110
Views
2
CrossRef citations to date
0
Altmetric
Articles

Cellular automata simulation of saltwater intrusion in coastal aquifer

&
Pages 517-528 | Received 15 Jul 2015, Accepted 26 Jul 2015, Published online: 01 Sep 2015

References

  • H.F. Abd-Elhamid and A.A. Javadi, A density-dependant finite element model for analysis of saltwater intrusion in coastal aquifers, J. Hydrol. 401 (2011), pp. 259–271.
  • S. Alparone, D. Andronico, T. Sgroi, F. Ferrari, L. Lodato, and T. Reitano, Alert system to mitigate tephra fallout hazards at Mt. Etna Volcano, Italy, Nat. Hazards 43 (2007), pp. 333–350.
  • D. D’Ambrosio, G. Filippone, R. Rongo, W. Spataro, and G. Trunfio, Cellular automata and GPGPU: An application to lava ow modeling, Int. J. Grid High Perform. Comput. 4 (2012), pp. 30–47.
  • M. Antonellini, P. Mollema, B. Giambastiani, K. Bishop, L. Caruso, A. Minchio, L. Pellegrini, M. Sabia, E. Ulazzi, and G. Gabbianelli, Salt water intrusion in the coastal aquifer of the southern Po Plain, Italy, Hydrol. J. 16 (2008), pp. 1541–1556.
  • M.V. Avolio, S. Di Gregorio, V. Lupiano, and P. Mazzanti, SCIDDICA-SS3: A new version of cellular automata model for simulating fast moving landslides, J. Supercomput. 65 (2013), pp. 682–696.
  • M. Avolio, S. Di Gregorio, and G. Trunfio, A randomized approach to improve the accuracy of wildfire simulations using cellular automata, J. Cell. Automata 9 (2014), pp. 209–223.
  • J. Bear and D. Cheng, Modeling Groundwater Flow and Contaminant Transport, Springer, New York, 2009.
  • I. Bialynicki-Birula, Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata, Phys. Rev. D 49 (1994), pp. 6920–6927.
  • P. Chatziagorakis and G.Ch. Sirakoulis, Cellular automata simulation of saltwater intrusion in coastal aquifer, Numerical Analysis and Applied Mathematics ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, Halkidiki, Vol. 1389, 2001, pp. 987–990.
  • H. Chen, W.H. Matthaeus, and L.W. Klein, Theory of multicolor lattice gas: A cellular automaton poisson solver, J. Comput. Phys. 88 (1990), pp. 433–466.
  • G.M. Crisci, S. Di Gregorio, R. Rongo, W. Spataro, and F. Nicoletta, Analysing Lava risk for the Etnean area: Simulation by cellular automata methods, Nat. Hazards 20 (1999), pp. 215–229.
  • B. Chopard and M. Droz, Cellular automata model for the diffusion equation, J. Stat. Phys. 64 (1991), pp. 859–892.
  • B. Chopard and A. Masselot, Cellular automata and lattice Boltzmann methods: A new approach to computational fluid dynamics and particle transport, Future Gener. Comput. Syst. 16 (1999), pp. 249–257.
  • B. Chopard and M. Droz, Cellular Automata Modeling of Physical Systems, Cambridge University Press, Cambridge, 2005.
  • D. D’Ambrosio, W. Spataro, and G. Iovine, Parallel genetic algorithms for optimising cellular automata models of natural complex phenomena: An application to debris flows, Comput. Geosci. 32 (2006), pp. 861–875.
  • M.G. Danikas, I. Karafyllidis, A. Thanailakis, and A.M. Bruning, Simulation of electrical tree growth in solid dielectrics containing voids of arbitrary shape, Model. Simul. Mater. Sci. Eng. 4 (1996), pp. 535–552.
  • J.W. Delleur, The Handbook of Groundwater Engineering, 2nd ed., CRC Press, New York, 2006.
