186
Views
15
CrossRef citations to date
0
Altmetric
Review

Management of patients with persistent or recurrent Cushing’s disease after initial pituitary surgery

, , & ORCID Icon
Pages 321-339 | Received 21 Apr 2020, Accepted 24 Jul 2020, Published online: 19 Aug 2020

References

  • Fleseriu M, Hamrahian AH, Hoffman AR, et al. American association of clinical endocrinologists and American college of endocrinology disease state clinical review: diagnosis of recurrence in Cushing disease. Endocr Pract. 2016 Dec;22(12):1436–1448.
  • Patil CG, Prevedello DM, Lad SP, et al. Late recurrences of Cushing’s disease after initial successful transsphenoidal surgery. J Clin Endocrinol Metab. 2008 Feb;93(2):358–362.
  • Kelly DF. Transsphenoidal surgery for Cushing’s disease: a review of success rates, remission predictors, management of failed surgery, and Nelson’s Syndrome. Neurosurg Focus. 2007;23(3):E5.
  • Casanueva FF, Barkan AL, Buchfelder M, et al. Criteria for the definition of pituitary tumor centers of excellence (PTCOE): a pituitary society statement. Pituitary. 2017 Oct;20(5):489–498.
  • Araki T, Liu X, Kameda H, et al. EGFR induces E2F1-mediated corticotroph tumorigenesis. J Endocr Soc. 2017 Feb 1;1(2):127–143.
  • Fukuoka H, Cooper O, Ben-Shlomo A, et al. EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J Clin Invest. 2011 Dec;121(12):4712–4721.
  • Liu X, Feng M, Dai C, et al. Expression of EGFR in pituitary corticotroph adenomas and its relationship with tumor behavior. Front Endocrinol (Lausanne). 2019;10:785.
  • Wong A, Eloy JA, Liu JK. The role of bilateral adrenalectomy in the treatment of refractory Cushing’s disease. Neurosurg Focus. 2015 Feb;38(2):E9.
  • Liu NA, Jiang H, Ben-Shlomo A, et al. Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8414–8419.
  • Ma ZY, Song ZJ, Chen JH, et al. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res. 2015 Mar;25(3):306–317.
  • Bou Khalil R, Baudry C, Guignat L, et al. Sequential hormonal changes in 21 patients with recurrent Cushing’s disease after successful pituitary surgery. Eur J Endocrinol. 2011 Nov;165(5):729–737.
  • Riebold M, Kozany C, Freiburger L, et al. A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. Nat Med. 2015;21(3):276–280.
  • Nieman LK, Biller BM, Findling JW, et al. The diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2008 May;93(5):1526–1540.
  • Carroll TB, Findling JW. The diagnosis of Cushing’s syndrome. Rev Endocr Metab Disord. 2010 Jun;11(2):147–153.
  • Trainer PJ, Lawrie HS, Verhelst J, et al. Transsphenoidal resection in Cushing’s disease: undetectable serum cortisol as the definition of successful treatment. Clin Endocrinol (Oxf). 1993 Jan;38(1):73–78.
  • Locatelli M, Vance ML, Laws ER. Clinical review: the strategy of immediate reoperation for transsphenoidal surgery for Cushing’s disease. J Clin Endocrinol Metab. 2005 Sep;90(9):5478–5482.
  • Brichard C, Costa E, Fomekong E, et al. Outcome of transsphenoidal surgery for Cushing disease: a single-center experience over 20 years. World Neurosurg. 2018 Nov;119:e106–e117.
  • Valassi E, Biller BM, Swearingen B, et al. Delayed remission after transsphenoidal surgery in patients with Cushing’s disease. J Clin Endocrinol Metab. 2010 Feb;95(2):601–610.
  • Lindsay JR, Oldfield EH, Stratakis CA, et al. The postoperative basal cortisol and CRH tests for prediction of long-term remission from Cushing’s disease after transsphenoidal surgery. J Clin Endocrinol Metab. 2011 Jul;96(7):2057–2064.
  • Hameed N, Yedinak CG, Brzana J, et al. Remission rate after transsphenoidal surgery in patients with pathologically confirmed Cushing’s disease, the role of cortisol, ACTH assessment and immediate reoperation: a large single center experience. Pituitary. 2013 Dec;16(4):452–458.
  • Ambrogio AG, Andrioli M, De Martin M, et al. Usefulness of desmopressin testing to predict relapse during long-term follow-up in patients in remission from Cushing’s disease. Endocr Connect. 2017 Nov;6(8):791–799.
  • Castinetti F, Martinie M, Morange I, et al. A combined dexamethasone desmopressin test as an early marker of postsurgical recurrence in Cushing’s disease. J Clin Endocrinol Metab. 2009 Jun 01;94(6):1897–1903.
  • Le Marc’hadour P, Muller M, Albarel F, et al. Postoperative follow-up of Cushing’s disease using cortisol, desmopressin and coupled dexamethasone-desmopressin tests: a head-to-head comparison. Clin Endocrinol (Oxf). 2015 Mar 20;83(2):216–222.
  • Losa M, Mortini P, Dylgjeri S, et al. Desmopressin stimulation test before and after pituitary surgery in patients with Cushing’s disease. Clin Endocrinol (Oxf). 2001 Jul;55(1):61–68.
  • Romanholi DJPC, Machado MC, Pereira CC, et al. Role for postoperative cortisol response to desmopressin in predicting the risk for recurrent Cushing’s disease. Clin Endocrinol (Oxf). 2008 Jul;69(1):117–122.
  • Valero R, Vallette-Kasic S, Conte-Devolx B, et al. The desmopressin test as a predictive factor of outcome after pituitary surgery for Cushing’s disease. Eur J Endocrinol. 2004 Dec 01:727–733. doi10.1530/eje.0.1510727.
  • Vassiliadi DA, Balomenaki M, Asimakopoulou A, et al. The desmopressin test predicts better than basal cortisol the long-term surgical outcome of Cushing’s disease. J Clin Endocrinol Metab. 2016 Dec;101(12):4878–4885.
