1,557
Views
3
CrossRef citations to date
0
Altmetric
Science

Italian seismic amplification factors for peak ground acceleration and peak ground velocity

, ORCID Icon, ORCID Icon, , , , , & ORCID Icon show all
Pages 497-507 | Received 17 Oct 2021, Accepted 30 Jun 2022, Published online: 25 Jul 2022

References

  • Barani, S., Ferretti, G., & De Ferrari, R. (2020). Incorporating results from seismic microzonation into probabilistic seismic hazard analysis: An example in Western Liguria (Italy). Engineering Geology, 267, Article 105479. https://doi.org/10.1016/j.enggeo.2020.105479
  • Brando, G., Pagliaroli, A., Cocco, G., & Di Buccio, F. (2020). Site effects and damage scenarios: The case study of two historic centers following the 2016 Central Italy earthquake. Engineering Geology, 272, Article 105647. https://doi.org/10.1016/j.enggeo.2020.105647
  • Dipartimento della Protezione Civile (DPC). (2018). Commissione tecnica per il supporto e monitoraggio degli studi di Microzonazione Sismica (ex art.5, OPCM3907/10), (2018) – WebMs; WebCLE. A cura di: Maria Sole Benigni, Fabrizio Bramerini, Gianluca Carbone, Sergio Castenetto, Gian Paolo Cavinato, Monia Coltella, Margherita Giuffrè, Massimiliano Moscatelli, Giuseppe Naso, Andrea Pietrosante, Francesco Stigliano. www.webms.it
  • Dolce, M., Prota, A., Borzi, B., da Porto, F., Lagomarsino, S., Magenes, G., Moroni, C., Penna, A., Polese, M., Speranza, E., Verderame, G. M., & Zuccaro, G. (2020). Seismic risk assessment of residential buildings in Italy. Bulletin of Earthquake Engineering, 1–34. https://doi.org/10.1007/s10518-020-01009-5.
  • Falcone, G., Acunzo, G., Mendicelli, A., Mori, F., Naso, G., Peronace, E., Porchia, A., Romagnoli, G., Tarquini, E., & Moscatelli, M. (2021). Seismic amplification maps of Italy based on site-specific microzonation dataset and one-dimensional numerical approach. Engineering Geology, 289, Article 106170. https://doi.org/10.1016/j.enggeo.2021.106170
  • Falcone, G., Boldini, D., & Amorosi, A. (2018). Site response analysis of an urban area: A multi-dimensional and non-linear approach. Soil Dynamics and Earthquake Engineering, 109, 33–45. https://doi.org/10.1016/j.soildyn.2018.02.026
  • Falcone, G., Mendicelli, A., Mori, F., Fabozzi, S., Moscatelli, M., Occhipinti, G., & Peronace, E. (2020a). A simplified analysis of the total seismic hazard in Italy. Engineering Geology, 267, Article 105511. https://doi.org/10.1016/j.enggeo.2020.105511
  • Falcone, G., Romagnoli, G., Naso, G., Mori, F., Peronace, E., & Moscatelli, M. (2020b). Effect of bedrock stiffness and thickness on numerical simulation of seismic site response. Italian case studies. Soil Dynamics and Earthquake Engineering, 139, Article 106361. https://doi.org/10.1016/j.soildyn.2020.106361
  • Fontana, C., Cianci, E., & Moscatelli, M. (2020). Assessing seismic resilience of school educational sector. An attempt to establish the initial conditions in Calabria region, southern Italy. International Journal of Disaster Risk Reduction, 51, Article 101936. https://doi.org/10.1016/j.ijdrr.2020.101936
  • Forte, G., Chioccarelli, E., De Falco, M., Cito, P., Santo, A., & Iervolino, I. (2019). Seismic soil classification of Italy based on surface geology and shear-wave velocity measurements. Soil Dynamics and Earthquake Engineering, 122, 79–93. https://doi.org/10.1016/j.soildyn.2019.04.002
  • Galli, P., & Naso, G. (2008). The “taranta” effect of the 1743 earthquake in Salento (Apulia, Southern Italy). Bollettino di Geofisica Teorica e Applicata, 49, 177–204.
