582
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Insulin biosensor development: a case study§

, , , , &
Pages 119-138 | Received 05 Feb 2016, Accepted 23 Feb 2016, Published online: 30 Mar 2016

References

  • D. Altschuh, S. Oncul, and A.P. Demchenko, Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors, J. Mol. Recognit. 19(6) (2006), pp. 459–477.10.1002/(ISSN)1099-1352
  • M. Arnold, N. Pandeya, G. Byrnes, A.G. Renehan, G.A. Stevens, M. Ezzati, J. Ferlay, J.J. Miranda, I. Romieu, R. Dikshit, D. Forman, and I. Soerjomataram, Global burden of cancer attributable to high body-mass index in 2012: A population-based study, The Lancet Oncol. 16(1) (2015), pp. 36–46.10.1016/S1470-2045(14)71123-4
  • R.H. Baughman, A.A. Zakhidov, and W.A. de Heer, Carbon nanotubes–the route toward applications, Science. 297(5582) (2002), pp. 787–792.10.1126/science.1060928
  • P.J. Britto, K.S.V. Santhanam, and P.M. Ajayan, Carbon nanotube electrode for oxidation of dopamine, Bioelectrochem. Bioenerg. 41(1) (1996), pp. 121–125.10.1016/0302-4598(96)05078-7
  • T. Bryan, X. Luo, P.R. Bueno, and J.J. Davis, An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood, Biosens. Bioelectron. 39(1) (2013), pp. 94–98.
  • D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M.F. Roberts, J.H. Chuang, M.J. Naughton, Z. Ren, and T.C Chiles, A molecular-imprint nanosensor for ultrasensitive detection of proteins, Nat. Nanotechnol. 5(8) (2010), pp. 597–601.10.1038/nnano.2010.114
  • L. Cao, Y. Yu, I. Darko, D. Currier, L.H. Mayeenuddin, X. Wan, C. Khanna, and L.J. Helman, Addiction to elevated insulin-like growth factor I receptor and initial modulation of the AKT pathway define the responsiveness of rhabdomyosarcoma to the targeting antibody, Cancer Res. 68(19) (2008), pp. 8039–8048.10.1158/0008-5472.CAN-08-1712
  • D.A. Carter, J.D. Wobken, P.K. Dixit, and G.E. Bauer, Immunoreactive insulin in rat salivary glands and its dependence on age and serum insulin levels, Exp. Biol. Med. 209(3) (1995), pp. 245–250.10.3181/00379727-209-43899
  • M.A. Cooper, Label-free screening of bio-molecular interactions, Anal. Bioanal.Chem. 377(5) (2003), pp. 834–842.10.1007/s00216-003-2111-y
  • Z. Cooper and C.G. Fairburn, A new cognitive behavioural approach to the treatment of obesity, Behav. Res. Ther. 39(5) (2001), pp. 499–511.10.1016/S0005-7967(00)00065-6
  • J.A. Cox and T.J. Gray, Flow injection amperometric determination of insulin based upon its oxidation at a modified electrode, Anal. Chem. 61(21) (1989), pp. 2462–2464.10.1021/ac00196a027
  • P. D’Orazio, Biosensors in clinical chemistry, Clin. Chim. Acta. 334(1–2) (2003), pp. 41–69.10.1016/S0009-8981(03)00241-9
  • H.N. Daghestani and B.W. Day, Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors, Sensors. 10(11) (2010), pp. 9630–9646.10.3390/s101109630
  • J.J. Davis, K.S. Coleman, B.R. Azamian, C.B. Bagshaw, and M.L. Green, Chemical and biochemical sensing with modified single walled carbon nanotubes, Chem. Eur. J. 9(16) (2003), pp. 3732–3739.10.1002/(ISSN)1521-3765
  • E. Gellhorn, J. Feldman, and A. Allen, Assay of insulin on hypophysectomized, adreno-demedullated and hypophysectomized-adreno-demedulated rats, Endocrinology. 29 (1941), pp. 137–140.10.1210/endo-29-1-137
  • S.M. Genuth, Metabolic clearance of insulin in man, Diabetes. 21(10) (1972), pp. 1003–1012.10.2337/diab.21.10.1003
  • R.D. Grange, J.P. Thompson, and D.G. Lambert, Radioimmunoassay, enzyme and non-enzyme-based immunoassays, Br. J. Anaesthesia. 112(2) (2014), pp. 213–216.10.1093/bja/aet293