  • Vassiliadi DA, Tsagarakis S. Diagnosis of Endocrine disease: the role of the desmopressin test in the diagnosis and follow-up of Cushing’s syndrome. Eur J Endocrinol. 2018 May;178(5):R201–R214.
  • Amlashi FG, Swearingen B, Faje AT, et al. Accuracy of late-night salivary cortisol in evaluating postoperative remission and recurrence in Cushing’s disease. J Clin Endocrinol Metab. 2015 Oct;100(10):3770–3777.
  • Carroll T, Raff H, Findling JW. Late-night salivary cortisol for the diagnosis of Cushing syndrome: a meta-analysis. Endocr Pract. 2009 May-Jun;15(4):335–342.
  • Danet-Lamasou M, Asselineau J, Perez P, et al. Accuracy of repeated measurements of late-night salivary cortisol to screen for early-stage recurrence of Cushing’s disease following pituitary surgery. Clin Endocrinol (Oxf). 2015 Feb;82(2):260–266.
  • Nunes ML, Vattaut S, Corcuff JB, et al. Late-night salivary cortisol for diagnosis of overt and subclinical Cushing’s syndrome in hospitalized and ambulatory patients. J Clin Endocrinol Metab. 2009 Feb;94(2):456–462.
  • Putignano P, Toja P, Dubini A, et al. Midnight salivary cortisol versus urinary free and midnight serum cortisol as screening tests for Cushing’s syndrome. J Clin Endocrinol Metab. 2003 Sep;88(9):4153–4157.
  • Raff H. Cushing’s syndrome: diagnosis and surveillance using salivary cortisol. Pituitary. 2012 Mar;15(1):64–70.
  • Chen JC, Amar AP, Choi S, et al. Transsphenoidal microsurgical treatment of Cushing disease: postoperative assessment of surgical efficacy by application of an overnight low-dose dexamethasone suppression test. J Neurosurg. 2003 May;98(5):967–973.
  • Carroll TB, Javorsky BR, Findling JW. Postsurgical recurrent Cushing disease: clinical benefit of early intervention in patients with normal urinary free cortisol. Endocr Pract. 2016 Oct;22(10):1216–1223.
  • Loriaux DL, Longo DL. Diagnosis and differential diagnosis of Cushing’s syndrome. N Engl J Med. 2017 Apr 13;376(15):1451–1459.
  • Colombo P, Passini E, Re T, et al. Effect of desmopressin on ACTH and cortisol secretion in states of ACTH excess. Clin Endocrinol (Oxf). 1997 Jun;46(6):661–668.
  • Malerbi DA, Mendonca BB, Liberman B, et al. The desmopressin stimulation test in the differential diagnosis of Cushing’s syndrome. Clin Endocrinol (Oxf). 1993 May;38(5):463–472.
  • Moro M, Putignano P, Losa M, et al. The desmopressin test in the differential diagnosis between Cushing’s disease and pseudo-Cushing states. J Clin Endocrinol Metab. 2000 Oct;85(10):3569–3574.
  • Newell-Price J, Perry L, Medbak S, et al. A combined test using desmopressin and corticotropin-releasing hormone in the differential diagnosis of Cushing’s syndrome. J Clin Endocrinol Metab. 1997 Jan;82(1):176–181.
  • Pecori Giraldi F, Pivonello R, Ambrogio AG, et al. The dexamethasone-suppressed corticotropin-releasing hormone stimulation test and the desmopressin test to distinguish Cushing’s syndrome from pseudo-Cushing’s states. Clin Endocrinol (Oxf). 2007 Feb;66(2):251–257.
  • Rollin GA, Costenaro F, Gerchman F, et al. Evaluation of the DDAVP test in the diagnosis of Cushing’s disease. Clin Endocrinol (Oxf). 2015 Jun;82(6):793–800.
  • Tirabassi G, Faloia E, Papa R, et al. Use of the desmopressin test in the differential diagnosis of pseudo-Cushing state from Cushing’s disease. J Clin Endocrinol Metab. 2010 Mar;95(3):1115–1122.
  • Sandouk Z, Johnston P, Bunch D, et al. Variability of late-night salivary cortisol in Cushing disease: a prospective study. J Clin Endocrinol Metab. 2018 Jan 10;103(3):983–990.
  • Hammer GD, Tyrrell JB, Lamborn KR, et al. Transsphenoidal microsurgery for Cushing’s disease: initial outcome and long-term results. J Clin Endocrinol Metab. 2004 Dec;89(12):6348–6357.
  • Nieman LK, Chrousos GP, Kellner C, et al. Successful treatment of Cushing’s syndrome with the glucocorticoid antagonist RU 486. J Clin Endocrinol Metab. 1985 Sep;61(3):536–540.
  • Petersenn S, Newell-Price J, Findling JW, et al. High variability in baseline urinary free cortisol values in patients with Cushing’s disease. Clin Endocrinol (Oxf). 2014 Feb;80(2):261–269.
  • Patil CG, Veeravagu A, Prevedello DM, et al. Outcomes after repeat transsphenoidal surgery for recurrent Cushing’s disease. Neurosurgery. 2008 Aug;63(2):266–270. discussion 270-1.
  • Knappe UJ, Ludecke DK. Persistent and recurrent hypercortisolism after transsphenoidal surgery for Cushing’s disease. Acta Neurochir Suppl. 1996;65:31–34.
  • Benveniste RJ, King WA, Walsh J, et al. Repeated transsphenoidal surgery to treat recurrent or residual pituitary adenoma. J Neurosurg. 2005 Jun;102(6):1004–1012.
  • Hofmann BM, Hlavac M, Kreutzer J, et al. Surgical treatment of recurrent Cushing’s disease. Neurosurgery. 2006 Jun;58(6):1108–1118. discussion 1108-18.
  • Friedman RB, Oldfield EH, Nieman LK, et al. Repeat transsphenoidal surgery for Cushing’s disease. J Neurosurg. 1989 Oct;71(4):520–527.
  • Feng M, Liu Z, Liu X, et al. Diagnosis and outcomes of 341 patients with Cushing’s disease following transsphenoid surgery: a single-center experience. World Neurosurg. 2018 Jan;109:e75–e80.
