2,169
Views
3
CrossRef citations to date
0
Altmetric
Science

Glacial geomorphology of the Aladağlar, central Taurus Mountains, Turkey

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 101-113 | Received 16 Apr 2020, Accepted 26 Jan 2021, Published online: 14 Feb 2021

References

  • Akçar, N., Yavuz, V., Ivy-Ochs, S., Kubik, P. W., Vardar, M., & Schlüchter, C. (2007). Paleoglacial records from Kavron Valley, NE Turkey: Field and cosmogenic exposure dating evidence. Quaternary International, 164-165, 170–183. https://doi.org/https://doi.org/10.1016/j.quaint.2006.12.020
  • Altın, B. N. (2003a). Aladağlarda Pleistosen buzullaşması ve jeomorfolojik sonuçları. TURQUA IV, İTÜ, Avrasya Yerbilimleri Enstitüsü Kuvaterner Çalıştayı Bildiri Özetleri, İstanbul, 15–16.
  • Altın, B. N. (2003b). Aladağlar’da Preglasiyal dönem manzarası, İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü, Sırrı Erinç Sempozyumu, Genişletilmiş Bildiri Özetleri, 16–21.
  • Altın, T. (2003c). “Aladağlar (Ecemiş çayı aklanı) üzerinde buzul ve karst jeomorfolojisi”, yayınlanmamış doktora tezi, İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü.
  • Altınay, O., Sarıkaya, M. A., & Çiner, A. (2020). Late-Glacial to Holocene glaciers in the Turkish Mountains. Mediterranean Geoscience Reviews. https://doi.org/https://doi.org/10.1007/s42990-020-00024-7
  • Azzoni, R. S., Zerboni, A., Pelfini, M., Garzonio, C. A., Cioni, R., Meraldi, E., Smiraglia, C., & Diolaiuti, C. A. (2017). Geomorphology of Mount Ararat/Ağri Daği (Ağri Daği Milli Parki, eastern Anatolia, Turkey). Journal of Maps, 13(2), 182–190. https://doi.org/https://doi.org/10.1080/17445647.2017.1279084
  • Bayarı, C. S., Klimchouk, A., Sarıkaya, M. A., & Nazik, L. (2019). Aladağlar mountain range: A landscape-shaped by the Interplay of glacial, karstic, and fluvial erosion. In C. Kuzucuoğlu, A. Çiner, & N. Kazancı (Eds.), Landscapes and landforms of Turkey (pp. 423–435). Springer.
  • Bayarı, S., Zreda, M., Çiner, A., Nazik, L., Törk, K., Özyurt, N., Klimchouk, A., & Sarıkaya, M. A. (2003). The Extent of Pleistocene Ice Cap, glacial deposits and Glaciokarst in the Aladağlar massif: Central Taurids range, Southern Turkey. The XVI INQUA Congress: “shaping the Earth: A Quaternary Perspective” Reno, Nevada USA. Geological Society America Abstracts, 144–145.
  • Benn, D. I., & Evans, D. J. A. (2010). Glaciers and glaciation (2nd ed., p. 802). Routledge.
  • Benn, D., & Evans, D. J. (2014). Glaciers and glaciation. Routledge.
  • Çalışkan, O., Gürgen, G., Yılmaz, E., & Yeşilyurt, S. (2014). Debris-covered glaciers during glacial and interglacial periods on the Taurus Mountains (Turkey). Procedia - Social and Behavioral Sciences, 120, 716–721. https://doi.org/https://doi.org/10.1016/j.sbspro.2014.02.154
  • Chandler, B. M. P., Lovell, H., Boston, C. M., Lukas, S., Barr, I. D., Benediktsson, Í. Ö., Benn, D. I., Clark, C. D., Darvill, C. M., Evans, D. J. A., Ewertowski, M. W., Loibl, D., Margold, M., Otto, J.-C., Roberts, D. H., Stokes, C. R., Storrar, R. D., & Stroeven, A. P. (2018). Glacial geomorphological mapping: A review of approaches and frameworks for best practice. Earth-Science Reviews, 185, 806–846. https://doi.org/https://doi.org/10.1016/j.earscirev.2018.07.015
  • Chandler, B. M., Lukas, S., Boston, C. M., & Merritt, J. W. (2019). Glacial geomorphology of the Gaick, central Grampians, Scotland. Journal of Maps, 15(2), 60–78. https://doi.org/https://doi.org/10.1080/17445647.2018.1546235
  • Chiba, T., Kaneta, S. I., & Suzuki, Y. (2008). Red relief image map: New visualization method for three-dimensional data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B2), 1071–1076.
