68
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical modeling expressions for networked enzymatic signal processing steps as logic gates optimized by filtering

Pages 30-43 | Received 19 Oct 2015, Accepted 11 Nov 2015, Published online: 08 Feb 2016

References

  • A. Adamatzky, L. Bull, B. De Lacy Costello, S. Stepney, and C. Teuscher (eds.), Unconventional Computing 2007, Luniver Press, Bristol, 2007.
  • U. Alon, An Introduction to Systems Biology. Design Principles of Biological Circuits, Chapman & Hall/CRC Press, Boca Raton, FL, 2007.
  • J. Andreasson, and U. Pischel, Smart molecules at work—mimicking advanced logic operations, Chem. Soc. Rev. 39 (2010), pp. 174–188.10.1039/B820280J
  • M.A. Arugula, J. Halámek, E. Katz, D. Melnikov, M. Pita, V. Privman, and G. Strack, Optimizationof enzymatic logic gates and networks for noise reduction and stability, Proc. Conf. CENICSIEEE Comp. Soc. Conf. Publ. Serv., Los Alamitos, CA, 2009, pp. 1–7.
  • G. Ashkenasy, and M.R. Ghadiri, Boolean logic functions of a synthetic peptide network, J. Am. Chem. Soc. 126 (2004), pp. 11140–11141.10.1021/ja046745c
  • G. Ashkenazi, D.R. Ripoll, N. Lotan, and H.A. Scheraga, A molecular switch for biochemical logic gates: Conformational studies, Biosens. Bioelectron. 12 (1997), pp. 85–95.10.1016/S0956-5663(97)87054-6
  • S. Bakshi, O. Zavalov, J. Halámek, V. Privman, and E. Katz, Modularity of biochemical filtering for inducing sigmoid response in both inputs in an enzymatic AND gate, J. Phys. Chem. B 117 (2013), pp. 9857–9865.10.1021/jp4058675
  • R. Baron, O. Lioubashevski, E. Katz, T. Niazov, and I. Willner, Elementary arithmetic operations by enzymes: A model for metabolic pathway based computing, Angew. Chem. Int. Ed. 45 (2006), pp. 1572–1576.10.1002/(ISSN)1521-3773
  • R. Baron, O. Lioubashevski, E. Katz, T. Niazov, and I. Willner, Two coupled enzymes perform in parallel the “AND” and “InhibAND” logic gates operations, Org. Biomol. Chem. 4 (2006), pp. 989–991.10.1039/b518205k
  • R. Baron, O. Lioubashevski, E. Katz, T. Niazov, and I. Willner, Logic gates and elementary computing by enzymes, J. Phys. Chem. A 110 (2006), pp. 8548–8553.10.1021/jp0568327
  • Y. Benenson, Biocomputers: From test tubes to live cells, Mol. Biosyst. 5 (2009), pp. 675–685.10.1039/b902484k
  • Y. Benenson, RNA-based computation in live cells, Curr. Opin. Biotechnol. 20 (2009), pp. 471–478.10.1016/j.copbio.2009.08.002
  • Y. Benenson, Biomolecular computing systems: Principles, progress and potential, Nat. Rev. Genetics 13 (2012), pp. 455–468.10.1038/nrg3197
  • V. Bocharova, and E. Katz, Switchable electrode interfaces controlled by physical, chemical and biological signals, Chem. Rec. 12 (2012), pp. 114–130.
  • V. Bocharova, K. MacVittie, S. Chinnapareddy, J. Halámek, V. Privman, and E. Katz, Realization of associative memory in an enzymatic process: Toward biomolecular networks with learning and unlearning functionalities, J. Phys. Chem. Lett. 3 (2012), pp. 1234–1237.10.1021/jz300098b
  • V. Bocharova, O. Zavalov, K. MacVittie, M.A. Arugula, N.V. Guz, M.E. Dokukin, J. Halámek, I. Sokolov, V. Privman, and E. Katz, Biochemical logic approach to biomarker-activated drug release, J. Mater. Chem. 22 (2012), pp. 19709–19717.10.1039/c2jm32966b
  • V. Bychkova, A. Shvarev, J. Zhou, M. Pita, and E. Katz, Enzyme logic gate associated with a single responsive microparticle: Scaling biocomputing to microsize systems, Chem. Commun. 46 (2010), pp. 94–96.10.1039/B917611J
  • C.S. Calude, J.F. Costa, N. Dershowitz, E. Freire, and G. Rozenberg (eds.), Unconventional Computation. Lecture Notes in Computer Science, Vol. 5715, Springer, Berlin, 2009.