  • Liubinas SV, Porto LD, Kaye AH. Management of recurrent Cushing’s disease. J Clin Neurosci. 2011 Jan;18(1):7–12.
  • Wagenmakers MA, Netea-Maier RT, van Lindert EJ, et al. Repeated transsphenoidal pituitary surgery (TS) via the endoscopic technique: a good therapeutic option for recurrent or persistent Cushing’s disease (CD). Clin Endocrinol (Oxf). 2009 Feb;70(2):274–280.
  • Valderrabano P, Aller J, Garcia-Valdecasas L, et al. Results of repeated transsphenoidal surgery in Cushing’s disease. Long-term follow-up. Endocrinol Nutr. 2014 Apr;61(4):176–183.
  • Burke WT, Penn DL, Repetti CS, et al. Outcomes after repeat transsphenoidal surgery for recurrent Cushing disease: updated. Neurosurgery. 2019 Dec 1;85(6):E1030–E1036.
  • Ram Z, Nieman LK, Cutler GB Jr., et al. Early repeat surgery for persistent Cushing’s disease. J Neurosurg. 1994 Jan;80(1):37–45.
  • Dickerman RD, Oldfield EH. Basis of persistent and recurrent Cushing disease: an analysis of findings at repeated pituitary surgery. J Neurosurg. 2002 Dec;97(6):1343–1349.
  • Rubinstein G, Osswald A, Zopp S, et al. Therapeutic options after surgical failure in Cushing’s disease: a critical review. Best Pract Res Clin Endocrinol Metab. 2019 Apr;33(2):101270.
  • Alexandraki KI, Kaltsas GA, Isidori AM, et al. Long-term remission and recurrence rates in Cushing’s disease: predictive factors in a single-centre study. Eur J Endocrinol. 2013 Apr;168(4):639–648.
  • Hofmann BM, Hlavac M, Martinez R, et al. Long-term results after microsurgery for Cushing disease: experience with 426 primary operations over 35 years. J Neurosurg. 2008 Jan;108(1):9–18.
  • Bertagna X, Pivonello R, Fleseriu M, et al. LCI699, a potent 11beta-hydroxylase inhibitor, normalizes urinary cortisol in patients with Cushing’s disease: results from a multicenter, proof-of-concept study. J Clin Endocrinol Metab. 2014 Apr;99(4):1375–1383.
  • Duggan S. Osilodrostat: first Approval. Drugs. 2020 Apr;80(5):495–500.
  • Hinojosa-Amaya JM, Cuevas-Ramos D, Fleseriu M. Medical management of Cushing’s syndrome: current and emerging treatments. Drugs. 2019 Jun;79(9):935–956.
  • Amar L, Azizi M, Menard J, et al. Aldosterone synthase inhibition with LCI699: a proof-of-concept study in patients with primary aldosteronism. Hypertension. 2010 Nov;56(5):831–838.
  • Calhoun DA, White WB, Krum H, et al. Effects of a novel aldosterone synthase inhibitor for treatment of primary hypertension: results of a randomized, double-blind, placebo- and active-controlled phase 2 trial. Circulation. 2011 Nov 1;124(18):1945–1955.
  • Fleseriu M, Pivonello R, Young J, et al. Osilodrostat, a potent oral 11β-hydroxylase inhibitor: 22-week, prospective, Phase II study in Cushing’s disease. Pituitary. 2016;19(2): 138–148.
  • Biller BMN-P J, Fleseriu M, Bertagna X, et al. OR16-2. Osilodrostat treatment in Cushing’s disease (CD): results from a phase III, multicenter, double-blind, randomized withdrawal study (LINC 3). ENDO 2019. New Orleans, LA2019.
  • Cuevas-Ramos D, Fleseriu M. Treatment of Cushing’s disease: a mechanistic update. J Endocrinol. 2014 Nov;223(2):R19–39.
  • Engelhardt D, Mann K, Hormann R, et al. Ketoconazole inhibits cortisol secretion of an adrenal adenoma in vivo and in vitro. Klin Wochenschr. 1983 Apr 1;61(7):373–375.
  • Stalla GK, Stalla J, Huber M, et al. Ketoconazole inhibits corticotropic cell function in vitro. Endocrinology. 1988 Feb;122(2):618–623.
  • Castinetti F, Guignat L, Giraud P, et al. Ketoconazole in Cushing’s disease: is it worth a try? J Clin Endocrinol Metab. 2014 May;99(5):1623–1630.
  • Young J, Bertherat J, Vantyghem MC, et al. Hepatic safety of ketoconazole in Cushing’s syndrome: results of a compassionate use programme in France. Eur J Endocrinol. 2018 May;178(5):447–458.
  • Novotna A, Krasulova K, Bartonkova I, et al. Dual effects of ketoconazole cis-enantiomers on CYP3A4 in human hepatocytes and HepG2 Cells. PLoS One. 2014;9(10):e111286.
  • Ollivier M, Haissaguerre M, Ferriere A, et al. Should we avoid using ketoconazole in patients with severe Cushing’s syndrome and increased levels of liver enzymes? Eur J Endocrinol. 2018 Oct 12;179(5):L1–L2.
  • Riedl M, Maier C, Zettinig G, et al. Long term control of hypercortisolism with fluconazole: case report and in vitro studies. Eur J Endocrinol. 2006 Apr;154(4):519–524.
  • van der Pas R, Hofland LJ, Hofland J, et al. Fluconazole inhibits human adrenocortical steroidogenesis in vitro. J Endocrinol. 2012 Dec;215(3):403–412.
  • Cuevas-Ramos D, Lim DST, Fleseriu M. Update on medical treatment for Cushing’s disease. Clin Diabetes Endocrinol. 2016;2(1):16.
  • Alexandraki KI, Grossman AB. Therapeutic strategies for the treatment of severe Cushing’s syndrome. Drugs. 2016 Mar;76(4):447–458.
