145
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Towards swarm level optimisation: the role of different movement patterns in swarm systems

, , &
Pages 241-259 | Received 02 Jan 2017, Accepted 07 Nov 2017, Published online: 24 Nov 2017

References

  • Gross R , Nouyan S , Bonani M , et al . Division of labour in self-organised groups. SAB, Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 426–436.
  • Zahadat P , Crailsheim K , Schmickl T . Social inhibition manages division of labour in artificial swarm systems. In: Lio P , Miglino O , Nicosia G , Nolfi S , Pavone M , editors. 12th European Conference on Artificial Life (ECAL 2013). Taormina, Italy: MIT Press; 2013. p. 609–616.
  • Zahadat P , Hahshold S , Thenius R , et al . From honeybees to robots and back: Division of labor based on partitioning social inhibition. Bioinspiration Biomimetics. 2015;10(6):066005.
  • Trianni V , Tuci E . Swarm cognition and artificial life. In: Advances in artificial life. Darwin meets von Neumann. Berlin, Heidelberg: Springer; 2011. p. 270–277.
  • Zahadat P , Hofstadler DN , Schmickl T . Vascular morphogenesis controller: a generative model for developing morphology of artificial structures. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17. New York (NY), USA: ACM; 2017. p. 163–170.
  • Wischoff L , Ebner A , Rohling H , et al . Sotis-a self-organizing traffic information system. In: Vehicular Technology Conference, 2003. VTC 2003-Spring. The 57th IEEE Semiannual. vol. 4. Jeju, South Korea: IEEE; 2003. p. 2442–2446.
  • Yang X , Recker WW . Modeling dynamic vehicle navigation in a self-organizing, peer-to-peer, distributed traffic information system. J Intell Transp Syst. 2006;10(4):185–204.
  • Cheng J , Cheng W , Nagpal R . Robust and self-repairing formation control for swarms of mobile agents. AAAI. 2005;5:59–64.
  • McLurkin JD . Stupid robot tricks: a behavior-based distributed algorithm library for programming swarms of robots [PhD thesis]. Massachusetts Institute of Technology; 2004.
  • Pugh J , Martinoli A . Inspiring and modeling multi-robot search with particle swarm optimization. In: Swarm Intelligence Symposium, 2007. SIS 2007. Honolulu (HI): IEEE; 2007. p. 332–339.
  • Heylighen F . Conceptions of a global brain: an historical review. In: Grinin LE , Carneiro RL , Korotayev AV , Spier F , editors. Evolution: cosmic, biological, and social. Volgograd: Uchitel Publishing; 2011. p. 274–289.
  • Stradner J , Thenius R , Zahadat P , et al . Algorithmic requirements for swarm intelligence in differently coupled collective systems. Chaos, Solitons Fractals. 2013;50:100–114.
  • Bell J , Griffis S . Swarm intelligence: application of the ant colony optimization algorithm to logicstics-oriented vehicle routing problems. J Bus Logistics. 2010;31(2):157–175.
  • Gershenson C . Self-organizing traffic lights. 2004. arXiv preprint nlin/0411066.
  • Pettinaro GC , Kwee I , Gambardella L , et al . Swarm robotics: a different approach to service robotics. Zurich: ETH-Zürich; 2002.
  • Dorigo M , Tuci E , Groß R , et al . The swarm-bots project. In: Swarm robotics. Berlin, Heidelberg: Springer; 2005. p. 31–44.
  • Waddington K . Flight patterns of foraging bees relative to density of artificial flowers and distribution of nectar. Oecologia. 1980;44(2):199–204.
  • Morris W . Predicting the consequence of plant spacing and biased movement for pollen dispersal by honey bees. Ecology. 1993;74(2):493–500.
  • Reynolds A , Smith A , Menzel R , et al . Displaced honey bees perform optimal scale-free search flights. Ecology. 2007;88(8):1955–1961.
  • Reynolds A , Smith A , Reynolds D , et al . Honeybees perform optimal scale-free searching flights when attempting to locate a food source. J Exp Biol. 2007;210(21):3763–3770.
  • Riley J , Greggers U , Smith A , Reynolds D , Menzel R . The flight paths of honeybees recruited by the waggle dance. Nature. 2005;435(7039):205–207.
  • Heinrich B . Resource heterogeneity and patterns of movement in foraging bumblebees. Oecologia. 1979;40(3):235–245.
  • Zimmerman M . Optimal foraging: a case for random movement. Oecologia. 1979;43(3):261–267.
  • Reynolds L . Migration patterns of five fish species in the murray-darling river system. Marine and Freshwater Research. 1983;34(6):857–871.
  • Hilborn R . Determination of fish movement patterns from tag recoveries using maximum likelihood estimators. Can J Fish Aquat Sci. 1990;47(3):635–643.
  • Deneubourg J-L , Aron S , Goss S , et al . The self-organizing exploratory pattern of the argentine ant. J Insect Behav. 1990;3(2):159–168.