  • G.S. Chen, and I.H. Segel, Purification and properties of glycogen phosphorylase from Escherichia coli, Arch. Biochem. Biophys. 127 (1968), pp. 175–186.10.1016/0003-9861(68)90214-2
  • E. Claeyssen, and J. Rivoal, Isozymes of plant hexokinase: Occurrence, properties and functions, Phytochemistry 68 (2007), pp. 709–731.10.1016/j.phytochem.2006.12.001
  • A. Credi, Molecules that make decisions, Angew. Chem. Int. Ed. 46 (2007), pp. 5472–5475.10.1002/(ISSN)1521-3773
  • A.P. de Silva, S. Uchiyama, T.P. Vance, and B. Wannalerse, A supramolecular chemistry basis for molecular logic and computation, Coord. Chem. Rev. 251 (2007), pp. 1623–1632.10.1016/j.ccr.2007.03.001
  • S. Domanskyi, and V. Privman, Design of digital response in enzyme-based bioanalytical systems for information processing applications, J. Phys. Chem. B 116 (2012), pp. 13690–13695.10.1021/jp309001j
  • H.B. Dunford, Peroxidases and Catalases: Biochemistry, Biophysics, Biotechnology and Physiology, Wiley, Hoboken, NJ, 2010.
  • Z. Ezziane, DNA computing: Applications and challenges, Nanotechnology 17 (2006), pp. R27–R39.
  • L. Fedichkin, E. Katz, and V. Privman, Error correction and digitalization concepts in biochemical computing, J. Comput. Theor. Nanosci. 5 (2008), pp. 36–43.
  • R.H. Garrett, and C.M. Grisham, Biochemistry, Brooks/Cole, Cengage Learning, Belmont, CA, 2013.
  • J. Halámek, V. Bocharova, S. Chinnapareddy, J.R. Windmiller, G. Strack, M.-C. Chuang, J. Zhou, P. Santhosh, G.V. Ramirez, M.A. Arugula, J. Wang, and E. Katz, Multi-enzyme logic network architectures for assessing injuries: Digital processing of biomarkers, Mol. Biosyst. 6 (2010), pp. 2554–2560.10.1039/c0mb00153h
  • J. Halámek, J.R. Windmiller, J. Zhou, M.-C. Chuang, P. Santhosh, G. Strack, M.A. Arugula, S. Chinnapareddy, V. Bocharova, J. Wang, and E. Katz, Multiplexing of injury codes for the parallel operation of enzyme logic gates, Analyst 135 (2010), pp. 2249–2259.10.1039/c0an00270d
  • J. Halámek, J. Zhou, L. Halamkova, V. Bocharova, V. Privman, J. Wang, and E. Katz, Biomolecular filters for improved separation of output signals in enzyme logic systems applied to biomedical analysis, Anal. Chem. 83 (2011), pp. 8383–8386.10.1021/ac202139m
  • J. Halámek, O. Zavalov, L. Halámková, S. Korkmaz, V. Privman, and E. Katz, Enzyme-based logic analysis of biomarkers at physiological concentrations: AND gate with double-sigmoid “Filter” response, J. Phys. Chem. B 116 (2012), pp. 4457–4464.10.1021/jp300447w
  • L. Halámková, J. Halámek, V. Bocharova, S. Wolf, K.E. Mulier, G. Beilman, J. Wang, and E. Katz, Analysis of biomarkers characteristic of porcine liver injury – from biomolecular logic gates to animal model, Analyst 137 (2012), pp. 1768–1770.10.1039/c2an00014h
  • J. Heidel, and J. Maloney, When can sigmoidal data be fit to a hill curve?, J. Austral. Math. Soc. B 41 (1999), pp. 83–92.10.1017/S0334270000011048
  • Y. Hidaka, Y. Hatada, M. Akita, M. Yoshida, N. Nakamura, M. Takada, T. Nakakuki, S. Ito, and K. Horikoshi Maltose phosphorylase from a deep-sea Paenibacillus sp.: Enzymatic properties and nucleotide and amino-acid sequences, Enzyme Microb. Technol. 37 (2005), pp. 185–194.10.1016/j.enzmictec.2005.02.010
  • S. Huwel, L. Haalck, N. Conrath, and F. Spener, Maltose phosphorylase from Lactobacillus brevis: Purification, characterization, and application in a biosensor for ortho-phosphate, Enzyme Microb. Technol. 21 (1997), pp. 413–420.