  • Allolio B, Schulte HM, Kaulen D, et al. Nonhypnotic low-dose etomidate for rapid correction of hypercortisolaemia in Cushing’s syndrome. Klin Wochenschr. 1988 Apr 15;66(8):361–364.
  • Carroll TB, Peppard WJ, Herrmann DJ, et al. Continuous etomidate infusion for the management of severe Cushing syndrome: validation of a standard protocol. J Endocr Soc. 2019 Jan 1;3(1):1–12.
  • Preda VA, Sen J, Karavitaki N, et al. Etomidate in the management of hypercortisolaemia in Cushing’s syndrome: a review. Eur J Endocrinol. 2012 Aug;167(2):137–143.
  • Reza-Albarran AA, Andino Rios GG, Gomez Herrera LG. Etomidate in the control of severe Cushing’s syndrome by neuroendocrine carcinoma. Clin Case Rep. 2018 May;6(5):851–854.
  • Schulte HM, Benker G, Reinwein D, et al. Infusion of low dose etomidate: correction of hypercortisolemia in patients with Cushing’s syndrome and dose-response relationship in normal subjects. J Clin Endocrinol Metab. 1990 May;70(5):1426–1430.
  • Fleseriu M, Castinetti F. Updates on the role of adrenal steroidogenesis inhibitors in Cushing’s syndrome: a focus on novel therapies. Pituitary. 2016 Dec;19(6):643–653.
  • Liddle GW, Estep HL, Kendall JWJ, et al. Clinical application of a new test of pituitary reserve*. J Clin Endocrinol Metab. 1959;19(8):875–894.
  • Fleseriu M. Medical management of persistent and recurrent cushing disease. Neurosurg Clin N Am. 2012 Oct;23(4):653–668.
  • Ceccato F, Zilio M, Barbot M, et al. Metyrapone treatment in Cushing’s syndrome: a real-life study. Endocrine. 2018 Dec;62(3):701–711.
  • Gower DB. Modifiers of steroid-hormone metabolism: a review of their chemistry, biochemistry and clinical applications. J Steroid Biochem. 1974 Aug;5(5):501–523.
  • Kamenicky P, Droumaguet C, Salenave S, et al. Mitotane, metyrapone, and ketoconazole combination therapy as an alternative to rescue adrenalectomy for severe ACTH-dependent Cushing’s syndrome. J Clin Endocrinol Metab. 2011 Sep;96(9):2796–2804.
  • Verhelst JA, Trainer PJ, Howlett TA, et al. Short and long-term responses to metyrapone in the medical management of 91 patients with Cushing’s syndrome. Clin Endocrinol (Oxf). 1991 Aug;35(2):169–178.
  • Cueto C, Brown JH, Richardson AP Jr. Biological studies on an adrenocorticolytic agent and the isolation of the active components. Endocrinology. 1958 Mar;62(3):334–339.
  • Boscaro M, Barzon L, Fallo F, et al. Cushing’s syndrome. Lancet. 2001 Mar 10;357(9258):783–791.
  • van Erp NP, Guchelaar HJ, Ploeger BA, et al. Mitotane has a strong and a durable inducing effect on CYP3A4 activity. Eur J Endocrinol. 2011 Apr;164(4):621–626.
  • Baudry C, Coste J, Bou Khalil R, et al. Efficiency and tolerance of mitotane in Cushing’s disease in 76 patients from a single center. Eur J Endocrinol. 2012 Oct;167(4):473–481.
  • Salvatori RdC A, Geer EB, Koziol T, et al. An open-label study to assess the safety and efficacy of levoketoconazole (COR-003) in the treatment of endogenous Cushing’s syndrome. Endocrine Society Meeting, San Diego, CA 2015.
  • Fleseriu M, Pivonello R, Elenkova A, et al. Efficacy and safety of levoketoconazole in the treatment of endogenous Cushing’s syndrome (SONICS): a phase 3, multicentre, open-label, single-arm trial. Lancet Diabetes Endocrinol. 2019 Nov;7(11):855–865.
  • Smith DC, Kroiss M, Kebebew E, et al. A phase 1 study of nevanimibe HCl, a novel adrenal-specific sterol O-acyltransferase 1 (SOAT1) inhibitor, in adrenocortical carcinoma. Invest New Drugs. 2020 Jan 27; DOI:10.1007/s10637-020-00899-1.
  • Langlois DK, Fritz MC, Schall WD, et al. ATR-101, a selective ACAT1 inhibitor, decreases ACTH-stimulated cortisol concentrations in dogs with naturally occurring Cushing’s syndrome. BMC Endocr Disord. 2018 May 2;18(1):24.
  • Sanders K, de Wit WL, Mol JA, et al. Abiraterone acetate for Cushing syndrome: study in a canine primary adrenocortical cell culture model. Endocrinology. 2018 Nov 1;159(11):3689–3698.
  • de Bruin C, Feelders RA, Waaijers AM, et al. Differential regulation of human dopamine D2 and somatostatin receptor subtype expression by glucocorticoids in vitro. J Mol Endocrinol. 2009 Jan;42(1):47–56.
  • Tateno T, Kato M, Tani Y, et al. Differential expression of somatostatin and dopamine receptor subtype genes in adrenocorticotropin (ACTH)-secreting pituitary tumors and silent corticotroph adenomas. Endocr J. 2009;56(4):579–584.
  • Fleseriu M, Petersenn S, Biller BMK, et al. Long-term efficacy and safety of once-monthly pasireotide in Cushing’s disease: a phase III extension study. Clin Endocrinol (Oxf). 2019 Dec;91(6):776–785.
  • Pivonello R, Petersenn S, Newell-Price J, et al. Pasireotide treatment significantly improves clinical signs and symptoms in patients with Cushing’s disease: results from a phase III study. Clin Endocrinol (Oxf). 2014;81(3):408–417.
  • Lacroix A, Gu F, Gallardo W, et al. Efficacy and safety of once-monthly pasireotide in Cushing’s disease: a 12 month clinical trial. Lancet Diabetes Endocrinol. 2018 Jan;6(1):17–26.