  • Z. Demirel, The history and evaluation of saltwater intrusion into a coastal aquifer in Mersin, Turkey, J. Environ. Manage. 70 (2004), pp. 275–282.
  • S. Di Gregorio, R. Rongo, C. Siciliano, M. Sorriso-Valvo, and W. Spataro, Mount Ontake landslide simulation by the cellular automata model SCIDDICA-3, Phys. Chem. Earth Part A 24 (1999), pp. 97–100.
  • F. Dottori and E. Todini, Developments of a flood inundation model based on the cellular automata approach: Testing different methods to improve model performance, Phys. Chem. Earth 36 (2011), pp. 266–280.
  • N. Dourvas, M.-A.I. Tsompanas, G.Ch. Sirakoulis, and Ph. Tsalides, Hardware acceleration of cellular automata physarum polycephalum model, Parallel Process. Lett. 25 (2015), pp. 1540006, 25 pages.
  • M. Espinola, J.A. Piedra-Fernandez, R. Ayala, L. Iribarne, and S. Leguizamon, Modeling rainfall features dynamics in a DEM satellite image with cellular automata, in ACRI 2014 Vol. 8751, J. Was, G.Ch. Sirakoulis, S. Bandini, eds., Krakow, Poland. LNCS, 2014, pp. 238–247.
  • S. El Yacoubi, A. El Jai, P. Jacewicz, and J.G. Pausas, LUCAS: An original tool for landscape modelling, Environ. Model. Softw. 5 (2003), pp. 429–437.
  • C.W. Fetter, Applied Hydrogeology, 4th ed., Prentice Hall, New York, 2000.
  • A. Gemitzi and D. Tolikas, HYDRA model: Simulation of salt intrusion in coastal aquifers using Visual Basic and GIS, Environ. Model. Softw. 22 (2007), pp. 924–936.
  • I.G. Georgoudas, G.Ch. Sirakoulis, E.M. Skordilis, and I. Andreadis, On chip earthquake simulation model using potentials, Nat. Hazards 50 (2009), pp. 519–537.
  • I.G. Georgoudas, P. Kyriakos, G.Ch. Sirakoulis, and I. Andreadis, An FPGA implemented cellular automaton crowd evacuation model inspired by the electrostatic-induced potential fields, Microprocessors Microsyst. 34 (2010), pp. 285–300.
  • Th. Giitsidis, N. Dourvas, and G.Ch. Sirakoulis, Parallel implementation of aircraft disembarking and emergency evacuation based on cellular automata, Int. J. High Perform. Appl., 1094342015584533, first published on June 9, 2015, pp. 1–18. doi:10.1177/1094342015584533
  • A. Ilachinski, Cellular Automata: A Discrete Universe, World Scientific Publishing Co Pte Ltd, Singapore, 2001.
  • G. Iovine, S. Di Gregorio, and V. Lupiano, Debris-flow susceptibility assessment through cellular automata modelling: An example from 15 to 16 December 1999 disaster at Cervinara and San Martino Valle Caudina (Campania, Southern Italy), Nat. Hazards Earth Syst. Sci. 3 (2003), pp. 1–12.
  • J. Jendrsczok, P. Ediger, and R. Hoffmann, A scalable configurable architecture for the massively parallel GCA model, Int. J. Parallel Emergent Distrib. Syst. 24 (2009), pp. 275–291.
  • G. Kalogeropoulos, G.Ch. Sirakoulis, and I. Karafyllidis, Cellular automata on FPGA for real-time urban traffic signals control, J. Supercomput. 65 (2013), pp. 664–681.
  • I. Karafyllidis and A. Thanailakis, A model for predicting forest fire spreading using cellular automata, Ecol. Model. 99 (1997), pp. 87–97.
  • M. Komanna and D. Fey, Realising emergent image preprocessing tasks in cellular-automaton-alike massively parallel hardware, Int. J. Parallel Emergent Distrib. Syst. 22 (2007), pp. 79–89.