  • Gazetas, G. (1982). Vibrational characteristics of soil deposits with variable wave velocity. International Journal for Numerical and Analytical Methods in Geomechanics, 6(1), 1–20. https://doi.org/10.1002/nag.1610060103
  • Graziani, L., del Mese, S., Tertulliani, A., Arcoraci, L., Maramai, A., & Rossi, A. (2019). Investigation on damage progression during the 2016–2017 seismic sequence in Central Italy using the European macroseismic scale (EMS-98). Bulletin of Earthquake Engineering, 17(10), 5535–5558. https://doi.org/10.1007/s10518-019-00645-w
  • Huber, M., Marconi, F., & Moscatelli, M. (2015). Risk-based characterisation of an urban building site. Georisk, 9(1), 49–56. https://doi.org/10.1080/17499518.2015.1015574
  • ItBC. (2018). CS.LL.PP. Decreto Ministeriale: norme tecniche per le costruzioni. Gazz. Uff. della Repubb. Ital. n. 42, 20 febbraio, Suppl. Ordin. n. 8. Ist. Polig. Rome e Zecca dello Stato S.p.a. 2018.
  • Iwahashi, J., Kamiya, I., Matsuoka, M., & Yamazaki, D. (2018). Global terrain classification using 280 m DEMs: Segmentation, clustering, and reclassification. Progress in Earth and Planetary Science, 5(1), 1. https://doi.org/10.1186/s40645-017-0157-2
  • Kottke, A., Wang, X., & Rathje, E. M. (2013). Technical manual for strata.
  • Kottke, A. R., & Rathje, E. M. (2013). Comparison of time series and random-vibration theory site-response methods. Bulletin of the Seismological Society of America, 103(3), 2111–2127. https://doi.org/10.1785/0120120254
  • Kramer, S. (1996). Geotechnical earthquake engineering. Prentice Hall.
  • Lee, V. W., & Trifunac, M. D. (2010). Should average shear-wave velocity in the top 30 m of soil be used to describe seismic amplification. Soil Dynamics and Earthquake Engineering, 30(11), 1250–1258. https://doi.org/10.1016/j.soildyn.2010.05.007
  • Liu, Y., & Wu, Y. (2009). Stepwise multiple quantile regression estimation using non-crossing constraints. Statistics and Its Interface, 2(3), 299–310. https://doi.org/10.4310/SII.2009.v2.n3.a4
  • Makra, K., & Chávez-García, F. J. (2016). Site effects in 3D basins using 1D and 2D models: An evaluation of the differences based on simulations of the seismic response of Euroseistest. Bulletin of Earthquake Engineering, 14(4), 1177–1194. https://doi.org/10.1007/s10518-015-9862-7
  • Martelli, L. (2021). Assessment of seismic bedrock in deep alluvial plains. Case studies from the Emilia-Romagna plain. Geosciences, 11(7), 297–297. https://doi.org/10.3390/geosciences11070297
  • Mascandola, C., Massa, M., Barani, S., Albarello, D., Lovati, S., Martelli, L., & Poggi, V. (2019). Mapping the seismic bedrock of the po plain (Italy) through ambient-vibration monitoring. Bulletin of the Seismological Society of America, 109(1), 164–177. https://doi.org/10.1785/0120180193
  • Maufroy, E., Chaljub, E., Hollender, F., Kristek, J., Moczo, P., Klin, P., Priolo, E., Iwaki, A., Iwata, T., Etienne, V., De Martin, F., Theodoulidis, N. P., Manakou, M., Guyonnet-Benaize, C., Pitilakis, K., & Bard, P-Y. (2015). Earthquake ground motion in the Mygdonian Basin, Greece: The E2VP verification and validation of 3D numerical simulation up to 4 Hz. Bulletin of the Seismological Society of America, 105(3), 1398–1418. https://doi.org/10.1785/0120140228
  • Meletti, C., & Montaldo, V. (2007). Stime di pericolosità sismica per diverse probabilità di superamento in 50 anni: valori di ag. Progetto DPC-INGV S1, Deliverable D2. http://esse1.mi.ingv.it/d2.html