  • Witek PB BMK, Lacroix A, Feelders R, et al. Predictors of response to long-acting pasireotide in patients with Cushing’s disease during a phase III study. 20th European Congress of Endocrinology Barcelona, Spain 2018.
  • Henry RR, Ciaraldi TP, Armstrong D, et al. Hyperglycemia associated with pasireotide: results from a mechanistic study in healthy volunteers. J Clin Endocrinol Metab. 2013 Aug;98(8):3446–3453.
  • Colao A, De Block C, Gaztambide MS, et al. Managing hyperglycemia in patients with Cushing’s disease treated with pasireotide: medical expert recommendations. Pituitary. 2014 Apr;17(2):180–186.
  • Fleseriu M, Iweha C, Salgado L, et al. Safety and efficacy of subcutaneous pasireotide in patients with Cushing’s disease: results from an open-label, multicenter, single-arm, multinational, expanded-access study. Front Endocrinol (Lausanne). 2019;10:436.
  • Pivonello R, Arnaldi G, Scaroni C, et al. The medical treatment with pasireotide in Cushing’s disease: an Italian multicentre experience based on “real-world evidence”. Endocrine. 2019 Jun;64(3):657–672.
  • Newell-Price J, Pivonello R, Tabarin A, et al. Use of late-night salivary cortisol to monitor response to medical treatment in Cushing’s disease. Eur J Endocrinol. 2020 Feb;182(2):207–217.
  • Pivonello R, Ferone D, De Herder WW, et al. Dopamine receptor expression and function in corticotroph pituitary tumors. J Clin Endocrinol Metab. 2004;89(5):2452–2462.
  • Godbout A, Manavela M, Danilowicz K, et al. Cabergoline monotherapy in the long-term treatment of Cushing’s disease. Eur J Endocrinol. 2010;163(5):709–716.
  • Burman P, Eden-Engstrom B, Ekman B, et al. Limited value of cabergoline in Cushing’s disease: a prospective study of a 6-week treatment in 20 patients. Eur J Endocrinol. 2016 Jan;174(1):17–24.
  • Barbot M, Albiger N, Ceccato F, et al. Combination therapy for Cushing’s disease: effectiveness of two schedules of treatment. Should we start with cabergoline or ketoconazole? Pituitary. 2014;17(2):109–117.
  • Auriemma RS, Pivonello R, Ferreri L, et al. Cabergoline use for pituitary tumors and valvular disorders. Endocrinol Metab Clin North Am. 2015 Mar;44(1):89–97.
  • Halevy C, Whitelaw BC. How effective is temozolomide for treating pituitary tumours and when should it be used? Pituitary. 2017 Apr;20(2):261–266.
  • Hirohata T, Asano K, Ogawa Y, et al. DNA mismatch repair protein (MSH6) correlated with the responses of atypical pituitary adenomas and pituitary carcinomas to temozolomide: the national cooperative study by the Japan Society for Hypothalamic and Pituitary Tumors. J Clin Endocrinol Metab. 2013 Mar;98(3):1130–1136.
  • Dillard TH, Gultekin SH, Delashaw JB, et al. Temozolomide for corticotroph pituitary adenomas refractory to standard therapy. Pituitary. 2011;14(1):80–91.
  • Annamalai AK, Dean AF, Kandasamy N, et al. Temozolomide responsiveness in aggressive corticotroph tumours: a case report and review of the literature. Pituitary. 2012;15(3):276–287.
  • Losa M, Bogazzi F, Cannavo S, et al. Temozolomide therapy in patients with aggressive pituitary adenomas or carcinomas. J Neurooncol. 2016;126(3):519–525.
  • Bengtsson D, Schrøder HD, Andersen M, et al. Long-term outcome and MGMT as a predictive marker in 24 patients with atypical pituitary adenomas and pituitary carcinomas given treatment with temozolomide. J Clin Endocrinol Metab. 2015;100(4):1689–1698.
  • Matsuno A, Murakami M, Hoya K, et al. Molecular status of pituitary carcinoma and atypical adenoma that contributes the effectiveness of temozolomide. Med Mol Morphol. 2014 Mar;47(1):1–7.
  • Gheorghiu ML, Negreanu F, Fleseriu M. Updates in the medical treatment of pituitary adenomas. Horm Metab Res. 2020 Jan;52(1):8–24.
  • Lasolle H, Cortet C, Castinetti F, et al. Temozolomide treatment can improve overall survival in aggressive pituitary tumors and pituitary carcinomas. Eur J Endocrinol. 2017;176(6):769–777.
  • Zacharia BE, Gulati AP, Bruce JN, et al. High response rates and prolonged survival in patients with corticotroph pituitary tumors and refractory cushing disease from capecitabine and temozolomide (CAPTEM): a case series. Neurosurgery. 2014;74(4):447–455.
  • Langlois F, Chu J, Fleseriu M. Pituitary-directed therapies for Cushing’s disease. Front Endocrinol (Lausanne). 2018;9:164.
  • Fuertes M, Tkatch J, Rosmino J, et al. New insights in Cushing disease treatment with focus on a derivative of vitamin A. Front Endocrinol (Lausanne). 2018;9:262.
  • Paez-Pereda M, Kovalovsky D, Hopfner U, et al. Retinoic acid prevents experimental Cushing syndrome. J Clin Invest. 2001 Oct;108(8):1123–1131.
  • Castillo V, Giacomini D, Paez-Pereda M, et al. Retinoic acid as a novel medical therapy for Cushing’s disease in dogs. Endocrinology. 2006 Sep;147(9):4438–4444.
  • Pecori Giraldi F, Ambrogio AG, Andrioli M, et al. Potential role for retinoic acid in patients with Cushing’s disease. J Clin Endocrinol Metab. 2012 Oct;97(10):3577–3583.
  • Vilar L, Albuquerque JL, Lyra R, et al. The role of isotretinoin therapy for Cushing’s disease: results of a prospective study. Int J Endocrinol. 2016;2016:15–18.
  • Hayashi K, Inoshita N, Kawaguchi K, et al. The USP8 mutational status may predict drug susceptibility in corticotroph adenomas of Cushing’s disease. Eur J Endocrinol. 2016;174(2):213–226.
