270
Views
8
CrossRef citations to date
0
Altmetric
Theme: Oncology – Review

Selective molecular biomarkers to predict biologic behavior in pituitary tumors

, , , &
Pages 177-185 | Received 13 Feb 2017, Accepted 24 Mar 2017, Published online: 03 Apr 2017

References

  • Asa SL, Ezzat S. The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev. 1998;19:798–827. Review. ​
  • Sav A, Rotondo F, Syro LV, et al. Invasive, atypical and aggressive pituitary adenomas and carcinomas. Endocrinol Metab Clin North Am. 2015;44:99–104.
  • Oruckaptan HH, Senmevsim O, Ozcan OE, et al. Pituitary adenomas: results of 684 surgically treated patients and review of the literature. Surg Neurol. 2000;53:211–219.
  • Buchfelder M. Management of aggressive pituitary adenomas: current treatment strategies. Pituitary. 2009;12:256–260.
  • Jiang X, Zhang X. The molecular pathogenesis of pituitary adenomas: an update. Endocrinol Metab (Seoul). 2013;28:245–254.
  • Mete O, Ezzat S, Asa SL. Biomarkers of aggressive pituitary adenomas. J Mol Endocrinol. 2012;49:R69–R78.
  • Zen K, Zhang C-Y. Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev. 2012;32:326–348.
  • Sav A, Rotondo F, Syro LV, et al. Biomarkers of pituitary neoplasms. Anticancer Res. 2012 Nov;32(11):4639–4654. Review.
  • Gadelha MR, Trivellin G, Hernández Ramírez LC, et al. Genetics of pituitary adenomas. Front Horm Res. 2013;41:111–140.
  • Trzpis M, McLaughlin PM, de Leij LM, et al. Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am J Pathol. 2007;171:386–395.
  • Cubas R, Li M, Chen C, et al. Trop2: a possible therapeutic target for late stage epithelial carcinomas. Biochim Biophys Acta. 2009;1796:309–314.
  • Guerra E, Trerotola M, Aloisi AL, et al. The Trop-2 signaling network in cancer growth. Oncogene. 2013;32:1594–1600.
  • Ohmachi T, Tanaka F, Mimori K, et al. Clinical significance of TROP2 expression in colorectal cancer. Clin Cancer Res. 2006;12:3057–3063.
  • Sharkey RM, van Rij CM, Karacay H, et al. A new Tri-Fab bispecific antibody for pretargeting Trop-2-expressing epithelial cancers. J Nucl Med. 2012;53:1625–1632.
  • Trerotola M, Cantanelli P, Guerra E, et al. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene. 2013;32:222–233.
  • Chen X, Pang B, Liang Y, et al. Overexpression of EpCAM and Trop2 in pituitary adenomas. Int J Clin Exp Pathol. 2014;7:7907–7914.
  • Lewis EB. A gene complex controlling segmentation in Drosophila. Nature. 1978;276:565–570.
  • Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469:343–349.
  • Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6:846–856.
  • Sauvageau M, Sauvageau G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell. 2010;7:299–313.
  • Schult D, Hölsken A, Siegel S, et al. EZH2 is highly expressed in pituitary adenomas and associated with proliferation. Sci Rep. 2015 23;5:16965.
  • Crea F, Fornaro L, Bocci G, et al. EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. Cancer Metastasis Rev. 2012;31:753–761.
  • Chase A, Cross NC. Aberrations of EZH2 in cancer. Clin Cancer Res. 2011;17:2613–2618.
  • Duong CV, Emes RD, Wessely F, et al. Quantitative, genome-wide analysis of the DNA methylome in sporadic pituitary adenomas. Endocr Relat Cancer. 2012;19:805–816.
  • Duong CV, Yacqub-Usman K, Emes RD, et al. The EFEMP1 gene: a frequent target for epigenetic silencing in multiple human pituitary adenoma subtypes. Neuroendocrinology. 2013;98:200–211.
  • Palmieri D, D’Angelo D, Valentino T, et al. Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene. 2012;31:3857–3865.