  • J. Groen, C.E. Kamminga, A.F. Willebrands, and J.R. Blickman, Evidence for the presence of insulin in blood serum; a method for an approximate determination of the insulin content of blood, J. Clin. Invest. 31(1) (1952), pp. 97–106.10.1172/JCI102583
  • H.M. Haake, A. Schutz, and G. Gauglitz, Label-free detection of biomolecular interaction by optical sensors, Fresenius’ J. Anal. Chem. 366(6–7) (2000), pp. 576–585.10.1007/s002160051553
  • K. Han, Z. Liang, and N. Zhou, Design strategies for aptamer-based biosensors, Sensors. 10(5) (2010), pp. 4541–4557.10.3390/s100504541
  • S.-B. He, G.-W. Wu, H.-H. Deng, A.-L. Liu, X.-H. Lin, X.-H. Xia, and W. Chen, Choline and acetylcholine detection based on peroxidase-like activity and protein antifouling property of platinum nanoparticles in bovine serum albumin scaffold, Biosens. Bioelectron. 62 (2014), pp. 331–336.10.1016/j.bios.2014.07.005
  • W.P. Heal, M.H. Wright, E. Thinon, and E.W. Tate, Multifunctional protein labeling via enzymatic N-terminal tagging and elaboration by click chemistry, Nat. Protoc. 7(1) (2012), pp. 105–117.
  • C. Holzapfel, L. Cresswell, A.L. Ahern, N.R. Fuller, M. Eberhard, J. Stoll, A.P. Mander, S.A. Jebb, I.D. Caterson, and H. Hauner, The challenge of a 2-year follow-up after intervention for weight loss in primary care, Int. J. Obesity. 38(6) (2014), pp. 806–811.10.1038/ijo.2013.180
  • J. Homola, Present and future of surface plasmon resonance biosensors, Anal. Bioanal. Chem. 377(3) (2003), pp. 528–539.10.1007/s00216-003-2101-0
  • S.E. Hufton, N. van Neer, T. van den Beuken, J. Desmet, E. Sablon, and H.R. Hoogenboom, Development and application of cytotoxic T lymphocyte-associated antigen 4 as a protein scaffold for the generation of novel binding ligands, FEBS Lett. 475(3) (2000), pp. 225–231.10.1016/S0014-5793(00)01701-4
  • M.J. Hutchesson, M.E. Rollo, R. Krukowski, L. Ells, J. Harvey, P.J. Morgan, R. Callister, R. Plotnikoff, and C.E. Collins, eHealth interventions for the prevention and treatment of overweight and obesity in adults: A systematic review with meta-analysis, Obesity Rev. 16(5) (2015), pp. 376–392.10.1111/obr.2015.16.issue-5
  • S. Iijima, Helical microtubules of graphitic carbon, Nature. 354(6348) (1991), pp. 56–58.10.1038/354056a0
  • A.B. Iliuk, L. Hu, and W.A. Tao, Aptamer in bioanalytical applications, Anal. Chem. 83(12) (2011), pp. 4440–4452.10.1021/ac201057w
  • R.A. Irving, G. Coia, A. Roberts, S.D. Nuttall, and P.J. Hudson, Ribosome display and affinity maturation: From antibodies to single V-domains and steps towards cancer therapeutics, J. Immunol. Methods. 248(1–2) (2001), pp. 31–45.10.1016/S0022-1759(00)00341-0
  • C.R. Kahn and M.F. White, The insulin receptor and the molecular mechanism of insulin action, J. Clin. Invest. 82(4) (1988), pp. 1151–1156.10.1172/JCI113711
  • K. Kakita, K. O’connell, and M.A. Permutt, Immunodetection of insulin after transfer from gels to nitrocellulose filters: A method of analysis in tissue extracts, Diabetes. 31(7) (1982), pp. 648–652.10.2337/diab.31.7.648
  • S.M. Kanan, O.M. El-Kadri, I.A. Abu-Yousef, and M.C. Kanan, Semiconducting metal oxide based sensors for selective gas pollutant detection, Sensors. 9(10) (2009), pp. 8158–8196.10.3390/s91008158
  • A.A. Kumar, J.W. Hennek, B.S. Smith, S. Kumar, P. Beattie, S. Jain, J.P. Rolland, T.P. Stossel, C. Chunda-Liyoka, and G.M. Whitesides, From the bench to the field in low-cost diagnostics: Two case studies, Angew. Chem. Int. Ed. 54(20) (2015), pp. 5836–5853.10.1002/anie.201411741
  • F. Leng, H. Yin, S. Qin, K. Zhang, Y. Guan, R. Fng, H. Wang, G. Li, Z. Jiang, F. Sun, D.C. Wang, and C. Xie, NLRP6 self-assembles into a linear molecular platform following LPS binding and ATP stimulation, (2016), Unpublished.