  • Ben-Shlomo A, Cooper O. Role of tyrosine kinase inhibitors in the treatment of pituitary tumours: from bench to bedside. Curr Opin Endocrinol Diabetes Obes. 2017 Aug;24(4):301–305.
  • Jian FF, Li YF, Chen YF, et al. Inhibition of ubiquitin-specific peptidase 8 suppresses adrenocorticotropic hormone production and tumorous corticotroph cell growth in AtT20 cells. Chin Med J (Engl). 2016 Sep 5;129(17):2102–2108.
  • Hyman DM, Puzanov I, Subbiah V, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. 2015 Aug 20;373(8):726–736.
  • Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012 Feb 23;366(8):707–714.
  • Chen J, Jian X, Deng S, et al. Identification of recurrent USP48 and BRAF mutations in Cushing’s disease. Nat Commun. 2018 Aug 9;9(1):3171.
  • Langlois F, Mccartney S, Fleseriu M. Recent progress in the medical therapy of pituitary tumors. Endocrinol Metab. 2017;3232162(2):162–170.
  • Du L, Bergsneider M, Mirsadraei L, et al. Evidence for orphan nuclear receptor TR4 in the etiology of Cushing disease. Proc Natl Acad Sci U S A. 2013 May 21;110(21):8555–8560.
  • Zhang D, Du L, Heaney AP. Testicular receptor-4: novel regulator of glucocorticoid resistance. J Clin Endocrinol Metab. 2016 Aug;101(8):3123–3133.
  • Feldhaus AL, Anderson K, Dutzar B, et al. ALD1613, a novel long-acting monoclonal antibody to control ACTH-driven pharmacology. Endocrinology. 2017 Jan 1;158(1):1–8.
  • Fleseriu M, Petersenn S. Medical management of Cushing’s disease: what is the future? Pituitary. 2012;15(3):330–341.
  • Carmichael JD, Fleseriu M. Mifepristone: is there a place in the treatment of Cushing’s disease? Endocrine. 2013;44(1):20–32.
  • Fleseriu M, Biller BMK, Findling JW, et al. Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab. 2012;97(6):2039–2049.
  • Drugs.com. Mifepristone drug interactions 2019 cited 2019 Mar 28. Available from: https://www.drugs.com/drug-interactions/mifepristone-index.html
  • Hunt H, Donaldson K, Strem M, et al. Assessment of safety, tolerability, pharmacokinetics, and pharmacological effect of orally administered CORT125134: an adaptive, double-blind, randomized, placebo-controlled phase 1 clinical study. Clin Pharmacol Drug Dev. 2018 May;7(4):408–421.
  • Moraitis A, Agrawal N, Bancos I, et al. Open-label phase 2 study to assess safety and efficacy of relacorilant (CORT125134), a selective cortisol modulator, in the treatment of endogenous hypercortisolism American Association of Clinical Endocrinologists, 2018; Boston, MA.
  • Valassi E, Crespo I, Gich I, et al. A reappraisal of the medical therapy with steroidogenesis inhibitors in Cushing’s syndrome. Clin Endocrinol (Oxf). 2012 Nov;77(5):735–742.
  • Pivonello R, Kadioglu P, Bex M, et al. Pasireotide alone or in combination with cabergoline effectively controls urinary free cortisol levels: results from a prospective study in patients with Cushing’s disease (CAPACITY). 19th European Congress of Endocrinology 20-23 May 2017 Lisbon, Portugal: European Society of Endocrinology 2017.
  • Scaroni C, Regazzo D, Ceccato F, et al. Activation of the Dopamine receptor type-2 (DRD2) promoter by 9-cis retinoic acid in a cellular model of Cushing’s disease mediates the inhibition of cell proliferation and ACTH secretion without a complete corticotroph-to-melanotroph transdifferentiation. Endocrinology. 2014;155(9):3538–3549.
  • Feelders RA, de Bruin C, Pereira AM, et al. Pasireotide alone or with cabergoline and ketoconazole in Cushing’s disease. N Engl J Med. 2010 May 13;362(19):1846–1848.
  • Gheorghiu ML, Fleseriu M. Stereotactic radiation therapy in pituitary adenomas, is it better than conventional radiation therapy? Acta Endocrinol (Buchar). 2017 Oct-Dec;13(4):476–490.
  • Minniti G, Clarke E, Scaringi C, et al. Stereotactic radiotherapy and radiosurgery for non-functioning and secreting pituitary adenomas. Rep Pract Oncol Radiother. 2016 Jul-Aug;21(4):370–378.
  • Sheehan JP, Pouratian N, Steiner L, et al. Gamma Knife surgery for pituitary adenomas: factors related to radiological and endocrine outcomes. J Neurosurg. 2011 Feb;114(2):303–309.
  • Devin JK, Allen GS, Cmelak AJ, et al. The efficacy of linear accelerator radiosurgery in the management of patients with Cushing’s disease. Stereotact Funct Neurosurg. 2004;82(5–6):254–262.
  • Estrada J, Boronat M, Mielgo M, et al. The long-term outcome of pituitary irradiation after unsuccessful transsphenoidal surgery in Cushing’s disease. N Engl J Med. 1997 Jan 16;336(3):172–177.
  • Jagannathan J, Yen CP, Pouratian N, et al. Stereotactic radiosurgery for pituitary adenomas: a comprehensive review of indications, techniques and long-term results using the Gamma Knife. J Neurooncol. 2009 May;92(3):345–356.
  • Minniti G, Osti M, Jaffrain-Rea ML, et al. Long-term follow-up results of postoperative radiation therapy for Cushing’s disease. J Neurooncol. 2007 Aug;84(1):79–84.
  • Jennings AS, Liddle GW, Orth DN. Results of treating childhood Cushing’s disease with pituitary irradiation. N Engl J Med. 1977 Nov 3;297(18):957–962.
  • Sheehan JM, Vance ML, Sheehan JP, et al. Radiosurgery for Cushing’s disease after failed transsphenoidal surgery. J Neurosurg. 2000 Nov;93(5):738–742.
