210
Views
6
CrossRef citations to date
0
Altmetric
Articles

Applications of multi-agent slime mould computing

Pages 420-449 | Received 18 Aug 2015, Accepted 18 Aug 2015, Published online: 17 Sep 2015

References

  • A. Adamatzky and J. Jones, Programmable reconfiguration of Physarum machines, Nat. Comput. 9 (2010), pp. 219–237.
  • A. Adamatzky, Physarum machines: Encapsulating reaction--diffusion to compute spanning tree, Naturwissenschaften 94 (2007), pp. 975–980.
  • A. Adamatzky, If BZ medium did spanning trees these would be the same trees as Physarum built, Phys. Lett. A 373 (2009), pp. 952–956.
  • A. Adamatzky, Developing proximity graphs by Physarum polycephalum: Does the plasmodium follow the toussaint hierarchy, Parallel Process. Lett. 19 (2008), pp. 105–127.
  • A. Adamatzky, Slime mould computes planar shapes, Int. J. Bio-inspired Comput. 4 (2012), pp. 149–154.
  • A. Adamatzky, Routing Physarum with repellents, Eur. Phys. J. E: Soft Matter Biol. Phys. 31 (2010), pp. 403–410.
  • A. Adamatzky, Manipulating substances with Physarum polycephalum, Mater. Sci. Eng. C 38 (2010), pp. 1211–1220.
  • A. Adamatzky and T. Schubert, Slime mold microfluidic logical gates, Mater. Today 17 (2014), pp. 86–91.
  • A. Adamatzky and J. Jones, Road planning with slime mould: If Physarum built motorways it would route M6/M74 through newcastle, Int. J. Bifurcation Chaos 20 (2010), pp. 3065–3084.
  • A. Adamatzky, S. Akl, R. Alonso-Sanz, W. Van Dessel, Z. Ibrahim, A. Ilachinski, J. Jones, A. Kayem, G.J. Martínez, P. De Oliveira, M. Prokopenko, T. Schubert, P. Sloot, E. Strano, and X. Yang, Are motorways rational from slime mould’s point of view?, Int. J. Parallel Emergent Distrib. Syst. 28 (2012), pp. 230–248.
  • A. Adamatzky, Hot ice computer, Phys. Lett. A 374 (2009), pp. 264–271.
  • A. Adamatzky, B. Lacy Costellode, and T. Shirakawa, Universal computation with limited resources: Belousov--Zhabotinsky and Physarum computers, Int. J. Bifurcation Chaos 18 (2008), pp. 2373–2389.
  • A. Adamatzky, Physarum Machines: Computers from Slime Mould Vol. 74, World Scientific Publisher Co Inc, Singapore, 2010.
  • A. Adamatzky, Simulating strange attraction of acellular slime mould Physarum polycephaum to herbal tablets, Math. Comput. Model 55 (2011), pp. 884–900.
  • A. Adamatzky, Slime mould logical gates: Exploring ballistic approach, Arxiv preprint arXiv:1005.2301 (2010).
  • A. Adamatzky, Steering plasmodium with light: Dynamical programming of Physarum machine, Arxiv preprint arXiv:0908.0850 (2009).
  • M. Aono and M. Hara, Amoeba-based nonequilibrium neurocomputer utilizing fluctuations, and instability Vol. 4618, in 6th International Conference, UC, LNCS, Springer, Kingston, Canada, August 13--17 2007, pp. 41–54.
  • M. Aono and M. Hara, Spontaneous deadlock breaking on amoeba-based neurocomputer, BioSystems 91 (2008), pp. 83–93.
  • M. Aono, Y. Hirata, M. Hara, and K. Aihara, Amoeba-based chaotic neurocomputing: Combinatorial optimization by coupled biological oscillators, New Gener. Comput. 27 (2009), pp. 129–157.
  • T. Asai, B. De-Lacy Costello, and A. Adamatzky, Silicon implementation of a chemical reaction--diffusion processor for computation of Voronoi diagram, Int. J. Bifurcation Chaos 15 (2005), pp. 3307–3320.
  • W. Baumgarten, J. Jones, and M.J. Hauser, Network coarsening dynamics in a plasmodial slime mould: Modelling and experiments, Acta Phys. Pol. B. 46, (2015), pp. 1201–1218.