  • M. Liang, S.L. Klakamp, C. Funelas, H. Lu, B. Lam, C. Herl, A. Umble, A.W. Drake, M. Pak, N. Ageyeva, R. Pasumarthi, and L.K. Roskos, Detection of high- and low-affinity antibodies against a human monoclonal antibody using various technology platforms, ASSAY and Drug Dev. Technol. 5(5) (2007), pp. 655–662.10.1089/adt.2007.089
  • B. Liedberg, I. Lundström, and E. Stenberg, Principles of biosensing with an extended coupling matrix and surface plasmon resonance, Sens. Actuators, B. 11(1–3) (1993), pp. 63–72.10.1016/0925-4005(93)85239-7
  • W. Limbut, P. Kanatharana, B. Mattiasson, P. Asawatreratanakul, and P. Thavarungkul, A comparative study of capacitive immunosensors based on self-assembled monolayers formed from thiourea, thioctic acid, and 3-mercaptopropionic acid, Biosens. Bioelectron. 22(2) (2006), pp. 233–240.
  • Y. Lin, W. Yantasee, and J. Wang, Carbon nanotubes (CNTs) for the development of electrochemical biosensors, Front. Biosci. 10 (2005), pp. 492–505.10.2741/1545
  • J. Löfblom, F.Y. Frejd, and S. Ståhl, Non-immunoglobulin based protein scaffolds, Curr. Opin. Biotechnol. 22(6) (2011), pp. 843–848.10.1016/j.copbio.2011.06.002
  • X. Luo, M. Xu, C. Freeman, T. James, and J.J. Davis, Ultrasensitive label free electrical detection of insulin in neat blood serum, Anal. Chem. 85(8) (2013), pp. 4129–4134.10.1021/ac4002657
  • M.J. MacDonald, and J.P. Gapinski. A rapid ELISA for measuring insulin in a large number of research samples, Metabolism. 38(5) (1989), pp. 450–452.10.1016/0026-0495(89)90197-2
  • S.E. Manley, I.M. Stratton, P.M. Clark, and S.D. Luzio, Comparison of 11 human insulin assays: Implications for clinical investigation and research, Clin. Chem. 53(5) (2007), pp. 922–932.10.1373/clinchem.2006.077784
  • A.W. Martinez, S.T. Phillips, G.M. Whitesides, and E. Carrilho, Diagnostics for the developing world: Microfluidic paper-based analytical devices, Anal. Chem. 82(1) (2010), pp. 3–10.10.1021/ac9013989
  • N.K. Mehra, V. Mishra, and N.K. Jain, A review of ligand tethered surface engineered carbon nanotubes, Biomaterials. 35(4) (2014), pp. 1267–1283.10.1016/j.biomaterials.2013.10.032
  • K. Nam, K. Eom, J. Yang, J. Park, G. Lee, K. Jang, H. Lee, S.W. Lee, D.S. Yoon, C.Y. Lee, and T. Kwon, Aptamer-functionalized nano-pattern based on carbon nanotube for sensitive, selective protein detection, J. Mater. Chem. 22(44) (2012), pp. 23348–23356.10.1039/c2jm33688j