  • Budyal S, Lila AR, Jalali R, et al. Encouraging efficacy of modern conformal fractionated radiotherapy in patients with uncured Cushing’s disease. Pituitary. 2014 Feb;17(1):60–67.
  • Thakkar K, Lila A, Sarathi V, et al. Cabergoline may act as a radioprotective agent in Cushing’s disease. Clin Endocrinol (Oxf). 2020 Jan;92(1):55–62.
  • Mahmoud-Ahmed AS, Suh JH. Radiation therapy for Cushing’s disease: a review. Pituitary. 2002;5(3):175–180.
  • Colin P, Delemer B, Nakib I, et al. [Unsuccessful surgery of Cushing’s disease. Role and efficacy of fractionated stereotactic radiotherapy]. Neurochirurgie. 2002 May;48(2–3Pt 2):285–293.
  • Mitsumori M, Shrieve DC, Alexander E 3rd, et al. Initial clinical results of LINAC-based stereotactic radiosurgery and stereotactic radiotherapy for pituitary adenomas. Int J Radiat Oncol Biol Phys. 1998 Oct 1;42(3):573–580.
  • Kong DS, Lee JI, Lim DH, et al. The efficacy of fractionated radiotherapy and stereotactic radiosurgery for pituitary adenomas: long-term results of 125 consecutive patients treated in a single institution. Cancer. 2007 Aug 15;110(4):854–860.
  • Castinetti F, Nagai M, Dufour H, et al. Gamma knife radiosurgery is a successful adjunctive treatment in Cushing’s disease. Eur J Endocrinol. 2007 Jan;156(1):91–98.
  • Grant RA, Whicker M, Lleva R, et al. Efficacy and safety of higher dose stereotactic radiosurgery for functional pituitary adenomas: a preliminary report. World Neurosurg. 2014 Jul-Aug;82(1–2):195–201.
  • Hughes JD, Young WF, Chang AY, et al. Radiosurgical management of patients with persistent or recurrent Cushing disease after prior transsphenoidal surgery: a management algorithm based on a 25-year experience. Neurosurgery. 2020 May 29;86(4):557–564.
  • Marek J, Jezkova J, Hana V, et al. Gamma knife radiosurgery for Cushing’s disease and Nelson’s syndrome. Pituitary. 2015 Jun;18(3):376–384.
  • Sheehan JP, Xu Z, Salvetti DJ, et al. Results of gamma knife surgery for Cushing’s disease. J Neurosurg. 2013 Dec;119(6):1486–1492.
  • Wein L, Dally M, Bach LA. Stereotactic radiosurgery for treatment of Cushing disease: an Australian experience. Intern Med J. 2012 Oct;42(10):1153–1156.
  • Wilson PJ, Williams JR, Smee RI. Cushing’s disease: a single centre’s experience using the linear accelerator (LINAC) for stereotactic radiosurgery and fractionated stereotactic radiotherapy. J Clin Neurosci. 2014 Jan;21(1):100–106.
  • Moore JM, Sala E, Amorin A, et al. CyberKnife Radiosurgery in the Multimodal Management of Patients with Cushing Disease. World Neurosurg. 2018 Apr;112:e425–e430.
  • Mehta GU, Ding D, Patibandla MR, et al. Stereotactic radiosurgery for Cushing disease: results of an international, multicenter study. J Clin Endocrinol Metab. 2017 Nov 1;102(11):4284–4291.
  • Shepard MJ, Mehta GU, Xu Z, et al. Technique of whole-sellar stereotactic radiosurgery for Cushing disease: results from a multicenter, international cohort study. World Neurosurg. 2018 Aug;116:e670–e679.
  • Sherry AD, Khattab MH, Xu MC, et al. Outcomes of stereotactic radiosurgery and hypofractionated stereotactic radiotherapy for refractory Cushing’s disease. Pituitary. 2019 Dec;22(6):607–613.
  • Darzy KH, Shalet SM. Hypopituitarism following radiotherapy revisited. Endocr Dev. 2009;15:1–24.
  • Hoybye C, Grenback E, Rahn T, et al. Adrenocorticotropic hormone-producing pituitary tumors: 12- to 22-year follow-up after treatment with stereotactic radiosurgery. Neurosurgery. 2001 Aug;49(2):284–291. discussion 291-2.
  • Cordeiro D, Xu Z, Mehta GU, et al. Hypopituitarism after gamma knife radiosurgery for pituitary adenomas: a multicenter, international study. J Neurosurg. 2019 Nov;9(131):1188–1196.
  • Wattson DA, Tanguturi SK, Spiegel DY, et al. Outcomes of proton therapy for patients with functional pituitary adenomas. Int J Radiat Oncol Biol Phys. 2014 Nov 1;90(3):532–539.
  • Brada M, Rajan B, Traish D, et al. The long-term efficacy of conservative surgery and radiotherapy in the control of pituitary adenomas. Clin Endocrinol (Oxf). 1993 Jun;38(6):571–578.
  • Erridge SC, Conkey DS, Stockton D, et al. Radiotherapy for pituitary adenomas: long-term efficacy and toxicity. Radiother Oncol. 2009 Dec;93(3):597–601.
  • Sebastian P, Balakrishnan R, Yadav B, et al. Outcome of radiotherapy for pituitary adenomas. Rep Pract Oncol Radiother. 2016 Sep-Oct;21(5):466–472.
  • Milker-Zabel S, Zabel A, Huber P, et al. Stereotactic conformal radiotherapy in patients with growth hormone-secreting pituitary adenoma. Int J Radiat Oncol Biol Phys. 2004 Jul 15;59(4):1088–1096.
  • Barber SM, Teh BS, Baskin DS. Fractionated stereotactic radiotherapy for pituitary adenomas: single-center experience in 75 consecutive patients. Neurosurgery. 2016 Sep;79(3):406–417.
  • Gupta A, Xu Z, Kano H, et al. Upfront gamma knife radiosurgery for Cushing’s disease and acromegaly: a multicenter, international study. J Neurosurg. 2018 Aug 17;131(2):532–538.