  • D. Bebber, J. Hynes, P. Darrah, L. Boddy, and M. Fricker, Biological solutions to transport network design, Proc. R. Soc. B: Biol. Sci. 274 (2007), pp. 2307–2315.
  • M. Carlile, Nutrition and chemotaxis in the myxomycete physarum polycephalum: The effect of carbohydrates on the plasmodium, J. Gen. Microbiol. 63 (1970), pp. 221–226.
  • L. Cohen, On active contour models and balloons, CVGIP: Image Understanding 53 (1991), pp. 211–218.
  • M. Conrad, Information processing in molecular systems, Curr. Mod. Biol. (now BioSystems) 5 (1972), pp. 1–14.
  • M. De, O. Cheong and M. Van, Computational Geometry: Algorithms and Applications, Springer-Verlag, New York, NY, 2008.
  • C. De Boor, A practical guide to splines Vol. 27, Springer-Verlag, New York, NY, 1978.
  • M. Dorigo, E. Bonabeau, and G. Theraulaz, Ant algorithms and stigmergy, Future Gener. Comput. Syst. 16 (2000), pp. 851–871.
  • M. Duckham, L. Kulik, M. Worboys, and A. Galton, Efficient generation of simple polygons for characterizing the shape of a set of points in the plane, Pattern Recogn. 41 (2008), pp. 3224–3236.
  • R. Durbin and D. Willshaw, An analogue approach to the travelling salesman problem using an elastic net method, Nature 326 (1987), pp. 689–691.
  • A. Durham and E. Ridgway, Control of chemotaxis in Physarum polycephalum, J. Cell Biol. 69 (1976), pp. 218–223.
  • H. Edelsbrunner, D. Kirkpatrick, and R. Seidel, On the shape of a set of points in the plane, IEEE Trans. Inform. Theory 29 (1983), pp. 551–559.
  • P. Eilers, and B. Marx, Flexible smoothing with b-splines and penalties, Stat. Sci. (1996), pp. 89–102.
  • J. Foretník, Architektura, geometrie a výpočetní technika [Architecture, geometry and computers], Ph.D. thesis, Brno University of Technology, Brno, 2010.
  • S. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica 2 (1987), pp. 153–174.
  • M.D. Fricker, L. Boddy, T. Nakagaki, and D.P. Bebber, Adaptive biological networks, in Adaptive Networks, T. Gross, and H. Sayama, eds., Springer, Heidelberg, 2009, pp. 51–70.
  • A. Galton and M. Duckham, What is the region occupied by a set of points? Geog. Inform. Sci. (2006), pp. 81–98.
  • Y.P. Gunji, T. Shirakawa, T. Niizato, and T. Haruna, Minimal model of a cell connecting amoebic motion and adaptive transport networks, J. Theor. Biol. 253 (2008), pp. 659–667.
  • Y.P. Gunji, T. Shirakawa, T. Niizato, M. Yamachiyo, and I. Tani, An adaptive and robust biological network based on the vacant-particle transportation model, J. Theor. Biol. 272 (2011), pp. 187–200.
  • M. Hasegawa, Verification and rectification of the physical analogy of simulated annealing for the solution of the traveling salesman problem, Phys. Rev. E 83 (2011), p. 036708.
  • T. Heimann and H.P. Meinzer, Statistical shape models for 3d medical image segmentation: A review, Med. Image Anal. 13 (2009), pp. 543–563.
  • D. Helbing, P. Molnar, I. Farkas, and K. Bolay, Self-organizing pedestrian movement, Environ. Planning B 28 (2001), pp. 361–384.
  • D. Hickey and L. Noriega, Relationship between structure and information processing in Physarum polycephalum, Int. J. Model. Ident. Control 4 (2008), pp. 348–356.
  • J. Hopfield and D. Tank, Computing with neural circuits: A model, Science 233 (1986), pp. 625–633.
  • H. Hou and H. Andrews, Cubic splines for image interpolation and digital filtering, IEEE Trans. Acoust. Speech Signal Process. 26 (1978), pp. 508–517.
  • A. Ishiguro, M. Shimizu and T. Kawakatsu, Don’t try to control everything!: An emergent morphology control of a modular robot, Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, September 28--October 2 2004.981–985.
