1,516
Views
3
CrossRef citations to date
0
Altmetric
Science

Coastal inundation scenarios in the north-eastern sector of the Island of Gozo (Malta, Mediterranean Sea) as a response to sea level rise

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2145918 | Received 10 Jun 2022, Accepted 01 Nov 2022, Published online: 28 Nov 2022

References

  • Amorosi, A., Pacifico, A., Rossi, V., & Ruberti, D. (2012). Late Quaternary incision and deposition in an active volcanic setting: The Volturno valley fill, southern Italy. Sedimentary Geology, 282, 307–320. https://doi.org/10.1016/j.sedgeo.2012.10.003
  • Aucelli, P. P. C., Di Paola, G., Incontri, P., Rizzo, A., Vilardo, G., Benassai, G., Buonocore, B., & Pappone, G. (2017). Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain (Volturno coastal plain – southern Italy). Estuarine, Coastal and Shelf Science, 198, 597–609. https://doi.org/10.1016/j.ecss.2016.06.017
  • Baldassini, N., & Di Stefano, A. (2017). Stratigraphic features of the Maltese Archipelago: A synthesis. Natural Hazards, 86(S2), 203–231. https://doi.org/10.1007/s11069-016-2334-9
  • Barra, D., Romano, P., Santo, A., Campaiola, L., Roca, V., & Tuniz, C. (1996). The Versilian transgression in the Volturno river plain (Campania, Southern Italy): Palaeoenvironmental history and chronological data. Il Quaternario, 9(2), 445–458.
  • Batzakis, D., Misthos, L., Voulgaris, G., Tsanakas, K., Andreou, M., Tsodoulos, I., & Karymbalis, E. (2020). Assessment of building vulnerability to tsunami hazard in Kamari (Santorini Island, Greece). Journal of Marine Science and Engineering, 8(11), 886. https://doi.org/10.3390/jmse8110886
  • Brown, S., Nicholls, R. J., Goodwin, P., Haigh, I. D., Lincke, D., Vafeidis, A. T., & Hinkel, J. (2018). Quantifying land and people exposed to sea-level rise with no mitigation and 1.5°C and 2.0°C rise in global temperatures to year 2300. Earth’s Future, 6(3), 583–600. https://doi.org/10.1002/2017EF000738
  • Cazenave, A., Palanisamy, H., & Ablain, M. (2018). Contemporary sea level changes from satellite altimetry: What have we learned? What are the new challenges? Advances in Space Research, 62(7), 1639–1653. https://doi.org/10.1016/j.asr.2018.07.017
  • Church, J. A., & White, N. J. (2011). Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32(4-5), 585–602. https://doi.org/10.1007/s10712-011-9119-1
  • Climate Data Store. (2020). Retrieved July 15, 2022, from https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-water-level-change-indicators?tab=overview.
  • Coratza, P., Gauci, R., Schembri, J. A., Soldati, M., & Tonelli, C. (2016). Bridging natural and cultural values of sites with outstanding scenery: Evidence from Gozo, Maltese Islands. Geoheritage, 8(1), 91–103. https://doi.org/10.1007/s12371-015-0167-7
  • Da Lio, C., & Tosi, L. (2018). Land subsidence in the Friuli Venezia Giulia coastal plain, Italy: 1992–2010 results from SAR-based interferometry. Science of the Total Environment, 633, 752–764. https://doi.org/10.1016/j.scitotenv.2018.03.244
  • Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad, C. P., Frederikse, T., & Riva, R. (2017). Reassessment of 20th century global mean sea level rise. Proceedings of the National Academy of Sciences, 114(23), 5946–5951. https://doi.org/10.1073/pnas.1616007114
  • Di Paola, G., Rizzo, A., Benassai, G., Corrado, G., Matano, F., & Aucelli, P. P. C. (2021). Sea-level rise impact and future scenarios of inundation risk along the coastal plains in Campania (Italy). Environmental Earth Sciences, 80(17), 1–22. https://doi.org/10.1007/s12665-021-09884-0
  • ERDF 156 data. (2013). Developing national environmental monitoring infrastructure and capacity. Malta Environment and Planning Authority.