  • Asa SL, Ezzat S. Genomic approaches to problems in pituitary neoplasia. Endocr Pathol. 2014;25:209–213.
  • Ezhkova E, Pasolli HA, Parker JS, et al. EZH2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell. 2009;136:1122–1135.
  • Bielenberg DR, Pettaway CA, Takashima S, et al. Neuropilins in neoplasms: expression, regulation, and function. Exp Cell Res. 2006;312:584–593.
  • Guttmann-Raviv N, Kessler O, Shraga-Heled N, et al. The neuropilins and their role in tumorigenesis and tumor progression. Cancer Lett. 2006;231:1–11.
  • Yamada S, Takada K. Angiogenesis in pituitary adenomas. Microsc Res Tech. 2003;60:236–243.
  • Takada K, Yamada S, Teramoto A. Correlation between tumor vascularity and clinical findings in patients with pituitary adenomas. Endocr Pathol. 2004;15:131–139.
  • Fukui S, Nawashiro H, Otani N, et al. Vascular endothelial growth factor expression in pituitary adenomas. Acta Neurochir Suppl. 2003;86:519–521.
  • Fukui S, Otani N, Nawashiro H, et al. The association of the expression of vascular endothelial growth factor with the cystic component and haemorrhage in pituitary adenoma. J Clin Neurosci. 2003;10:320–324.
  • Lloyd RV, Scheithauer BW, Kuroki T, et al. Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocr Pathol. 1999;10:229–235.
  • Sánchez-Ortiga R, Sánchez-Tejada L, Moreno-Perez O, et al. Over-expression of vascular endothelial growth factor in pituitary adenomas is associated with extrasellar growth and recurrence. Pituitary. 2013;16:370–377.
  • Onofri C, Theodoropoulou M, Losa M, et al. Localization of vascular endothelial growth factor (VEGF) receptors in normal and adenomatous pituitaries: detection of a non-endothelial function of VEGF in pituitary tumours. J Endocrinol. 2006;191:249–261.
  • Pan Q, Chanthery Y, Liang WC, et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell. 2007;11:53–67.
  • Lee SW, Lee JE, Yoo CY, et al. NRP-1 expression is strongly associated with the progression of pituitary adenomas. Oncol Rep. 2014 Oct;32(4):1537–1542.
  • Pan Q, Chathery Y, Wu Y, et al. Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting. J Biol Chem. 2007;282:24049–24056.
  • Jubb AM, Strickland LA, Liu SD, et al. Neuropilin-1 expression in cancer and development. J Pathol. 2012;226:50–60.
  • Fu L, Kitamura T, Iwabuchi K, et al. Interplay of neuropilin-1 and semaphorin 3A after partial hepatectomy in rats. World J Gastroenterol. 2012;18:5034–5041.
  • Matthies AM, Low QE, Lingen MW, et al. Neuropilin-1 participates in wound angiogenesis. Am J Pathol. 2002;160:289–296.
  • Brusselmans K, Bono F, Collen D, et al. A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. J Biol Chem. 2005;280:3493–3499.
  • Kuilman T, Michaloglou C, Vredeveld L, et al. Oncogene-induced senescence relayed by an interleukin dependent inflammatory network. Cell. 2008;133:1019–1031.
  • Mooi WJ, Peeper DS. Oncogene-induced cell senescence-halting on the road to cancer. N Engl J Med. 2006;355:1037–1046.
  • Quereda V, Malumbres M. Cell cycle control of pituitary development and disease. J Mol Endocrinol. 2009;42:75–86.
  • Collado M, Serrano M. The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer. 2006;6:472–476.
  • Melmed S. Pathogenesis of pituitary tumours. Nat Rev Endocrinol. 2011;7:257–266.
  • Quereda V, Martinalbo J, Dubus P, et al. Genetic cooperation between p21Cip1 and INK4 inhibitors in cellular senescence and tumour suppression. Oncogene. 2007;26:7665–7674.