  • P.D. Josephy, Oxidative activation of benzidine and its derivatives by peroxidases, Environ. Health Perspect. 64 (1985), pp. 171–178.10.1289/ehp.8564171
  • M. Kahan, B. Gil, R. Adar, and E. Shapiro, Towards molecular computers that operate in a biological environment, Phys. D 237 (2008), pp. 1165–1172.10.1016/j.physd.2008.01.027
  • D. Kang, A. Vallée-Bélisle, K.W. Plaxco, and F. Ricci, Re-engineering electrochemical biosensors to narrow or extend their useful dynamic range, Angew. Chem. Int. Ed. 51 (2012), pp. 6717–6721.10.1002/anie.201202204
  • E. Katz (ed.), Biomolecular Computing – From Logic Systems to Smart Sensors and Actuators, Willey-VCH, Weinheim, 2012.
  • E. Katz, and V. Privman, Enzyme-based logic systems for information processing, Chem. Soc. Rev. 39 (2010), pp. 1835–1857.10.1039/b806038j
  • E. Katz, J. Wang, M. Privman, and J. Halámek, Multianalyte digital enzyme biosensors with built-in boolean logic, Anal. Chem. 84 (2012), pp. 5463–5469.10.1021/ac3007076
  • E. Katz, V. Bocharova, and M. Privman, Electronic interfaces switchable by logically processed multiple biochemical and physiological signals, J. Mater. Chem. 22 (2012), pp. 8171–8178.10.1039/c2jm30172e
  • K.-W. Kim, B.C. Kim, H.J. Lee, J. Kim, and M.-K. Oh, Enzyme logic gates based on enzyme-coated carbon nanotubes, Electroanalysis 23 (2011), pp. 980–986.10.1002/elan.201000634
  • M. Krämer, M. Pita, J. Zhou, M. Ornatska, A. Poghossian, M.J. Schöning, and E. Katz, Coupling of biocomputing systems with electronic chips: Electronic interface for transduction of biochemical information, J. Phys. Chem. C 113 (2009), pp. 2573–2579.10.1021/jp808320s
  • B.I. Kurganov, A.V. Lobanov, I.A. Borisov, and A.N. Reshetilov, Criterion for Hill equation validity for description of biosensor calibration curves, Anal. Chim. Acta 427 (2001), pp. 11–19.10.1016/S0003-2670(00)01167-3
  • Z. Li, M.A. Rosenbaum, A. Venkataraman, T.K. Tam, E. Katz, and L.T. Angenent, Bacteria-based AND logic gate: A decision-making and self-powered biosensor, Chem. Commun. 47 (2011), pp. 3060–3062.10.1039/c0cc05037g
  • K. MacVittie, J. Halámek, V. Privman, and E. Katz, A bioinspired associative memory system based on enzymatic cascades, Chem. Commun. 49 (2013), pp. 6962–6964.10.1039/c3cc43272f
  • G. von Maltzahn, T.J. Harris, J.-H. Park, D.-H. Min, A.J. Schmidt, M.J. Sailor, and S.N. Bhatia, Nanoparticle self-assembly gated by logical proteolytic triggers, J. Am. Chem. Soc. 129 (2007), pp. 6064–6065.10.1021/ja070461l
  • D. Margulies, and A.D. Hamilton, Digital analysis of protein properties by an ensemble of DNA quadruplexes, J. Am. Chem. Soc. 131 (2009), pp. 9142–9143.10.1021/ja900848t