  • Jagannathan J, Sheehan JP, Pouratian N, et al. Gamma knife surgery for Cushing’s disease. J Neurosurg. 2007 Jun;106(6):980–987.
  • Pollock BE, Nippoldt TB, Stafford SL, et al. Results of stereotactic radiosurgery in patients with hormone-producing pituitary adenomas: factors associated with endocrine normalization. J Neurosurg. 2002 Sep;97(3):525–530.
  • Brada M, Burchell L, Ashley S, et al. The incidence of cerebrovascular accidents in patients with pituitary adenoma. Int J Radiat Oncol Biol Phys. 1999 Oct 1;45(3):693–698.
  • Minniti G, Flickinger J. The risk/benefit ratio of radiotherapy in pituitary tumors. Best Pract Res Clin Endocrinol Metab. 2019 Apr;33(2):101269.
  • Petit JH, Biller BM, Yock TI, et al. Proton stereotactic radiotherapy for persistent adrenocorticotropin-producing adenomas. J Clin Endocrinol Metab. 2008 Feb;93(2):393–399.
  • Smith PW, Turza KC, Carter CO, et al. Bilateral adrenalectomy for refractory Cushing disease: a safe and definitive therapy. J Am Coll Surg. 2009 Jun;208(6):1059–1064.
  • Biller BM, Grossman AB, Stewart PM, et al. Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab. 2008 Jul;93(7):2454–2462.
  • Loeffler JS, Shih HA. Radiation therapy in the management of pituitary adenomas. J Clin Endocrinol Metab. 2011 Jul;96(7):1992–2003.
  • Bax TW, Marcus DR, Galloway GQ, et al. Laparoscopic bilateral adrenalectomy following failed hypophysectomy. Surg Endosc. 1996 Dec;10(12):1150–1153.
  • Ding XF, Li HZ, Yan WG, et al. Role of adrenalectomy in recurrent Cushing’s disease. Chin Med J (Engl). 2010 Jul;123(13):1658–1662.
  • Katznelson L. Bilateral adrenalectomy for Cushing’s disease. Pituitary. 2015 Apr;18(2):269–273.
  • Chow JT, Thompson GB, Grant CS, et al. Bilateral laparoscopic adrenalectomy for corticotrophin-dependent Cushing’s syndrome: a review of the Mayo Clinic experience. Clin Endocrinol (Oxf). 2008 Apr;68(4):513–519.
  • Osswald A, Plomer E, Dimopoulou C, et al. Favorable long-term outcomes of bilateral adrenalectomy in Cushing’s disease. Eur J Endocrinol. 2014 Aug;171(2):209–215.
  • Grabner P, Hauer-Jensen M, Jervell J, et al. Long-term results of treatment of Cushing’s disease by adrenalectomy. Eur J Surg. 1991 Aug;157(8):461–464.
  • Sarkis P, Rabilloud M, Lifante JC, et al. Bilateral adrenalectomy in Cushing’s disease: altered long-term quality of life compared to other treatment options. Ann Endocrinol (Paris). 2019 Feb;80(1):32–37.
  • Ritzel K, Beuschlein F, Mickisch A, et al. Clinical review: outcome of bilateral adrenalectomy in Cushing’s syndrome: a systematic review. J Clin Endocrinol Metab. 2013 Oct;98(10):3939–3948.
  • Kasperlik-Zaluska AA, Bonicki W, Jeske W, et al. Nelson’s syndrome – 46 years later: clinical experience with 37 patients. Zentralbl Neurochir. 2006 Feb;67(1):14–20.
  • Assie G, Bahurel H, Coste J, et al. Corticotroph tumor progression after adrenalectomy in Cushing’s disease: a reappraisal of Nelson’s syndrome. J Clin Endocrinol Metab. 2007 Jan;92(1):172–179.
  • Jenkins PJ, Trainer PJ, Plowman PN, et al. The long-term outcome after adrenalectomy and prophylactic pituitary radiotherapy in adrenocorticotropin-dependent Cushing’s syndrome. J Clin Endocrinol Metab. 1995 Jan;80(1):165–171.
  • Bertagna X, Guignat L. Approach to the Cushing’s disease patient with persistent/recurrent hypercortisolism after pituitary surgery. J Clin Endocrinol Metab. 2013 Apr;98(4):1307–1318.
  • Casulari LA, Naves LA, Mello PA, et al. Nelson’s syndrome: complete remission with cabergoline but not with bromocriptine or cyproheptadine treatment. Horm Res. 2004;62(6):300–305.
  • Daniel E, Debono M, Caunt S, et al. A prospective longitudinal study of pasireotide in Nelson’s syndrome. Pituitary. 2018 Jun;21(3):247–255.
  • Katznelson L. Sustained improvements in plasma ACTH and clinical status in a patient with Nelson’s syndrome treated with pasireotide LAR, a multireceptor somatostatin analog. J Clin Endocrinol Metab. 2013 May;98(5):1803–1807.
  • Moyes VJ, Alusi G, Sabin HI, et al. Treatment of Nelson’s syndrome with temozolomide. Eur J Endocrinol. 2009 Jan;160(1):115–119.
  • Salehi F, Scheithauer BW, Moyes VJ, et al. Low immunohistochemical expression of MGMT in ACTH secreting pituitary tumors of patients with Nelson syndrome. Endocr Pathol. 2010 Dec;21(4):227–229.
  • Barber TM, Adams E, Ansorge O, et al. Nelson’s syndrome. Eur J Endocrinol. 2010 Oct;163(4):495–507.
  • Kelly PA, Samandouras G, Grossman AB, et al. Neurosurgical treatment of Nelson’s syndrome. J Clin Endocrinol Metab. 2002 Dec;87(12):5465–5469.
  • Juszczak A, Grossman A. The management of Cushing’s disease - from investigation to treatment. Endokrynol Pol. 2013;64(2):166–174.
  • Espinosa-de-Los-Monteros AL, Sosa-Eroza E, Espinosa E, et al. Long-term outcome of the different treatment alternatives for recurrent and persistent Cushing disease. Endocr Pract. 2017 Jul;23(7):759–767.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.