  • Chiba, T., Suzuki, Y., & Hiramatsu, T. (2007). Digital terrain representation methods and Red relief image Map. 45, 27–36. In Japanese with English abstract. https://doi.org/https://doi.org/10.11212/jjca1963.45.27.
  • Çiner, A. (2004). Turkish glaciers and glacial deposits. In J. Ehlers, & P. L. Gibbard (Eds.), Quaternary glaciations: Extent and chronology, part I: Europe (pp. 419–429). Elsevier.
  • Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., & Böhner, J. (2015). System for Automated Geoscientific analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8(7), 1991–2007. https://doi.org/https://doi.org/10.5194/gmd-8-1991-2015
  • Dede, V., Çiçek, İ, Sarıkaya, M. A., Çiner, A., & Uncu, L. (2017). First cosmogenic geochronology from the Lesser Caucasus: Late Pleistocene glaciation and rock glacier development in the Karçal Valley, NE Turkey. Quaternary Science Reviews, 164, 54–67. https://doi.org/https://doi.org/10.1016/j.quascirev.2017.03.025
  • Erinç, S. (1952). Glacial evidences of the climatic variations in Turkey. Geografiska Annaler, 34(1?2), 89–98.
  • Erinç, S. (1978). Changes in the physical environment in Turkey since the end of last glacial. In W. C. Brice (Ed.), The environmental history of the near and Middle East since the Last Ice Age (pp. 87–110). Academic Press.
  • Evans, I. S., & Cox, N. (1974). Geomorphometry and the operational definition of cirques. Area, 150–153.
  • Evans, D. J., Twigg, D. R., & Shand, M. (2006). Surficial geology and geomorphology of the þórisjökull plateau icefield, west-central Iceland. Journal of Maps, 2(1), 17–29. https://doi.org/https://doi.org/10.4113/jom.2006.52
  • Görüm, T. (2019). Landslide recognition and mapping in a mixed forest environment from airborne LiDAR data. Engineering Geology, 258, 105155. https://doi.org/https://doi.org/10.1016/j.enggeo.2019.105155
  • Graf, W. L. (1970). The geomorphology of the glacial valley cross section. Arctic and Alpine Research, 2(4), 303–312. https://doi.org/https://doi.org/10.2307/1550243
  • Gürgen, G., Çalışkan, O., Yılmaz, E., & Yeşilyurt, S. (2010a). Yedigöller platosu ve Emli vadisinde (Aladağlar) döküntü örtülü Buzullar, E-Journal of New world Sciences Academy. NEWSSA, 5(2), 98–116.
  • Gürgen, G., Çalışkan, O., Yılmaz, E., & Yeşilyurt, S. (2010b). Döküntü örtülü Buzullar ve kaya Buzulları. NWSA, (www.Newwsa.com), 5(1), 32–45.
  • Gustavsson, M., Kolstrup, E., & Seijmonsbergen, A. C. (2006). A new symbol-and-GIS based detailed geomorphological mapping system: Renewal of a scientific discipline for understanding landscape development. Geomorphology, 77(1-2), 90–111. https://doi.org/https://doi.org/10.1016/j.geomorph.2006.01.026
  • Hubbard, B., & Glasser, N. F. (2005). Field techniques in glaciology and glacial geomorphology. John Wiley & Sons.
  • Klimaszewski, M. (1990). Thirty years of detailed geomorphological mapping. Geographia Polonica, 58, 11–18.
  • Klimchouk, A., Bayari, S., Nazik, L., & Törk, K. (2006). Glacial destruction of cave systems in high mountains, with a special reference to the Aladaglar massif, central Taurus, Turkey. Acta Carsologica, 35(2), 111–121.
  • Koçyiğit, A., & Beyhan, A. (1998). A new intracontinental transcurrent structure: The central Anatolian Fault zone, Turkey. Tectonophysics, 284(3-4), 317–336. https://doi.org/https://doi.org/10.1016/S0040-1951(97)00176-5
  • Köse, O., Çiner, A., Sarıkaya, M. A., Yıldırım, C., Candaş, A., & Wilcken, K. M. (2018). Late Pleistocene cosmogenic 36Cl glacial chronology of the Mount Karanfil and Aladağlar, Central Taurus Range. II. Kapadokya Yerbilimleri Sempozyumu, 24-26 Ekim 2018, Niğde, 114-115.