  • Veena T , Ganeshaiah K . Non-random search pattern of ants foraging on honeydew of aphids on cashew inflorescences. Anim Behav. 1991;41(1):7–15.
  • Crist T , MacMahon J . Individual foraging components of harvester ants: movement patterns and seed patch fidelity. Insectes Soc. 1991;38(4):379–396.
  • Howse P . On the significance of certain oscillatory movements of termites. Insectes Soc. 1965;12(4):335–345.
  • Campora C , Grace J . Tunnel orientation and search pattern sequence of the formosan subterranean termite (isoptera: Rhinotermitidae). J Econ Entomol. 2001;94(5):1193–1199.
  • Fauchald P , Tveraa T . Hierarchical patch dynamics and animal movement pattern. Oecologia. 2006;149(3):383–395.
  • McLaughlin R . Search modes of birds and lizards: evidence for alternative movement patterns. Am Nat. 1989;654–670.
  • Griffioen P , Clarke M . Large-scale bird-movement patterns evident in eastern australian atlas data. Emu. 2002;102(1):99–125.
  • Couzin I , Krause J , Franks N , et al . Effective leadership and decision-making in animal groups on the move. Nature. 2005;433(7025):513–516.
  • Seeley T . Honeybee ecology: a study of adaptation in social life. New Jersey (NJ): Princeton University Press; 1985.
  • Beekman M , Fathke R , Seeley T . How does an informed minority of scouts guide a honeybee swarm as it flies to its new home? Anim Behav. 2006;71(1):161–171.
  • Michelsen A , Andersen B , Storm J , et al . How honeybees perceive communication dances, studied by means of a mechanical model. Behav Ecol Sociobiol. 1992;30(3–4):143–150.
  • Sumpter D , Broomhead D . Shape and dynamics of thermoregulating honey bee clusters. J Theor Biol. 2000;204(1):1–14.
  • Viswanathan GM , Buldyrev SV , Havlin S , et al . Optimizing the success of random searches. Nature. 1999;401(6756):911–914.
  • Bartumeus F , da Luz MGE , Viswanathan GM , et al . Animal search strategies: a quantitative random-walk analysis. Ecology. 2005;86(11):3078–3087.
  • Szopek M , Schmickl T , Thenius R , et al . Dynamics of collective decision making of honeybees in complex temperature fields. PloS One. 2013;8(10):e76250.
  • Schmickl T , Hamann H . (2011). Beeclust: a swarm algorithm derived from honeybees. In: Derivation of the algorithm, analysis by mathematical models and implementation on a robot swarm. Bio-inspired Computing and Communication Networks. New York (NY): CRC Press; March 2011. p. 95–137.
  • Schmickl T , Thenius R , Möslinger C , et al . Get in touch: cooperative decision making based on robot-to-robot collisions. Auton Agents Multi-Agent Syst. 2008;18(1):133–155.
  • Kernbach S , Thenius R , Kornienko O , et al . Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic swarm. Adapt Behav. 2009;17:237–259.
  • Kengyel D , Thenius R , Crailsheim K , et al . Influence of a social gradient on a swarm of agents controlled by the beeclust algorithm. Advances in Artificial Life, Proceedings of the 12th European Conference on the Synthesis and Simulation of Living Systems, ECAL13. vol. 12. Taormina, Italy; 2013; p.1041–1048.
  • Arvin F , Doraisamy S , Samsudin K , et al . Implementation of a cue-based aggregation with a swarm robotic system. Berlin, Heidelberg: Knowledge technology, Springer; 2012. p. 113–122.
  • Hereford J . Analysis of beeclust swarm algorithm. In: 2011 IEEE Symposium on Swarm Intelligence (SIS). Paris, France: IEEE; 2011. p. 1–7.
  • Hereford J . Analysis of a new swarm search algorithm based on trophallaxis. In: 2010 IEEE Congress on Evolutionary Computation (CEC). Barcelona, Spain: IEEE; 2010. p. 1–8.
  • Arvin F , Samsudin K , Ramli AR , et al . Imitation of honeybee aggregation with collective behavior of swarm robots. Int J Comput Intell Syst. 2011;4(4):739–748.
  • Arvin F , Turgut AE , Yue S . Fuzzy-based aggregation with a mobile robot swarm. Swarm intelligence. Berlin, Heidelberg: Springer; 2012.
  • Kengyel D , Hamann H , Zahadat P , et al . Potential of heterogeneity in collective behaviors: a case study on heterogeneous swarms. In: Principles and Practice of Multi-Agent Systems. vol. 15. Cham: PRIMA; 2015. p. 1.
  • Seeley TD , Visscher PK . Assessing the benefits of cooperation in honeybee foraging: search costs, forage quality, and competitive ability. Behav Ecol Sociobiol. 1988;22(4):229–237.
  • Sumpter DJ , Beekman M . From nonlinearity to optimality: pheromone trail foraging by ants. Anim Behav. 2003;66(2):273–280.
  • Stammler KL , Corkum LD . Assessment of fish size on shelter choice and intraspecific interactions by round gobies neogobius melanostomus. Environ Biol Fishes. 2005;73(2):117–123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.