  • A. Lopich and P. Dudek, Asynchronous cellular logic network as a co-processor for a general-purpose massively parallel array, Int. J. Circuit Theory Appl. 39 (2011), pp. 963–972.
  • V. Mardiris, G.Ch. Sirakoulis, C. Mizas, I. Karafyllidis, and A. Thanailakis, A CAD system for modeling and simulation of computer networks using cellular automata, IEEE Trans. Syst. Man Cybern. Part C, Appl. Rev. 38 (2008), pp. 253–264.
  • E. Mehnert and A.A. Jennings, The effect of salinity-dependent hydraulic conductivity on saltwater intrusion episodes, J. Hydrol. 80 (1985), pp. 283–297.
  • H. Mroz and J. Was, Discrete vs. continuous approach in crowd dynamics modeling using gpu computing, Cybern. Syst. 45 (2014), pp. 25–38.
  • S. Murtaza, A. Hoekstra, and P. Sloot, Floating point based cellular automata simulations using a dual FPGA-enabled system, in Second International Workshop on High-Performance Reconfigurable Computing Technology and Applications, HPRCTA 2008, Austin, TX, 2008, pp. 1–8.
  • P. Progias and G.Ch. Sirakoulis, An FPGA Processor for modelling wildfire spread, Math. Comput. Model. 57 (2013), pp. 1436–1452.
  • D. Romanov and W. Dreybrodt, Evolution of porosity in the saltwater-freshwater mixing zone of coastal carbonate aquifers: An alternative modelling approach, J. Hydrol. 329 (2006), pp. 661–673.
  • G.Ch. Sirakoulis, I. Karafyllidis, and A. Thanailakis, A cellular automaton model for the effect of population movement on epidemic propagation, Ecol. Model. 133 (2000), pp. 209–223.
  • G.Ch. Sirakoulis, I. Karafyllidis, A. Thanailakis, and V. Mardiris, A methodology for VLSI implementation of cellular automata algorithms using VHDL, Adv. Eng. Softw. 32 (2001), pp. 189–202.
  • G.Ch. Sirakoulis, A TCAD system for VLSI implementation of the CVD process using VHDL, Integr. VLSI J. 37 (2004), pp. 63–81.
  • G. Ch. Sirakoulis and S. Bandini, (eds.), Cellular Automata: 10th International Conference on Cellular Automata for Research and Industry, ACRI 2012, Santorini Island, Greece, September 24--27, 2012, Proceedings, Lecture Notes in Computer Science Vol. 7495, Springer, 2012.
  • T. Toffoli, CAM: A high-performance cellular-automaton machine, Physica D: Nonlinear Phenom. 10 (1984), pp. 195–204.
  • T. Toffoli, Cellular automata as an alternative to (rather an approximation of) differential equations in modeling physics, Physica D 10 (1984), pp. 117–127.
  • A. Tsiftsis, I. G. Georgoudas, and G. Ch. Sirakoulis, Real data evaluation of a crowd supervising system for stadium evacuation and its hardware implementation, IEEE Syst., accepted for publication.
  • J. von Neumann, Theory of Self-Reproducing Automata, A.W. Burks, ed., University of Illinois Press, Urbana, 1966.
  • J. Was, G.Ch. Sirakoulis, and S. Bandini, (eds.), Cellular Automata -- 11th International Conference on Cellular Automata for Research and Industry, ACRI 2014, Krakow, Poland, September 22--25, 2014, Proceedings Lecture Notes in Computer Science Vol. 8751, Springer, 2014.
  • A. Werner and M. Gallagher, Characterisation of sea-water intrusion in the Pioneer Valley, Australia using hydrochemistry and three-dimensional numerical modelling, Hydrol. J. 14 (2006), pp. 1452–1469.
  • N. Wilding, A. Trew, K. Hawick, and G. Pawley, Scientific modeling with massively parallel simd computers, Proc. IEEE 79 (1991), pp. 574–585.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.