  • M. Ng, T. Fleming, M. Robinson, B. Thomson, N. Graetz, C. Margono, E.C. Mullany, S. Biryukov, C. Abbafati, S.F. Abera, J.P. Abraham, N.M. Abu-Rmeileh, T. Achoki, F.S. AlBuhairan, Z.A. Alemu, R. Alfonso, M.K. Ali, R. Ali, N.A. Guzman, W. Ammar, P. Anwari, A. Banerjee, S. Barquera, S. Basu, D.A. Bennett, Z. Bhutta, J. Blore, N. Cabral, I.C. Nonato, J.C. Chang, R. Chowdhury, K.J. Courville, M.H. Criqui, D.K. Cundiff, K.C. Dabhadkar, L. Dandona, A. Davis, A. Dayama, S.D. Dharmaratne, E.L. Ding, A.M. Durrani, A. Esteghamati, F. Farzadfar, D.F. Fay, V.L. Feigin, A. Flaxman, M.H. Forouzanfar, A. Goto, M.A. Green, R. Gupta, N. Hafezi-Nejad, G.J. Hankey, H.C. Harewood, R. Havmoeller, S. Hay, L. Hernandez, A. Husseini, B.T. Idrisov, N. Ikeda, F. Islami, E. Jahangir, S.K. Jassal, S.H. Jee, M. Jeffreys, J.B. Jonas, E.K. Kabagambe, S.E. Khalifa, A.P. Kengne, Y.S. Khader, Y.H. Khang, D. Kim, R.W. Kimokoti, J.M. Kinge, Y. Kokubo, S. Kosen, G. Kwan, T. Lai, M. Leinsalu, Y. Li, X. Liang, S. Liu, G. Logroscino, P.A. Lotufo, Y. Lu, J. Ma, N.K. Mainoo, G.A. Mensah, T.R. Merriman, A.H. Mokdad, J. Moschandreas, M. Naghavi, A. Naheed, D. Nand, K.M. Narayan, E.L. Nelson, M.L. Neuhouser, M.I. Nisar, T. Ohkubo, S.O. Oti, A. Pedroza, D. Prabhakaran, N. Roy, U. Sampson, H. Seo, S.G. Sepanlou, K. Shibuya, R. Shiri, I. Shiue, G.M. Singh, J.A. Singh, V. Skirbekk, N.J. Stapelberg, L. Sturua, B.L. Sykes, M. Tobias, B.X. Tran, L. Trasande, H. Toyoshima, S. van de Vijver, T.J. Vasankari, J.L. Veerman, G. Velasquez-Melendez, V.V. Vlassov, S.E. Vollset, T. Vos, C. Wang, X. Wang, E. Weiderpass, A. Werdecker, J.L. Wright, Y.C. Yang, H. Yatsuya, J. Yoon, S.J. Yoon, Y. Zhao, M. Zhou, S. Zhu, A.D. Lopez, C.J. Murray, and E. Gakidou, Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013, Lancet. 384(9945) (2014), pp. 766–781doi:10.1016/S0140-6736 (14), 60460-8.
  • J.E. Pessin and A.R. Saltiel, Signaling pathways in insulin action: Molecular targets of insulin resistance, J. Clin. Invest. 106(2) (2000), pp. 165–169.10.1172/JCI10582
  • F. Qu, M. Yang, Y. Lu, G. Shen, and R. Yu, Amperometric determination of bovine insulin based on synergic action of carbon nanotubes and cobalt hexacyanoferrate nanoparticles stabilized by EDTA, Anal. Bioanal. Chem. 386(2) (2006), pp. 228–234.10.1007/s00216-006-0642-8
  • B. Rafiee and A.R. Fakhari, Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode, Biosens. Bioelectron. 46 (2013), pp. 130–135.
  • C.N. Rao, B.C. Satishkumar, A. Govindaraj, and M. Nath, Nanotubes, Chem. Phys. Chem. 2(2) (2001), pp. 78–105.10.1002/(ISSN)1439-7641
  • E.M. Rocha, D.A. Cunha, E.M. Carneiro, A.C. Boschero, M.J. Saad, and L.A. Velloso, Identification of insulin in the tear film and insulin receptor and IGF-1 receptor on the human ocular surface, Invest. Ophthalmology Visual Sci. 43(4) (2002), pp. 963–967.