  • Foglini, F., Prampolini, M., Micallef, A., Angeletti, L., Vandelli, V., Deidun, A., & Taviani, M. (2016). Late Quaternary coastal landscape morphology and evolution of the Maltese Islands (Mediterranean Sea) reconstructed from high-resolution seafloor data. In J. Harff, G. Bailey, & L. Lüth (Eds.), Geology and archaeology: Submerged landscapes of the continental shelf (pp. 77–95). Geological Society, Special Publication.
  • Furlani, S., Antonioli, F., Biolchi, S., Gambin, T., Gauci, R., Lo Presti, V., Anzidei, M., Devoto, S., Palombo, M., & Sulli, A. (2013). Holocene sea level change in Malta. Quaternary International, 288, 146–157. https://doi.org/10.1016/j.quaint.2012.02.038
  • Furlani, S., Antonioli, F., Gambin, T., Biolchi, S., Formosa, S., Lo Presti, V., Mantovani, M., Anzidei, M., Calcagnile, L., & Quarta, G. (2018). Submerged speleothem in Malta indicates tectonic stability throughout the Holocene. The Holocene, 28(10), 1588–1597. https://doi.org/10.1177/0959683618782613
  • Galea, P. (2019). Central Mediterranean tectonics – A key player in the geomorphology of the Maltese Islands. In R. Gauci & J. A. Schembri (Eds.), Landscapes and landforms of the Maltese Islands. World geomorphological landscapes (pp. 19–30). Springer.
  • Gallina, V., Torresan, S., Critto, A., Sperotto, A., Glade, T., & Marcomini, A. (2016). A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. Journal of Environmental Management, 168, 123–132. https://doi.org/10.1016/j.jenvman.2015.11.011
  • Gallina, V., Torresan, S., Zabeo, A., Critto, A., Glade, T., & Marcomini, A. (2020). A multi-risk methodology for the assessment of climate change impacts in coastal zones. Sustainability, 12(9), 3697. https://doi.org/10.3390/su12093697
  • Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33(8), L08707. https://doi.org/10.1029/2006GL025734
  • Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63(2-3), 90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005
  • Hay, C. C., Morrow, E., Kopp, R. E., & Mitrovica, J. X. (2015). Probabilistic reanalysis of twentieth-century sea-level rise. Nature, 517(7535), 481–484. https://doi.org/10.1038/nature14093
  • Horton, B. P., Kopp, R. E., Garner, A. J., Hay, C. C., Khan, N. S., Roy, K., & Shaw, T. A. (2018). Mapping sea-level change in time, space, and probability. Annual Review of Environment and Resources, 43(1), 481–521. https://doi.org/10.1146/annurev-environ-102017-025826
  • Intergovernmental Panel on Climate Change. (2021). Climate change 2021: The physical science basis. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change (pp. 3–2391). Cambridge University Press.