  • J. Jaromczyk and G. Toussaint, Relative neighborhood graphs and their relatives, Proc. IEEE 80 (1992), pp. 1502–1517.
  • R. Jarvis, On the identification of the convex hull of a finite set of points in the plane, Inform. Process. Lett. 2 (1973), pp. 18–21.
  • J. Jones and A. Adamatzky, Approximation of statistical analysis and estimation by morphological adaptation in a model of slime mould, Int. J. Unconventional Comput. (2015), pp. 37–62.
  • J. Jones and A. Adamatzky, Emergence of self-organized amoeboid movement in a multi-agent approximation of Physarum polycephalum, Bioinspiration Biomimetics. 7 (2012), pp. 016009. Available at http://stacks.iop.org/1748-3190/7/i=1/a=016009
  • J. Jones and A. Adamatzky, Towards Physarum binary adders, Biosystems 101 (2010), pp. 51–58.
  • J. Jones, J. Whiting, and A. Adamatzky, Quantitative transformation for implementation of adder circuits in physical systems, Biosystems 134 (2015), pp. 16–23.
  • J. Jones, The emergence and dynamical evolution of complex transport networks from simple low-level behaviours, Int. J. Unconventional Comput. 6 (2010), pp. 125–144.
  • J. Jones, Characteristics of pattern formation and evolution in approximations of Physarum transport networks, Artif. Life 16 (2010), pp. 127–153.
  • J. Jones, Influences on the formation and evolution of physarum polycephalum inspired emergent transport networks, Nat. Comput. 10 (2011), pp. 1345–1369.
  • J. Jones, Mechanisms inducing parallel computation in a model of physarum polycephalum transport networks, Parallel Process. Lett. 25 (2015), p. 1540004.
  • J. Jones and A. Adamatzky, Slime mould inspired generalised Voronoi diagrams with repulsive fields, Int. J. Bifurcation Chaos, In press (2013).
  • J. Jones, Towards programmable smart materials: Dynamical reconfiguration of emergent transport networks, Int. J. Unconventional Comput. 7 (2011), pp. 423–447.
  • J. Jones and A. Adamatzky, Computation of the travelling salesman problem by a shrinking blob, Nat. Comput. 13 (2014), pp. 1–16.
  • J. Jones and A. Adamatzky, Material approximation of data smoothing and spline curves inspired by slime mould, Bioinspiration Biomimetics 9 (2014), p. 036016.
  • J. Jones, A morphological adaptation approach to path planning inspired by slime mould, Int. J. Gen. Syst. 44 (2015), pp. 279–291. doi:10.1080/03081079.2014.997526.
  • J.Jones, From pattern formation to material computation: multi-agent modelling of Physarum polycephalum Vol. 15, Springer, Heidelberg, 2015.
  • J. Jones, R. Mayne, and A. Adamatzky, Representation of shape mediated by environmental stimuli in physarum polycephalum and a multi-agent model, Int. J. Parallel Emergent Distrib. Syst. pp. 1–19. Available at http://www.tandfonline.com/doi/abs/10.1080/17445760.2015.1044005#.VeRxqq25WM8. doi: 10.1080/17445760.2015.1044005
  • J.A. Jump, Studies on sclerotization in physarum polycephalum, Am. J. Bot. 41 (1954), pp. 561–567.
  • M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, Int. J. Comput. Vision 1 (1988), pp. 321–331.
  • U. Kishimoto, Rhythmicity in the protoplasmic streaming of a slime mould, Physarum polycephalum, J. Gen. Physiol. 41 (1958), pp. 1223–1244.
  • B. Lacy Costellode, N. Ratcliffe, A. Adamatzky, A. Zanin, A. Liehr, and H. Purwins, The formation of voronoi diagrams in chemical and physical systems: Experimental findings and theoretical models, Int. J. Bifurcation Chaos Appl. Sci. Eng. 14 (2004), pp. 2187–2210.
  • P. Larranaga, C. Kuijpers, R. Murga, I. Inza, and S. Dizdarevic, Genetic algorithms for the travelling salesman problem: A review of representations and operators, Artif. Intell. Rev. 13 (1999), pp. 129–170.