  • S. Rodriguez-Mozaz, M.J. Lopez de Alda, and D. Barceló, Biosensors as useful tools for environmental analysis and monitoring, Anal. Bioanal. chem. 386(4) (2006), pp. 1025–1041.
  • S. Rössner, M. Hammarstrand, E. Hemmingsson, M. Neovius, and K. Johansson, Long-term weight loss and weight-loss maintenance strategies, Obesity Rev. 9(6) (2008), pp. 624–630.10.1111/obr.2008.9.issue-6
  • A.H. Rubenstein, C. Lowy, T.A. Welborn, and T.R. Fraser, Urine insulin in normal subjects, Metab. 16(3) (1967), pp. 234–244.10.1016/0026-0495(67)90172-2
  • A.H. Rubenstein, M.E. Mako, and D.L. Horwitz, Insulin and the kidney, Nephron. 15(3–5) (1975), pp. 306–326.10.1159/000180518
  • A. Sassolas, L.J. Blum, and B.D. Leca-Bouvier, Immobilization strategies to develop enzymatic biosensors, Biotechnol. Adv. 30(3) (2012), pp. 489–511.10.1016/j.biotechadv.2011.09.003
  • F.W. Scheller, U. Wollenberger, A. Warsinke, and F. Lisdat, Research and development in biosensors, Curr. Opin. Biotechnol. 12(1) (2001), pp. 35–40.10.1016/S0958-1669(00)00169-5
  • G. Sennhauser, P. Amstutz, C. Briand, O. Storchenegger, and M.G. Grutter, Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors, PLoS Biol. 5(1) (2007), pp. 106–113.
  • B.M. Shields, J.L. Peters, C. Cooper, J. Lowe, B.A. Knight, R.J. Powell, A. Jones, C.J. Hyde, and A.T. Hattersley, Can clinical features be used to differentiate type 1 from type 2 diabetes? A systematic review of the literature, BMJ Open. 5(11) (2015), pp. 1–5. doi:10.1136/bmjopen-2015-009088.
  • V. Singh and S. Krishnan, Voltammetric immunosensor assembled on carbon-pyrenyl nanostructures for clinical diagnosis of type of diabetes, Anal. Chem. 87(5) (2015), pp. 2648–2654.10.1021/acs.analchem.5b00016
  • M. Sjostrand, S. Gudbjornsdottir, L. Strindberg, and P. Lonnroth, Delayed transcapillary delivery of insulin to muscle interstitial fluid after oral glucose load in obese subjects, Diabetes. 54(7) (2005), pp. 152–157.
  • K. Škrlec, B. Štrukelj, and A. Berlec, Non-immunoglobulin scaffolds: A focus on their targets, Trends Biotechnol. 33(7) (2015), pp. 408–418. 10.1016/j.tibtech.2015.03.012
  • W.J. Sobey, S.F. Beer, C.A. Carrington, P.M. Clark, B.H. Frank, I.P. Gray, S.D. Luzio, D.R. Owens, A.E. Schneider, K. Siddle, R.C. Temple, and C.N. Hales, Sensitive and specific two-site immunoradiometric assays for human insulin, proinsulin, 65–66 split and 32–33 split proinsulins, Biochem. J. 260(2) (1989), pp. 535–541. 10.1042/bj2600535
  • P. Sonksen and J. Sonksen, Insulin: Understanding its action in health and disease, Br. J. Anaesthesia. 85(1) (2000), pp. 69–79.10.1093/bja/85.1.69
  • J. Tang, C. Abraham, E. Stamp, and C. Greaves, How can weight-loss app designers’ best engage and support users? A qualitative investigation, Br. J. Health Psychology. 20(1) (2015), pp. 151–171.10.1111/bjhp.12114
  • T.L. Van Belle, K.T. Coppieters, and M.G. Von Herrath, Type 1 diabetes: Etiology, immunology, and therapeutic strategies, Physiol. Rev. 91(1) (2011), pp. 79–118.10.1152/physrev.00003.2010
  • J. Wang, Nanomaterial-based electrochemical biosensors, The Analyst. 130(4) (2005), pp. 421–426.10.1039/b414248a
  • J. Wang and M. Musameh, Electrochemical detection of trace insulin at carbon-nanotube-modified electrodes, Anal. Chim. Acta. 511(1) (2004), pp. 33–36.10.1016/j.aca.2004.01.035
  • J. Wang, T. Tangkuaram, S. Loyprasert, T. Vazquez-Alvarez, W. Veerasai, P. Kanatharana, and P. Thavarungkul, Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrodes, Anal. Chim. Acta. 581(1) (2007), pp. 1–6.