  • Lee BY, Han JA, Im JS, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 2006;5:187–195.
  • Manojlovic-Gacic E, Skender-Gazibara M, Popovic V, et al. Oncogene-induced senescence in pituitary adenomas - an immunohistochemical study. Endocr Pathol. 2016;27:1–11.
  • Alexandraki KI, Munayem Khan M, Chahal HS, et al. Oncogene-induced senescence in pituitary adenomas and carcinomas. Hormones (Athens). 2012;11(3):297–307.
  • Jayo A, Parsons M. Fascin: a key regulator of cytoskeletal dynamics. Int J Biochem Cell Biol. 2010;42:1614–1617.
  • Hashimoto Y, Kim DJ, Adams JC. The roles of fascins in health and disease. J Pathol. 2011;224:289–300.
  • Yosuke H, Skacel M, Josephine JC. Roles of fascin in human carcinoma motility and signaling: prospects for a novel biomarker? Int J Biochem Cell Biol. 2005;37:1787–1804.
  • Hashimoto Y, Skacel M, Lavery IC, et al. Prognostic significance of fascin expression in advanced colorectal cancer: an immunohistochemical study of colorectal adenomas and adenocarcinomas. BMC Cancer. 2006;6:241.
  • Luo A, Yin Y, Li X, et al. The clinical significance of FSCN1 in non-small cell lung cancer. Biomed Pharmacother. 2015;73:75–79.
  • Tan VY, Lewis SJ, Adams JC, et al. Association of fascin-1 with mortality, disease progression and metastasis in carcinomas: a systematic review and meta-analysis. BMC Med. 2013;11:52.
  • Liu C, Gao H, Cao L, et al. The role of FSCN1 in migration and invasion of pituitary adenomas. Mol Cell Endocrinol. 2016;419:217–224.
  • Roy M, Pear WS, Aster JC. The multifaceted role of Notch in cancer. Curr Opin Genet Dev. 2007;17:52–59.
  • Heuss SF, Ndiaye-Lobry D, Six EM, et al. The intracellular region of Notch ligands Dll1 and Dll3 regulates their trafficking and signaling activity. Proc Natl Acad Sci USA. 2008;105:11212–11217.
  • Ladi E, Nichols JT, Ge W, et al. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J Cell Biol. 2005;170:983–989.
  • Scheithauer BW, Kovacs KT, Laws ER Jr, et al. Pathology of invasive pituitary tumors with special reference to functional classification. J Neurosurg. 1986;65:733–744.
  • Salehi F, Agur A, Scheithauer BW, et al. Biomarkers of pituitary neoplasms: a review (Part II). Neurosurgery. 2010;67:1790–1798. discussion 1798.
  • Feng J, Hong L, Wu Y, et al. Identification of a subtype-specific ENC1 gene related to invasiveness in human pituitary null cell adenoma and oncocytomas. J Neurooncol. 2014;119:307–315.
  • Hernandez MC, Andres-Barquin PJ, Martinez S, et al. ENC-1: a novel mammalian kelch-related gene specifically expressed in the nervous system encodes an actin-binding protein. J Neurosci. 1997;17:3038–3051.
  • Hernandez MC, Andres-Barquin PJ, Holt I, et al. Cloning of human ENC-1 and evaluation of its expression and regulation in nervous system tumors. Exp Cell Res. 1998;242:470–477.
  • Kim TA, Lim J, Ota S, et al. NRP/B, a novel nuclear matrix protein, associates with p110(RB) and is involved in neuronal differentiation. J Cell Biol. 1998;141:553–566.
  • Kim TA, Ota S, Jiang S, et al. Genomic organization, chromosomal localization and regulation of expression of the neuronal nuclear matrix protein NRP/B in human brain tumors. Gene. 2000;255:105–116.
  • Holm R. Null cell adenomas and oncocytomas of the pituitary gland. Pathol Res Pract. 1995;191:348–352.
  • Cohen MB, Griebling TL, Ahaghotu CA, et al. Cellular adhesion molecules in urologic malignancies. Am J Clin Pathol. 1997;107:56–63.