  • IPCC. (2021). IPCC AR6 sea level projection tool. Retrieved October 10, 2021, from https://sealevel.nasa.gov/data_tools/17
  • Jevrejeva, S., Moore, J. C., Grinsted, A., Matthews, A. P., & Spada, G. (2014). Trends and acceleration in global and regional sea levels since 1807. Global and Planetary Change, 113, 11–22. https://doi.org/10.1016/j.gloplacha.2013.12.004
  • Karymbalis, E., Tsanakas, K., Karkani, A., & Evelpidou, N. (2022). Tectonics and sea-level fluctuations. Journal of Marine Science and Engineering, 10(3), 334. https://doi.org/10.3390/jmse10030334
  • Lambeck, K., Antonioli, F., Anzidei, M., Ferranti, L., Leoni, G., Scicchitano, G., & Silenzi, S. (2011). Sea level change along the Italian coast during the Holocene and projections for the future. Quaternary International, 232(1-2), 250–257. https://doi.org/10.1016/j.quaint.2010.04.026
  • Legeais, J. F., Ablain, M., Zawadzki, L., Zuo, H., Johannessen, J. A., Scharffenberg, M. G., Fenoglio-Marc, L., Joana Fernandes, M., Andersen, O. B., Rudenko, S., Cipollini, P., Quartly, G. D., Passaro, M., Cazenave, A., & Benveniste, J. (2018). An improved and homogeneous altimeter sea level record from the ESA climate change initiative. Earth System Science Data, 10(1), 281–301. https://doi.org/10.5194/essd-10-281-2018
  • Marriner, N., Gambin, T., Djamali, M., Morhange, C., & Spiteri, M. (2012). Geoarchaeology of the Burmarrad ria and early Holocene human impacts in western Malta. Palaeogeography, Palaeoclimatology, Palaeoecology, 339-341, 52–65. https://doi.org/10.1016/j.palaeo.2012.04.022
  • Matano, F., Sacchi, M., Vigliotti, M., & Ruberti, D. (2018). Subsidence trends of Volturno river coastal plain (northern Campania, southern Italy) inferred by SAR interferometry data. Geosciences, 8(1), 8. https://doi.org/10.3390/geosciences8010008
  • MedECC. (2020). Climate and environmental change in the Mediterranean basin – Current situation and risks for the future. First Mediterranean assessment report. In W. Cramer, J. Guiot, & K. Marini (Eds.), Mediterranean assessment report (pp. 14–628). Union for the Mediterranean, Plan Bleu, UNEP/MAP.
  • Meinshausen, M., Nicholls, Z. R., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., … Wang, R. H. (2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 13(8), 3571–3605. https://doi.org/10.5194/gmd-13-3571-2020
  • Micallef, A., Foglini, F., Le Bas, T., Angeletti, L., Maselli, V., Pasuto, A., & Taviani, M. (2013). The submerged paleolandscape of the Maltese Islands: Morphology, evolution and relation to Quaternary environmental change. Marine Geology, 335, 129–147. https://doi.org/10.1016/j.margeo.2012.10.017
  • Ministry for Tourism. (2015). The contribution of the tourism industry to the Maltese economy. Report prepared for the Ministry for Tourism by EU-Cubed Consultants. Retrieved March 4, 2022, from https://tourism.gov.mt/en/Documents/The%20Contribution%20Of%20The%20Tourism%20Industry%20To%20The%20Maltese%20Economy%20-%202014.pdf
  • Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., & Mitchum, G. T. (2018). Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences, 115(9), 2022–2025. https://doi.org/10.1073/pnas.1717312115
  • O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., & van Vuuren, D. P. (2014). A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122(3), 387–400. https://doi.org/10.1007/s10584-013-0905-2
  • OpenStreetMap database. (2022). https://www.openstreetmap.or.
  • Palmer, M. D., Domingues, C. M., Slangen, A. B. A., & Dias, F. B. (2021). An ensemble approach to quantify global mean sea-level rise over the 20th century from tide gauge reconstructions. Environmental Research Letters, 16(4), 044043. https://doi.org/10.1088/1748-9326/abdaec
  • Papanastassiou, D., Cundy, A., Gaki-Papanastassiou, K., Frogley, M., Tsanakas, K., & Maroukian, H. (2014). The uplifted terraces of the Arkitsa region, NW Evoikos Gulf, Greece: A result of combined tectonic and volcanic processes? The Journal of Geology, 122(122), 397–410. https://doi.org/10.1086/676595
  • Pedley, H. M., Hughes Clarke, M., & Galea, P. (2002). Limestone isles in a crystal sea: The geology of the Maltese Islands. Publishers Enterprises Group. 109 pp.