  • L.A. Marquez, and H.B. Dunford, Mechanism of the oxidation of 3,5,3’,5’-tetramethylbenzidine by myeloperoxidase determined by transient- and steady-state kinetics, Biochemistry 36 (1997), pp. 9349–9355.10.1021/bi970595j
  • E.E. May, P.L. Dolan, P.S. Crozier, S. Brozik, and M. Manginell, Towards de novo design of deoxyribozyme biosensors for GMO detection, IEEE Sens. J. 8 (2008), pp. 1011–1019.10.1109/JSEN.2008.923945
  • D. Melnikov, G. Strack, M. Pita, V. Privman, and E. Katz, Analog noise reduction in enzymatic logic gates, J. Phys. Chem. B 113 (2009), pp. 10472–10479.10.1021/jp904585x
  • D. Melnikov, G. Strack, J. Zhou, J.R. Windmiller, J. Halámek, V. Bocharova, M.-C. Chuang, P. Santhosh, V. Privman, J. Wang, and E. Katz, Enzymatic AND logic gates operated under conditions characteristic of biomedical applications, J. Phys. Chem. B 114 (2010), pp. 12166–12174.10.1021/jp105912e
  • A. Menon, K. Mehrotra, C.K. Mohan, and S. Ranka, Characterization of a class of sigmoid functions with applications to neural networks, Neural Networks 9 (1996), pp. 819–835.10.1016/0893-6080(95)00107-7
  • S. Minko, E. Katz, M. Motornov, I. Tokarev, and M. Pita, Materials with built-in logic, J. Comput. Theor. Nanosci. 8 (2011), pp. 356–364.10.1166/jctn.2011.1699
  • T. Miyamoto, S. Razavi, R. DeRose, and T. Inoue, Synthesizing biomolecule-based boolean logic gates, ACS Synth. Biol. 2 (2013), pp. 72–82.10.1021/sb3001112
  • M. Motornov, J. Zhou, M. Pita, I. Tokarev, V. Gopishetty, E. Katz, and S. Minko, An integrated multifunctional nanosystem from command nanoparticles and enzymes, Small 5 (2009), pp. 817–820.10.1002/smll.v5:7
  • D.L. Nelson, and M.M. Cox, Lehninger Principles of Biochemistry, 5th ed., W. H. Freeman & Company, New York, NY, 2008.
  • T. Niazov, R. Baron, E. Katz, O. Lioubashevski, and I. Willner, Concatenated logic gates using four coupled biocatalysts operating in series, Proc. Natl. Acad. USA 103 (2006), pp. 17160–17163.10.1073/pnas.0608319103
  • V. Pedrosa, D. Melnikov, M. Pita, J. Halámek, V. Privman, A. Simonian, and E. Katz, Enzymatic logic gates with noise-reducing sigmoid response, Int. J. Unconv. Comput. 6 (2010), pp. 451–460.
  • R. Pei, E. Matamoros, M. Liu, D. Stefanovic, and M.N. Stojanovic, Training a molecular automaton to play a game, Nat. Nanotechnol. 5 (2010), pp. 773–777.10.1038/nnano.2010.194
  • U. Pischel, Chemical approaches to molecular logic elements for addition and subtraction, Angew. Chem. Int. Ed. 46 (2007), pp. 4026–4040.10.1002/(ISSN)1521-3773
  • M. Pita, S. Minko, and E. Katz Enzyme-based logic systems and their applications for novel multi-signal-responsive materials. J. Mater. Sci. Mater. Med. 20 (2009), pp. 457–462.