  • L. Wang, W. Chen, D. Xu, B.S. Shim, Y. Zhu, F. Sun, L. Liu, C. Peng, Z. Jin, C. Xu, and N.A. Kotov, Simple, rapid, sensitive, and versatile SWNT−paper sensor for environmental toxin detection competitive with ELISA, Nano Lett. 9(12) (2009), pp. 4147–4152.10.1021/nl902368r
  • R. Wang, J. Zhao, T. Jiang, Y.M. Kwon, H. Lu, P. Jiao, M. Liao, and Y. Li, Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1, J. Virol. Methods. 189(2) (2013), pp. 362–369.10.1016/j.jviromet.2013.03.006
  • H. Wei, B. Li, J. Li, E. Wang, and S. Dong, Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes, Chem. Commun. 36 (2007), pp. 3735–3737.10.1039/b707642h
  • S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030, Diabetes Care. 27(5) (2004), pp. 1047–1053.10.2337/diacare.27.5.1047
  • X. Wu, H. Kuang, C. Hao, C. Xing, L. Wang, and C. Xu, Paper supported immunosensor for detection of antibiotics, Biosens. Bioelectron. 33(1) (2012), pp. 309–312.
  • A.K. Yagati, J. Park, and S. Cho, Reduced graphene oxide modified the interdigitated chain electrode for an insulin sensor, Sensors. 16(1) (2016), pp. 109–119
  • R.S. Yalow and S.A. Berson, Assay of plasma insulin in human subjects by immunological methods, Nature. 184(Suppl 21) (1959), pp. 1648–1649.10.1038/1841648b0
  • N. Yang, X. Chen, T. Ren, P. Zhang, and D. Yang. Carbon nanotube based biosensors. Sens. Actuators B. 207 (2015), Part A, pp. 690–715.10.1016/j.snb.2014.10.040
  • J. Yeo, J.Y. Park, W.J. Bae, Y.S. Lee, B.H. Kim, Y. Cho, and S.M. Park, Label-Free electrochemical detection of the p53 core domain protein on its antibody immobilized electrode, Anal. Chem. 81(12) (2009), pp. 4770–4777.10.1021/ac900301h
  • W. Yoshida, E. Mochizuki, M. Takase, H. Hasegawa, Y. Morita, H. Yamazaki, K. Sode, and K. Ikebukuro, Selection of DNA aptamers against insulin and construction of an aptameric enzyme subunit for insulin sensing, Biosens. Bioelectron. 24(5) (2009), pp. 1116–1120.
  • Y. Yu, M. Guo, M. Yuan, W. Liu, and J. Hu, Nickel nanoparticle-modified electrode for ultra-sensitive electrochemical detection of insulin, Biosens. Bioelectron. 77 (2016), pp. 215–219.
  • Y.H. Yun, E. Eteshola, A. Bhattacharya, Z. Dong, J.S. Shim, L. Conforti, D. Kim, M.J. Schulz, C.H. Ahn, and N. Watts, Tiny medicine: Nanomaterial-based biosensors, Sensors. 9(11) (2009), pp. 9275–9299.10.3390/s91109275
  • L. Zhang and X. Chu, Yuan S-m, Zhao G-c. Ethylenediamine-assisted preparation of carbon nanofiber supported nickel oxide electrocatalysts for sensitive and durable detection of insulin. RSC, Advances. 5(52) (2015), pp. 41317–41323.
  • C. Zhao, M.M. Thuo, and X. Liu, A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers, Sci. Technol. Adv. Mater. 14(5) (2013), p. 054402–05440910.1088/1468-6996/14/5/054402.
  • Y. Zu and A.J. Bard, Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2‘)bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity, Anal. Chem. 72(14) (2000), pp. 3223–3232.10.1021/ac000199y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.