  • Prampolini, M., Coratza, P., Rossi, S., Parenti, C., Galea, C., Caruana, A., & Soldati, M. (2021). Geomorphology of the seafloor north east of the Maltese Islands, central Mediterranean. Journal of Maps, 17(2), 465–475. https://doi.org/10.1080/17445647.2021.1957034
  • Prampolini, M., Foglini, F., Biolchi, S., Devoto, S., Angelini, S., & Soldati, M. (2017). Geomorphological mapping of terrestrial and marine areas, northern Malta and Comino (central Mediterranean Sea). Journal of Maps, 13(2), 457–469. https://doi.org/10.1080/17445647.2017.1327507
  • Prampolini, M., Gauci, C., Micallef, A. S., Selmi, L., Vandelli, V., & Soldati, M. (2018). Geomorphology of the north–eastern coast of Gozo (Malta, Mediterranean Sea). Journal of Maps, 14(2), 402–410. https://doi.org/10.1080/17445647.2018.1480977
  • Prampolini, M., Savini, A., Foglini, F., & Soldati, M. (2020). Seven good reasons for integrating terrestrial and marine spatial datasets in changing environments. Water, 12(8), 2221. https://doi.org/10.3390/w12082221
  • Rizzo, A., Vandelli, V., Buhagiar, G., Micallef, A. S., & Soldati, M. (2020). Coastal vulnerability assessment along the north-eastern sector of Gozo Island (Malta, Mediterranean Sea). Water, 12(5), 1405. https://doi.org/10.3390/w12051405
  • Rizzo, A., Vandelli, V., Gauci, C., Buhagiar, G., Micallef, A. S., & Soldati, M. (2022). Potential sea level rise inundation in the Mediterranean: From susceptibility assessment to risk scenarios for policy action. Water, 14(3), 416. https://doi.org/10.3390/w14030416
  • Romano, P., Santo, A., & Voltaggio, M. (1994). L'evoluzione geomorfologica della Pianura del Fiume Volturno (Campania) durante il tardo Quaternario (Pleistocene medio superiore-Olocene). Il Quaternario, 7(1), 41–56.
  • Sacchi, M., Molisso, F., Pacifico, A., Vigliotti, M., Sabbarese, C., & Ruberti, D. (2014). Late-Holocene to recent evolution of Lake Patria, South Italy: An example of a coastal lagoon within a Mediterranean delta system. Global and Planetary Change, 117, 9–27. https://doi.org/10.1016/j.gloplacha.2014.03.004
  • Santangelo, N., Ciampo, G., Di Donato, V., Esposito, P., Petrosino, P., Romano, P., Russo Ermolli, E., Santo, A., Toscano, F., & Villa, I. (2010). Late Quaternary buried lagoons in the northern Campania plain (southern Italy): evolution of a coastal system under the influence of volcano-tectonics and eustatism. Italian Journal of Geosciences, 129(1), 156–175. https://doi.org/10.3301/IJG.2009.1.
  • Scerri, S. (2019). Sedimentary evolution and resultant geological landscapes. In R. Gauci & J. A. Schembri (Eds.), Landscapes and landforms of the Maltese Islands. World geomorphological landscapes (pp. 31–47). Springer.
  • Schembri, J. A. (2019). The geographical context of the Maltese Islands. In R. Gauci & J. A. Schembri (Eds.), Landscapes and landforms of the Maltese Islands. World geomorphological landscapes (pp. 9–17). Springer.
  • Serpelloni, E., Faccenna, C., Spada, G., Dong, D., & Williams, S. D. (2013). Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary. Journal of Geophysical Research: Solid Earth, 118(11), 6003–6024. https://doi.org/10.1002/2013JB010102
  • Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., Baldi, P., & Gasperini, P. (2007). Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophysical Journal International, 169(3), 1180–1120. https://doi.org/10.1111/j.1365-246X.2007.03367.x