  • Okegawa T, Pong RC, Li Y, et al. The role of cell adhesion molecule in cancer progression and its application in cancer therapy. Acta Biochim Pol. 2004;51:445–457.
  • Cao C, Wang W, Ma C, et al. Computational analysis identifies invasion-associated genes in pituitary adenomas. Mol Med Rep. 2015;12:1977–1982.
  • Okegawa T, Li Y, Pong RC, et al. Cell adhesion proteins as tumor suppressors. J Urol. 2002;167:1836–1843.
  • Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta. 1994;1198:11–26.
  • Wijnhoven BP, Dinjens WN, Pignatelli M. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg. 2000;87:992–1005.
  • Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets - update. Nucleic Acids Res. 2013;41:D991–D995.
  • Rustici G, Kolesnikov N, Brandizi M, et al. ArrayExpress update-trends in database growth and links to data analysis tools. Nucleic Acids Res. 2013;41:D987–D990.
  • Vidal S, Kovacs K, Horvath E, et al. Microvessel density in pituitary adenomas and carcinomas. Virchows Arch. 2001;438:595–602.
  • Di Ieva A, Grizzi F, Ceva-Grimaldi G, et al. The microvascular network of the pituitary gland: a model for the application of fractal geometry to the analysis of angioarchitecture and angiogenesis of brain tumors. J Neurosurg Sci. 2010;54:49–54.
  • Jasek E, Furgal-Borzych A, Lis GJ, et al. Microvessel density and area in pituitary microadenomas. Endocr Pathol. 2009;20:221–226.
  • Lee JS, Park YS, Kwon JT, et al. Radiological apoplexy and its correlation with acute clinical presentation, angiogenesis and tumor microvascular density in pituitary adenomas. J Korean Neurosurg Soc. 2011;50:281–287.
  • Zhang Y, He N, Zhou J, et al. The relationship between MRI invasive features and expression of EMMPRIN, galectin-3, and microvessel density in pituitary adenoma. Clin Imaging. 2011;35:165–173.
  • Yamada S, Takada K. Angiogenesis in pituitary adenomas. Microsc Res Tech. 2003;60:236–243.
  • Nomura R, Yoshida D, Teramoto A. Stromal cell-derived factor-1 expression in pituitary adenoma tissues and upregulation in hypoxia. J Neurooncol. 2009;94:173–181.
  • Abid MR, Yi X, Yano K, et al. Vascular endocan is preferentially expressed in tumor endothelium. Microvasc Res. 2006;72:136–145.
  • Grigoriu BD, Depontieu F, Scherpereel A, et al. Endocan expression and relationship with survival in human nonsmall cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2006;12:4575–4582.
  • Sarrazin S, Adam E, Lyon M, et al. Endocan or endothelial cell specific molecule-1 (ESM-1): a potential novel endothelial cell marker and a new target for cancer therapy. Biochim Biophys Acta. 2006;1765:25–37.
  • Scherpereel A, Depontieu F, Grigoriu B, et al. Endocan, a new endothelial marker in human sepsis. Crit Care Med. 2006;34:532–537.
  • Cornelius A, Cortet-Rudelli C, Assaker R, et al. Endothelial expression of endocan is strongly associated with tumor progression in pituitary adenoma. Brain Pathol. 2012;22:757–764.
  • Matano F, Yoshida D, Ishii Y, et al. Endocan, a new invasion and angiogenesis marker of pituitary adenomas. J Neurooncol. 2014;117:485–491.
  • Yoshida D, Koketshu K, Nomura R, et al. The CXCR4 antagonist AMD3100 suppresses hypoxia-mediated growth hormone production in GH3 rat pituitary adenoma cells. J Neurooncol. 2010;100:51–64.
  • Viacava P, Gasperi M, Acerbi G, et al. Microvascular density and vascular endothelial growth factor expression in normal pituitary tissue and pituitary adenomas. J Endocrinol Invest. 2003;26:23–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.