  • M. Pita, V. Privman, M.A. Arugula, D. Melnikov, V. Bocharova, and E. Katz, Towards biochemical filter with sigmoidal response to pH changes: Buffered biocatalytic signal transduction, Phys. Chem. Chem. Phys. 13 (2011), pp. 4507–4513.10.1039/c0cp02524k
  • V. Privman, Control of noise in chemical and biochemical information processing, Isr. J. Chem. 51 (2011), pp. 118–131.10.1002/ijch.v51.1
  • V. Privman, Error-control and digitalization concepts for chemical and biomolecular information processing systems, J. Comput. Theor. Nanosci. 8 (2011), pp. 490–502.10.1166/jctn.2011.1714
  • V. Privman, G. Strack, D. Solenov, M. Pita, and E. Katz, Optimization of enzymatic biochemical logic for noise reduction and scalability: How many biocomputing gates can be interconnected in a circuit?, J. Phys. Chem. B 112 (2008), pp. 11777–11784.10.1021/jp802673q
  • V. Privman, V. Pedrosa, D. Melnikov, M. Pita, A. Simonian, and E. Katz, Enzymatic AND-gate based on electrode-immobilized glucose-6-phosphate dehydrogenase: Towards digital biosensors and biochemical logic systems with low noise, Biosens. Bioelectron. 25 (2009), pp. 695–701.10.1016/j.bios.2009.08.014
  • V. Privman, M.A. Arugula, J. Halámek, M. Pita, and E. Katz, Network analysis of biochemical logic for noise reduction and stability: A system of three coupled enzymatic AND gates, J. Phys. Chem. B 113 (2009), pp. 5301–5310.10.1021/jp810743w
  • M. Privman, T.K. Tam, M. Pita, and E. Katz, Switchable electrode controlled by enzyme logic network system: Approaching physiologically regulated bioelectronics, J. Am. Chem. Soc. 131 (2009), pp. 1314–1321.10.1021/ja8088108
  • V. Privman, J. Halámek, M.A. Arugula, D. Melnikov, V. Bocharova, and E. Katz, Biochemical filter with sigmoidal response: Increasing the complexity of biomolecular logic, J. Phys. Chem. B 114 (2010), pp. 14103–14109.10.1021/jp108693m
  • M. Privman, T.K. Tam, V. Bocharova, J. Halámek, J. Wang, and E. Katz, Responsive interface switchable by logically processed physiological signals – towards “Smart” actuators for signal amplification and drug delivery, ACS Appl. Mater. Interf. 3 (2011), pp. 1620–1623.10.1021/am200165m
  • V. Privman, O. Zavalov, and A. Simonian, Extended linear response for bioanalytical applications using multiple enzymes, Anal. Chem. 85 (2013), pp. 2027–2031.10.1021/ac302998y
  • V. Privman, B.E. Fratto, O. Zavalov, J. Halámek, and E. Katz, Enzymatic AND logic gate with sigmoid response induced by photochemically controlled oxidation of the output, J. Phys. Chem. B 117 (2013), pp. 7559–7568.10.1021/jp404054f
  • V. Privman, O. Zavalov, L. Halamkova, F. Moseley, J. Halamek, and E. Katz, Networked enzymatic logic gates with filtering: New theoretical modeling expressions and their experimental application, J. Phys. Chem. B 117 (2013), pp. 14928–14939.
  • D.L. Purich, Enzyme Kinetics: Catalysis & Control, Elsevier, London, 2010.