  • Michelini, A., Faenza, L., Lanzano, G., Lauciani, V., Jozinović, D., Puglia, R., & Luzi, L. (2019). The new shakemap in Italy: Progress and advances in the last 10 yr. Seismological Research Letters, 91(1), 317–333. https://doi.org/10.1785/0220190130
  • Moczo, P., Kristek, J., Bard, P. Y., Stripajová, S., Hollender, F., Chovanová, Z., Kristeková, M., & Sicilia, D. (2018). Key structural parameters affecting earthquake ground motion in 2D and 3D sedimentary structures. Bulletin of Earthquake Engineering, 16(6), 2421–2450. https://doi.org/10.1007/s10518-018-0345-5
  • Montaldo, V., & Meletti, C. (2007). Valutazione del valore della ordinata spettrale a 1sec e ad altri periodi di interesse ingegneristico. Progetto DPC-INGV S1, Deliverable D3. http://esse1.mi.ingv.it/d3.html
  • Mori, F., Mendicelli, A., Moscatelli, M., Romagnoli, G., Peronace, E., & Naso, G. (2020). A new Vs30 map for Italy based on the seismic microzonation dataset. Engineering Geology, 275, Article 105745. https://doi.org/10.1016/j.enggeo.2020.105745
  • Moscatelli, M., Albarello, D., Scarascia Mugnozza, G., & Dolce, M. (2020a). The Italian approach to seismic microzonation. Bulletin of Earthquake Engineering, 18(12), 5425–5440. https://doi.org/10.1007/s10518-020-00856-6
  • Moscatelli, M., Vignaroli, G., Pagliaroli, A., Razzano, R., Avalle, A., Gaudiosi, I., Giallini, S., Mancini, M., Simionato, M., Sirianni, P., Sottili, G., Bellanova, J., Calamita, G., Perrone, A., Piscitelli, S., & Lanzo, G. (2020b). Physical stratigraphy and geotechnical properties controlling the local seismic response in explosive volcanic settings: The Stracciacappa maar (central Italy). Bulletin of Engineering Geology and the Environment, 1–21. https://doi.org/10.1007/s10064-020-01925-5.
  • Nappi, R., Gaudiosi, G., Alessio, G., De Lucia, M., & Porfido, S. (2017). The environmental effects of the 1743 Salento earthquake (Apulia, Southern Italy): A contribution to seismic hazard assessment of the Salento Peninsula. Natural Hazards, 86(S2), S295–S324. https://doi.org/10.1007/s11069-016-2548-x
  • Rollins, K. M., Evans, M. D., & Diehl, N. B. (1998). Shear modulus and damping relationships for gravels. Journal of Geotechnical and Geoenvironmental Engineering, 124(5), 396–405. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(396)
  • Rollins, K. M., Singh, M., & Roy, J. (2020). Simplified equations for Shear-Modulus degradation and damping of gravels. Journal of Geotechnical and Geoenvironmental Engineering, 146(9). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002300
  • Seed, H. B., & Idriss, I. M. (1970). Soil moduli and damping factors for dynamic response analyses. Report No. EERC 70–10, Earthquake Engineering Resource Center, University of California, Berkley, California.
  • Shreyasvi, C., Venkataramana, K., & Chopra, S. (2019). Local site effect incorporation in probabilistic seismic hazard analysis – A case study from southern peninsular India, an intraplate region. Soil Dynamics and Earthquake Engineering, 123, 381–398. https://doi.org/10.1016/j.soildyn.2019.04.035
  • Zhu, C., Pilz, M., & Cotton, F. (2020). Which is a better proxy, site period or depth to bedrock, in modelling linear site response in addition to the average shear-wave velocity? Bulletin of Earthquake Engineering, 18(3), 797–820. https://doi.org/10.1007/s10518-019-00738-6