  • Köse, O., Sarıkaya, M. A., Çiner, A., & Candaş, A. (2019). Late Quaternary glaciations and cosmogenic 36Cl geochronology of Mount Dedegöl, Taurus Mountains. Journal of Quaternary Science, 34(1), 51–63. https://doi.org/https://doi.org/10.1002/jqs.3080
  • Kraak, M. J., & Ormeling, F. J. (2013). Cartography: Visualization of spatial data. Routledge.
  • Kurter, A. (1991). Glaciers of Middle East and Africa - glaciers of Turkey. In R. S. Williams, & J. G. Ferrigno (Eds.), Satellite Image Atlas of the world. USGS Professional Paper. 1386–G–1, 1–30.
  • Li, Y., Liu, G., & Cui, Z. (2001). Glacial valley cross-profile morphology, Tian Shan Mountains, China. Geomorphology, 38(1-2), 153–166. https://doi.org/https://doi.org/10.1016/s0169-555x(00)00078-7
  • NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team. (2019). ASTER Global Digital Elevation Model V003 [Data set]. NASA EOSDIS Land Processes DAAC. Retrieved March 18, 2020, from https://doi.org/https://doi.org/10.5067/ASTER/ASTGTM.003
  • Nazik, L., Poyraz, M., & Karabıyıkoğlu, M. (2019). Karstic landscapes and landforms in Turkey. In Landscapes and landforms of Turkey (pp. 181–196). Springer. https://doi.org/https://doi.org/10.1007/978-3-030-03515-0_5
  • Oliva, M., Žebre, M., Guglielmin, M. M., Hughes, P., Çiner, A., Vieria, G., Bodin, X., Andrés, N., Colucci, R. R., García-Hernández, C., Mora, C., Nofre, J., Palacios, D., Pérez-Alberti, Ribolini, A., Ruiz-Fernández, J., Sar��kaya, M. A., Serrano, E., Urdea, P., Valcárcel, M., Woodward, J. & Yıldırım, C. (2018). Permafrost conditions in the Mediterranean basin since the Last glaciation. Earth-Science Reviews, 185, 397–436. https://doi.org/https://doi.org/10.1016/j.earscirev.2018.06.018.
  • Özpolat, E., Yıldırım, C., & Görüm, T. (2020). The Quaternary landforms of the büyük Menderes Graben System: The southern Menderes massif, western Anatolia, Turkey. Journal of Maps, 16(2), 405–419. https://doi.org/https://doi.org/10.1080/17445647.2020.1764874
  • Öztürk, M. Z., Şimşek, M., Şener, M. F., & Utlu, M. (2018). GIS based analysis of doline density on Taurus Mountains, Turkey. Environmental Earth Sciences, 77(14), 536. https://doi.org/https://doi.org/10.1007/s12665-018-7717-7
  • Robinson, A. H., & Kimerling, A. (1995). Elements of cartography (No. 526 E4).
  • Sarıkaya, M. A., & Çiner, A. (2015). Late Pleistocene glaciations and paleoclimate of Turkey. Maden Tetkik ve Arama Dergisi, 151(151), 107–127.
  • Sarıkaya, M. A., & Çiner, A. (2017). The late Quaternary glaciation in the eastern Mediterranean. In Quaternary glaciation in the Mediterranean Mountains (Vol. 433, pp. 289–305). P. Hughes. & J. Woodward. (Eds.), Geological Society of London Special Publication. https://doi.org/https://doi.org/10.1144/SP433.4
  • Sarıkaya, M. A., Çiner, A., Haybat, H., & Zreda, M. (2014). An early advance of glaciers on Mount Akdağ, SW Turkey, before the global Last glacial Maximum; insights from cosmogenic nuclides and glacier modeling. Quaternary Science Reviews, 88, 96–109. https://doi.org/https://doi.org/10.1016/j.quascirev.2014.01.016
  • Sarıkaya, M. A., Çiner, A., & Zreda, M. (2011). Quaternary glaciations of Turkey. In J. Ehlers, P. L. Gibbard, & P. D. Hughes (Eds.), Quaternary glaciations-extent and chronology; a closer look (Vol. 15, pp. 393–403). Elsevier pub., Developments in Quaternary Science.