  • V.M. Pyeshkova, O.Y. Saiapina, O.O. Soldatkin, and S.V. Dzyadevych, Enzyme conductometric biosensor for maltose determination, Biopolym. Cell 25 (2009), pp. 272–278.10.7124/bc
  • H. Qian, and P.-Z. Shi, Fluctuating enzyme and its biological functions: Positive cooperativity without multiple states, J. Phys. Chem. B 113 (2009), pp. 2225–2230.10.1021/jp810657j
  • J.D. Rabinowitz, J.J. Hsiao, K.R. Gryncel, E.R. Kantrowitz, and X.-J. Feng, Dissecting enzyme regulation by multiple allosteric effectors: Nucleotide regulation of aspartate transcarbamoylase, Biochemistry 47 (2008), pp. 5881–5888.10.1021/bi8000566
  • K. Radhakrishnan, J. Tripathy, and A.M. Raichur, Dual enzyme responsive microcapsules simulating an “OR” logic gate for biologically triggered drug delivery applications, Chem. Commun. 49 (2013), pp. 5390–5392.10.1039/c3cc42017e
  • S.P. Rafael, A. Vallée-Bélisle, E. Fabregas, K. Plaxco, G. Palleschi, and F. Ricci, Employing the metabolic “Branch Point Effect” to generate an all-or-none, digital-like response in enzymatic outputs and enzyme-based sensors, Anal. Chem. 84 (2012), pp. 1076–1082.10.1021/ac202701c
  • M. Reiss, A. Heibges, J. Metzger, and W. Hartmeier, Determination of BOD-values of starch-containing waste water by a BOD-biosensor, Biosens. Bioelectron. 13 (1998), pp. 1083–1090.10.1016/S0956-5663(98)00071-2
  • F. Ricci, A. Vallée-Bélisle, and K.W. Plaxco, High-precision, in vitro validation of the sequestration mechanism for generating ultrasensitive dose–response curves in regulatory networks, PLoS Comput. Biol. 7 (2011), p. article #e1002171.10.1371/journal.pcbi.1002171
  • A.R. Schulz, Enzyme Kinetics: From Diastase to Multi-Enzyme Systems, Cambridge University Press, Cambridge, 1994.10.1017/CBO9780511608438
  • D.D. Seaton, and J. Krishnan, Effects of multiple enzyme-substrate interactions in basic units of cellular signal processing, Phys. Biol. 9 (2012), pp. 1–17, article #045009.
  • Y. Shirokane, K. Ichikawa, and M. Suzuki, A novel enzymic determination of maltose, Carbohydr. Res. 329 (2000), pp. 699–702.10.1016/S0008-6215(00)00232-9
  • M.L. Simpson, G.S. Sayler, J.T. Fleming, and B. Applegate, Whole-cell biocomputing, Trends Biotechnol. 19 (2001), pp. 317–323.10.1016/S0167-7799(01)01691-2
  • M.N. Stojanovic, Some experiments and directions in molecular computing and robotics, Isr. J. Chem. 51 (2011), pp. 99–105.10.1002/ijch.v51.1
  • M.N. Stojanovic, and D. Stefanovic, Chemistry at a higher level of abstraction, J. Comput. Theor. Nanosci. 8 (2011), pp. 434–440.10.1166/jctn.2011.1707
  • M.N. Stojanovic, T.E. Mitchell, and D. Stefanovic, Deoxyribozyme-based logic gates, J. Am. Chem. Soc. 124 (2002), pp. 3555–3561.10.1021/ja016756v
  • G. Strack, M. Ornatska, M. Pita, and E. Katz, Biocomputing security system: Concatenated enzyme-based logic gates operating as a biomolecular keypad lock, J. Am. Chem. Soc. 130 (2008), pp. 4234–4235.10.1021/ja7114713
  • G. Strack, M. Pita, M. Ornatska, and E. Katz, Boolean logic gates using enzymes as input signals, ChemBioChem 9 (2008), pp. 1260–1266.10.1002/cbic.v9:8
  • G. Strack, S. Chinnapareddy, D. Volkov, J. Halámek, M. Pita, I. Sokolov, and E. Katz, Logic networks based on immunorecognition processes, J. Phys. Chem. B 113 (2009), pp. 12154–12159.10.1021/jp905620c