  • T. Latty, K. Ramsch, K. Ito, T. Nakagaki, D. Sumpter, M. Middendorf, and M. Beekman, Structure and formation of ant transportation networks, J. R. Soc. Interface 8 (2011), pp. 1298–1306.
  • M. Lihoreau, L. Chittka, and N. Raine, Travel optimization by foraging bumblebees through readjustments of traplines after discovery of new feeding locations, Am. Nat. 176 (2010), pp. 744–757.
  • N. Margolus, Physics-like models of computation, Physica D 10 (1982), pp. 81–95.
  • K. Matsumoto, T. Ueda, and Y. Kobatake, Reversal of thermotaxis with oscillatory stimulation in the plasmodium of Physarum polycephalum, J. Theor. Biol. 131 (1988), pp. 175–182.
  • R. Mayne and A. Adamatzky, Slime mould foraging behaviour as optically coupled logical operations, Int. J. Gen. Syst. 44 (2015), pp. 305–313.
  • J.Murray, On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings, Philos. Trans. R. Soc. London B, Biol. Sci. 295 (1981), pp. 473–496.
  • T. Nakagaki, Smart behavior of true slime mold in a labyrinth, Res. Microbiol. 152 (2001), pp. 767–770.
  • T. Nakagaki, S. Uemura, Y. Kakiuchi, and T. Ueda, Action spectrum for sporulation and photoavoidance in the plasmodium of Physarum polycephalum, as modified differentially by temperature and starvation, Photochem. Photobiol. 64 (1996), pp. 859–862.
  • T. Nakagaki, H. Yamada, and T. Ueda, Interaction between cell shape and contraction pattern in the Physarum plasmodium, Biophys. Chem. 84 (2000), pp. 195–204.
  • T. Nakagaki, R. Kobayashi, Y. Nishiura, and T. Ueda, Obtaining multiple separate food sources: Behavioural intelligence in the Physarum plasmodium, R. Soc. Proc.: Biol. Sci. 271 (2004), pp. 2305–2310.
  • G. Oster and G. Odell, Mechanics of cytogels I: oscillations in Physarum, Cell Motil. 4 (1984), pp. 469–503.
  • K. Ozasa, M. Aono, M. Maeda, and M. Hara, Simulation of neurocomputing based on the photophobic reactions of Euglena with optical feedback stimulation, BioSystems 100 (2010), pp. 101–107.
  • Y. Pershin, S. La Fontaine, and M. Di Ventra, Memristive model of amoeba learning, Phys. Rev. E 80 (2009), p. 021926.
  • M. Radszuweit, H. Engel, and M. Bär, A model for oscillations and pattern formation in protoplasmic droplets of Physarum polycephalum, Eur. Phys. J. Spec. Top. 191 (2010), pp. 159–172.
  • C. Reinsch, Smoothing by spline functions, Numer. Math. 10 (1967), pp. 177–183.
  • M. Roselló-Merino, M. Bechmann, A. Sebald, and S. Stepney, Classical computing in nuclear magnetic resonance, Int. J. Unconventional Comput. 6 (2010), pp. 163–195.
  • T. Saigusa, A. Tero, T. Nakagaki, and Y. Kuramoto, Amoebae anticipate periodic events, Phys. Rev. Lett. 100 (2008), p. 18101.
  • K. Sawa, I. Balaž, and T. Shirakawa, Cell motility viewed as softness, Int. J. Artif. Life Res. 3 (2012), pp. 1–9.
  • J. Sellares and G. Toussaint, On the role of kinesthetic thinking in computational geometry, Int. J. Math. Edu. Sci. Technol. 34 (2003), pp. 219–237.
  • J. Sherratt and J. Lewis, Stress-induced alignment of actin filaments and the mechanics of cytogel, Bull. Math. Biol. 55 (1993), pp. 637–654.
  • T. Shirakawa and Y.P. Gunji, Computation of Voronoi diagram and collision-free path using the Plasmodium of Physarum polycephalum, Int. J. Unconventional Comput. 6 (2010), pp. 79–88.
  • T. Shirakawa, A. Adamatzky, Y.P. Gunji, and Y. Miyake, On simultaneous construction of Voronoi diagram and delaunay triangulation by Physarum polycephalum, Int. J. Bifurcation Chaos 19 (2009), pp. 3109–3117.