  • Sarıkaya, M. A., & Tekeli, A. E. (2014). Satellite inventory of glaciers in Turkey. In J. S. Kargel, G. J. Leonard, M. P. Bishop, A. Kääb, & B. Raup (Eds.), Global Land Ice Measurements from Space (pp. 876). Praxis-Springer (Publisher). ISBN: 978-3-540-79817-0. 465-480.
  • Sarıkaya, M. A., Yıldırım, C., & Çiner, A. (2015a). Late Quaternary alluvial fans of Emli Valley in the Ecemiş Fault zone, south central Turkey: Insights from cosmogenic nuclides. Geomorphology, 228, 512–525. https://doi.org/https://doi.org/10.1016/j.geomorph.2014.10.008
  • Sarıkaya, M. A., Yıldırım, C., & Çiner, A. (2015b). No surface breaking on Ecemiş Fault, central Turkey, since Late Pleistocene (64.5 ka); new geomorphic and geochronologic data from cosmogenic dating of offset alluvial fans. Tectonophysics, https://doi.org/https://doi.org/10.1016/j.tecto.2015.02.022
  • Sarıkaya, M. A., Zreda, M., & Çiner, A. (2009). Glaciations and palaeoclimate of Mount Erciyes, central Turkey, since the Last glacial Maximum, inferred from 36Cl cosmogenic dating and glacier modeling. Quaternary Science Reviews, 28(23–24), 2326–2341. https://doi.org/https://doi.org/10.1016/j.quascirev.2009.04.015
  • Sarıkaya, M. A., Zreda, M., Çiner, A., & Zweck, C. (2008). Cold and wet Last glacial Maximum on Mount sandıras, SW Turkey, inferred from cosmogenic dating and glacier modeling. Quaternary Science Reviews, 27(7–8), 769–780. https://doi.org/https://doi.org/10.1016/j.quascirev.2008.01.002
  • Smith, M. J., Griffiths, J., & Paron, P. (2011). Geomorphological mapping: Methods and applications, Developments in Earth surface processes, Volume, 15. Elsevier.
  • Spreitzer, H. (1969). Die eiszeitliche und gegenwaertige Vergletscherung des kikilschen Ala Dag im Taurus (Pleistocene geology and glaciation of Ala Dag, Taurus Mountains, Turkey). Actas - Congreso Internacional del INQUA International Union for Quaternary Research, 5(1), 339–347.
  • Spreitzer, H. (1971). Rezente und eiszeitlische Grenzen der glazialen und periglazielen höhenstufen im Zentralen Taurus (vornehmlich am Beispiel des Kilikischen Ala Dag). Mitteilungen des Naturwissenschaftlichen Vereines für Steiermark, 101, 139–162.
  • Stroeven, A. P., Hättestrand, C., Heyman, J., Kleman, J., & Morén, B. M. (2013). Glacial geomorphology of the Tian Shan. Journal of Maps, 9(4), 505–512. https://doi.org/https://doi.org/10.1080/17445647.2013.820879
  • Tekeli, O., Aksay, A., Urgun, B. M., & Isik, A. (1984). Geology of the Aladag mountains. Geology of the Taurus belt (pp. 143–158). MTA Publications.
  • Utku, M., Öztürk, M. Z., & Şimşek, M. (2020). Emli Vadisi’ndeki (Aladağlar) Talus Depolarının Kantitatif Analizlere Göre İncelenmesi. COĞRAFİ PERSPEKTİFLE DAĞ VE DAĞLIK ALANLAR (Sürdürülebilirlik-Yönetim-Örnek Alan İncelemeleri), 978-625-7130-71-4.
  • Yıldırım, C., Sarıkaya, M. A., & Çiner, A. (2016). Late Pleistocene intraplate extension of the central Anatolian Plateau, Turkey: Inferences from cosmogenic exposure dating of alluvial fan, landslide and moraine surfaces along the Ecemiş Fault zone. Tectonics, 35(6), https://doi.org/https://doi.org/10.1002/2015TC004038
  • Yokoyama, R., Shirasawa, M., & Pike, R. J. (2002). Visualizing topography by openness: A new application of image processing to digital elevation models. Photogrammetric Engineering and Remote Sensing, 68(3), 257–266.
  • Zreda, M., Çiner, A., Sarıkaya, M. A., Zweck, C., & Bayarı, S. (2011). Remarkably extensive glaciation and fast deglaciation and climate change in Turkey near the Pleistocene-Holocene boundary. Geology, 39(11), 1051–1054. https://doi.org/https://doi.org/10.1130/G32097.1