • European Parliament Union . (2006). Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal of the European Union, 372, 19–31.
  • Forino, G. , Ciccarelli, S. , Bonamici, S. , Perini, L. , & Salvati, L. (2015). Developmental policies, long-term land-use changes and the way towards soil degradation: Evidence from southern Italy. Scottish Geographical Journal , 131 (2), 123–140. https://doi.org/10.1080/14702541.2015.1047895
  • Foster, S. S. D. (1987). Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. Vulnerability of soil and groundwater to pollutants , 69–86. Netherlands Organization for Applied Scientific Research.
  • Freeze, R. A. , & Cherry, J. A. (1979). Groundwater . Prentice Hall. P. 604.
  • Fusco, F. , Allocca, V. , Coda, S. , Cusano, D. , Tufano, R. , & De Vita, P. (2020). Quantitative assessment of specific vulnerability to nitrate pollution of shallow alluvial aquifers by Process-based and Empirical approaches. Water , 12 (1), 269. https://doi.org/10.3390/w12010269
  • Fusco, F. , Allocca, V. , & De Vita, P. (2017). Hydro-geomorphological modelling of ash-fall pyroclastic soils for debris flow initiation and groundwater recharge in Campania (southern Italy). Catena , 158 , 235–249. https://doi.org/10.1016/j.catena.2017.07.010
  • Fusco, F. , De Vita, P. , Napolitano, E. , Allocca, V. , & Manna, F. (2013). Monitoring the soil suction regime of landslide-prone ash-fall pyroclastic deposits covering slopes in the Sarno area (Campania - southern Italy). Rendiconti Online Società Geologica Italiana , 24 , 146–148. Springer.
  • Geiger, R. (1954). Klassifikation der klimate nach. In W. Köppen (Ed.), Landolt-Börnstein–Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik (Vol. 3, pp. 603–607).
  • Goku, R. C. , & Dassargues, A. (2000). Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology , 39 (6), 549–559. https://doi.org/10.1007/s002540050466
  • Goldscheider, N. , & Drew, D. (2007). Methods in karst hydrogeology , pp. 1–264. Taylor & Francis. ISBN 9780367388980.
  • Goossens, M. , & Van Damme, M. (1987). Vulnerability mapping in Flanders, Belgium . In W. van Duijvenbooden , G.H. van Waegeningh (Eds.), Vulnerability of soil and groundwater to pollutants international conference (Vol. 38, pp. 355–360). Proceedings and information 38, TNO Committee on Hydrological Research, The Hague.
  • Healy, R. W. (2010). Estimating groundwater recharge . Cambridge University Press , 256.
  • Jeannin, P.-Y. (1998). Structure et comportement hydraulique des aquifères karstiques. [Structure and hydraulic behavior of karst aquifers]. [ Doctoral thesis, University of Neuchâtel]. http://hydrologie.org/THE/JEANNIN.pdf
  • Kazakis, N. , & Voudouris, K. S. (2015). Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. Journal of Hydrology , 525 , 13–25. https://doi.org/10.1016/j.jhydrol.2015.03.035
  • Kiraly, L. (1975). Rapport sur l’état actuel des connaissances dans le domaine des caractères physiques des roches karstiques. [Report on the current state of knowledge in the field of physical characteristics of karst rocks]. Hydrogeology of karstic terrains (Hydrogéologie des terrains karstiques) International Union of geological sciences, Series B , (3), 53–67.
  • Kiraly, L. (2003). Karstification and groundwater flow. Speleogenesis and Evolution of Karst Aquifers , 1 (3), 155–192.
  • Klimchouk, A. B. (2000). The formation of epikarst and its role in vadose Speleogenesis. In A. B. Klimchouk , D. C. Ford , A. N. Palmer , & W. Dreybrodt (Eds.), Speleogenesis. Evolution of karst aquifers (pp. 91–99). National Speleological Society, Inc.
  • Mangin, A. (1975). Contribution à l’étude hydrodynamique des aquifers karstiques. Ann. Spéléol., Première Partie , 29 , 283–332. ; Deuxième partie, 29, 495–601; Troisième partie, 30, 21–124.
  • Manna, F. , Allocca, V. , Fusco, F. , Napolitano, E. , & De Vita, P. (2013). Effect of the north Atlantic Oscillation on groundwater recharge processes in karst aquifers of the Cilento Geopark. Rendiconti Online Società Geologica Italiana , 28 , 106–109. ISSN 2035-8008.
  • Maxey, G. B. (1964). Hydrostratigraphic units. Journal of Hydrology , 2 (2), 124–129. https://doi.org/10.1016/0022-1694(64)90023-X
  • Milia, A. , & Torrente, M. M. (2014). Early-stage rifting of the southern Tyrrhenian region: The Calabria–sardinia breakup. Journal of Geodynamics , 81 , 17–29. https://doi.org/10.1016/j.jog.2014.06.001
  • Milia, A. , Valente, A. , Cavuoto, G. , & Torrente, M. (2017). Miocene progressive forearc extension in the Central Mediterranean. Tectonophysics , 710-711 , 232–248. https://doi.org/10.1016/j.tecto.2016.10.002
  • NRC -– National Research Council . (1993). Ground water vulnerability assessment: Predicting relative contamination potential under conditions of uncertainty . National Academies Press.
  • Patacca, E. , & Scandone, P. (2007). Geology of the southern Apennines. Bollettino Della Società Geologica Italiana , 7 , 75–119.
  • Ravbar, N. , Engelhardt, I. , & Goldscheider, N. (2011). Anomalous behavior of specific electrical conductivity at a karst spring induced by variable catchment boundaries: The case of the Podstenjsek spring, Slovenia. Hydrological Processes , 25 (13), 2130–2140. https://doi.org/10.1002/hyp.7966
  • Romano, B. , Zullo, F. , Fiorini, L. , Marucci, A. , & Ciabò, S. (2017). Land transformation of Italy due to half a century of urbanization. Land Use Policy , 67 , 387–400. https://doi.org/10.1016/j.landusepol.2017.06.006
  • Vitale, S. , & Ciarcia, S. (2018). Tectono-stratigraphic setting of the Campania region (southern Italy). Journal of Maps , 14 (2), 9–21. https://doi.org/10.1080/17445647.2018.142
  • White, W. B. (1969). Conceptual models for carbonate aquifer. Ground Water , 7 (3), 15–21. https://doi.org/10.1111/j.1745-6584.1969.tb01279.x
  • White, W. B. (2002). Karst hydrology: Recent developments and open questions. Engineering Geology , 65 (2-3), 85–105. https://doi.org/10.1016/S0013-7952(01)00116-8