  • S. Stephenson, H. Stempen, and I. Hall, Myxomycetes: A handbook of slime molds, Timber Press Portland, Oregon, 1994.
  • S. Stepney, The neglected pillar of material computation, Phys. D: Nonlinear Phenom. 237 (2008), pp. 1157–1164.
  • E. Strano, A. Adamatzky, and J. Jones, Physarum itinerae: Evolution of roman roads with slime mould, Int. J. Nanotechnol. Mol. Comput. 3 (2011), pp. 31–55.
  • S. Takagi and T. Ueda, Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum, Physica D 237 (2008), pp. 420–427.
  • A. Takamatsu, K. Takahashi, M. Nagao, and Y. Tsuchiya, Frequency coupling model for dynamics of responces to stimuli in plasmodium of Physarum polycephalum, J. Phys. Soc. Jpn. 66 (1997), pp. 1638–1646.
  • A. Takamatsu, E. Takaba, and G. Takizawa, Environment-dependent morphology in plasmodium of true slime mold Physarum polycephalum and a network growth model, J. Theor. Biol. 256 (2009), pp. 29–44.
  • A. Takamatsu, T. Fujii, and I. Endo, Control of interaction strength in a network of the true slime mold by a microfabricated structure, BioSystems 55 (2000), pp. 33–38.
  • V. Teplov, Y. Romanovsky, and O. Latushkin, A continuum model of contraction waves and protoplasm streaming in strands of Physarum plasmodium, Biosystems 24 (1991), pp. 269–289.
  • A. Tero, S. Takagi, T. Saigusa, K. Ito, D.P. Bebber, M. Fricker, K. Yumiki, R. Kobayashi, and T. Nakagaki, Rules for biologically inspired adaptive network design, Science 327 (2010), pp. 439–442.
  • A. Tero, R. Kobayashi, and T. Nakagaki, A coupled-oscillator model with a conservation law for the rhythmic amoeboid movements of plasmodial slime molds, Phys. D: Nonlinear Phenom. 205 (2005), pp. 125–135.
  • A. Tero, R. Kobayashi, and T. Nakagaki, Physarum solver: A biologically inspired method of road-network navigation, Phys. A: Stat. Mech. Appl. 363 (2006), pp. 115–119.
  • A. Tero, K. Yumiki, R. Kobayashi, T. Saigusa, and T. Nakagaki, Flow-network adaptation in Physarum amoebae, Theory Biosci. 127 (2008), pp. 89–94.
  • A. Tero, T. Nakagaki, K. Toyabe, K. Yumiki, and R. Kobayashi, A method inspired by Physarum for solving the steiner problem, Int. J. Unconventional Comput. 6 (2010), pp. 109–123.
  • D. Tolmachiev and A. Adamatzky, Chemical processor for computation of Voronoi diagram, Adv. Mater. Opt. Electron. 6 (1996), pp. 191–196.
  • G. Toussaint, The relative neighbourhood graph of a finite planar set, Pattern Recogn. 12 (1980), pp. 261–268.
  • S. Tsuda and J. Jones, The emergence of synchronization behavior in Physarum polycephalum and its particle approximation, Biosystems 103 (2010), pp. 331–341.
  • S. Tsuda, J. Jones, and A. Adamatzky, Towards Physarum engines, Appl. Bionics Biomech. 9 (2012), pp. 221–240.
  • S. Tsuda, M. Aono, and Y.P. Gunji, Robust and emergent Physarum logical-computing, Biosystems 73 (2004), pp. 45–55.
  • G. Turk, Generating textures on arbitrary surfaces using reaction--diffusion, Comput. Graphics 25 (1991), pp. 289–298.
  • T. Ueda, K. Terayama, K. Kurihara, and Y. Kobatake, Threshold phenomena in chemoreception and taxis in slime mold Physarum polycephalum, J. Gen. Physiol. 65 (1975), pp. 223–234.
  • J. Whiting, B. de Lacy Costello, and A. Adamatzky, Slime mould logic gates based on frequency changes of electrical potential oscillation, Biosystems 124 (2014), pp. 21–25.
  • A. Zanin, A. Liehr, A. Moskalenko, and H. Purwins, Voronoi diagrams in barrier gas discharge, Appl. Phys. Lett. 81 (2002), pp. 3338–3340.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.