  • K. Szacilowski, Digital information processing in molecular systems, Chem. Rev. 108 (2008), pp. 3481–3548.10.1021/cr068403q
  • A.W. Taylor, A.W. Frazier, E.L Gurney, and J.P. Smith, Solubility products of di- and trimagnesium phosphates and the dissociation of magnesium phosphate solutions, Trans. Faraday Soc. 59 (1963), pp. 1585–1589.10.1039/tf9635901585
  • I. Tokarev, V. Gopishetty, J. Zhou, M. Pita, M. Motornov, E. Katz, and S. Minko, Stimuli-responsive hydrogel membranes coupled with biocatalytic processes, ACS Appl. Mater. Interf. 1 (2009), pp. 532–536.10.1021/am800251a
  • R. Unger, and J. Moult, Towards computing with proteins, Proteins 63 (2006), pp. 53–64.10.1002/prot.20886
  • A. Vallée-Bélisle, F. Ricci, and K.W. Plaxco, Engineering biosensors with extended, narrowed, or arbitrarily edited dynamic range, J. Am. Chem. Soc. 134 (2012), pp. 2876–2879.10.1021/ja209850j
  • E. Vrbová, J. Pecková, and M. Marek, Biosensor for determination of starch, Starch 45 (1993), pp. 341–344.10.1002/(ISSN)1521-379X
  • J. Wang, and E. Katz, Digital biosensors with built-in logic for biomedical applications – biosensors based on biocomputing concept, Anal. Bioanal. Chem. 398 (2010), pp. 1591–1603.10.1007/s00216-010-3746-0
  • J. Wang, and E. Katz, Digital biosensors with built-in logic for biomedical applications, Isr. J. Chem. 51 (2011), pp. 141–150.10.1002/ijch.v51.1
  • Warmadewanthi, and J. Liu, Selective precipitation of phosphate from semiconductor wastewater, J. Environ. Eng. 135 (2009), pp. 1063–1070.10.1061/(ASCE)EE.1943-7870.0000054
  • R. Wilson, and A.P.F. Turner, Glucose oxidase: An ideal enzyme, Biosens. Bioelectron. 7 (1992), pp. 165–185.10.1016/0956-5663(92)87013-F
  • O. Zavalov, V. Bocharova, V. Privman, and E. Katz, Enzyme-based logic: OR gate with double-sigmoid filter response, J. Phys. Chem. B 116 (2012), pp. 9683–9689.10.1021/jp305183d
  • O. Zavalov, V. Bocharova, J. Halámek, L. Halámková, S. Korkmaz, M.A. Arugula, S. Chinnapareddy, E. Katz, and V. Privman, Two-input enzymatic logic gates made sigmoid by modifications of the biocatalytic reaction cascades, Int. J. Unconv. Comput. 8 (2012), pp. 347–365.
  • Z. Zhang, N. Jaffrezic-Renault, F. Bessueille, D. Leonard, S. Xia, X. Wang, L. Chen, and J. Zhao, Development of a conductometric phosphate biosensor based on tri-layer maltose phosphorylase composite films, Anal. Chim. Acta 615 (2008), pp. 73–79.10.1016/j.aca.2008.03.044
  • M. Zhou, and S.J. Dong, Bioelectrochemical interface engineering: Toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors, Acc. Chem. Res. 44 (2011), pp. 1232–1243.10.1021/ar200096g
  • M. Zhou, and J. Wang, Biofuel cells for self-powered electrochemical biosensing and logic biosensing, Electroanalysis 24 (2012), pp. 197–209.10.1002/elan.v24.2
  • J. Zhou, M.A. Arugula, J. Halámek, M. Pita, and E. Katz, Enzyme-based NAND and NOR logic gates with modular design, J. Phys. Chem. B 113 (2009), pp. 16065–16070.10.1021/jp9079052
  • M. Zhou, N.D. Zhou, F. Kuralay, J.R. Windmiller, S. Parkhomovsky, G. Valdes-Ramirez, E. Katz, and J. Wang, A self-powered, “Sense-Act-Treat” system that is based on a biofuel cell and controlled by boolean logic, Angew. Chem. Int. Ed. 51 (2012), pp. 2686–2689.10.1002/anie.201107068

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.