270
Views
5
CrossRef citations to date
0
Altmetric
Review

The application of precision medicine in monogenic diabetes

, , , &
Pages 111-129 | Received 05 Oct 2021, Accepted 25 Jan 2022, Published online: 01 Mar 2022

References

  • Johnson MB, Patel KA, and De Franco E, et al. Type 1 diabetes can present before the age of 6 months and is characterised by autoimmunity and rapid loss of beta-cells. Diabetologia. 2020;63(12):2605–2615.
  • Temple IK, James RS, Crolla JA, et al. An imprinted gene(s) for diabetes ? Nat Genet. 1995;9:110–112.
  • Babenko AP, Polak M, Cave H, et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med. 2006;355:456–466.
  • Massa O, Iafusco D, D’Amato E, et al. KCNJ11 activating mutations in Italian patients with permanent neonatal diabetes. Hum Mutat. 2005;25:22–27.
  • Habeb AM, Flanagan SE, Deeb A, et al. Permanent neonatal diabetes: different aetiology in Arabs compared to Europeans. Arch Dis Child. 2012;97:721–723.
  • Bonfanti R, Iafusco D, Rabbone I, et al. Differences between transient neonatal diabetes mellitus subtypes can guide diagnosis and therapy. Eur J Endocrinol. 2021;184:575–585.
  • Gloyn AL, Pearson ER, Antcliff JF, et al. Activating mutations in the ATP-sensitive potassium channel subunit Kir6.2 gene are associated with permanent neonatal diabetes. N Engl J Med. 2004;350:1838–1849.
  • Docherty LE, Kabwama S, and Lehmann A, et al. Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype-phenotype correlation in an international cohort of patients. Diabetologia. 2013*;56:758–762.
  • Pipatpolkai T, Usher S, and Stansfeld PJ, et al. New insights into KATP channel gene mutations and neonatal diabetes mellitus. Nat Rev Endocrinol. 2020**;16:378–393.
  • Abali ZV, De Franco E, Ozturan EK, et al. Clinical characteristics, molecular features, and long-term follow up of 15 patients with neonatal diabetes: a single-centre experience. Horm Res Paediatr. 2020;93:423–432.
  • Russo L, Iafusco D, Brescianini S, et al. Permanent diabetes during the first year of life: multiple gene screening in 54 patients. Diabetologia. 2011;54(7):1693–1701.
  • Ellard S, Flanagan SE, Girard SA, et al. Permanent diabetes caused by dominant, recessive or compound heterozygous SUR1 mutations with opposite functional effects. Am J Hum Genet. 2007;81(2):375–382.
  • Garin I, Edghill EL, Akerman I, et al. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc Natl Acad of Sci USA. 2010;107(7):3105–3110.
  • Støy J, Edghill EL, Flanagan SE, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci USA. 2007;104:15040–15044.
  • Colombo C, Porzio O, Liu M, et al. Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus. J Clin Invest. 2008;118:2148–2156.
  • Njolstad PR, Sovik O, Cuesta-Munoz A, et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med. 2001;344:1588–1592.
  • Prisco F, Iafusco D, Franzese A, et al. MODY 2 presenting as neonatal hyperglycaemia: a need to reshape the definition of “neonatal diabetes? Diabetologia. 2000;43:1331–1332.
  • Nicolino M, Claiborn KC, Senée V, et al. A novel hypomorphic PDX1 mutation responsible for permanent neonatal diabetes with subclinical exocrine deficiency. Diabetes. 2010;59:733–740.
  • De Franco E, Shaw-Smith C, SE F, et al. Biallelic PDX1 (insulin promoter factor 1) mutations causing neonatal diabetes without exocrine pancreatic insufficiency. Diabet Med. 2013;30:e197–e200.
  • Sansbury SH, Flanagan SE, Houghton JAL, et al. SLC2A2 mutations can cause neonatal diabetes, suggesting GLUT2 may have a role in human insulin secretion. Diabetologia. 2012;55:2381–2385.
  • Stoffers DA, Zinkin NT, Stanojevic V, et al. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 1997;15:106–110.
  • Weedon MN, Cebola I, Patch A-M, et al. Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet. 2014;46:61–64.
  • Demirbelek H, Cayir A, Flanagan SE, et al. Clinical characteristics and long-term follow-up of patients with diabetes due to PTF1A enhancer mutations. J Clin Endocrinol Metab. 2020;105:1–9.
  • Lango Allen H, Flanagan SE, Shaw-Smith C, et al. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet. 2012;44:20–22.
  • Shaw-Smith C, De Franco E, Lango Allen H, et al. GATA4 mutations are a cause of neonatal and childhood-onset diabetes. Diabetes. 2014;63:2888–2894.
  • Xuan S, Borok MJ, Decker KJ, et al. Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis. J Clin Invest. 2012;122:3516–3528.
  • Shi Z-D, Lee K, Yang D, et al. Genome editing in hPSCs reveals GATA6 haploinsufficiency and a genetic interaction with GATA4 in human pancreatic development. Cell Stem Cell. 2017;20:675–688.
  • De Franco E, Shaw-Smith C, Flanagan SE, et al. GATA6 mutations cause a broad phenotypic spectrum of diabetes from pancreatic agenesis to adult-onset diabetes without exocrine pancreatic insufficiency. Diabetes. 2013;62:993–997.
  • DeFranco E, Flanagan SE, Houghton JAL, et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet. 2015;386:957–963. **(**This seminal paper shows the different results of genomic testing conducted in patients from countries with low and high consanguineity rate).
  • Senée V, Chelala C, Duchatelet S, et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet. 2006;32:682–687.
  • Sellick GS, Barker KT, Stolte-Dijkstra I, et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet. 2004;36:1301–1305.
  • Rubio-Cabezas O, Milton JAL, Kantor I, et al. Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes. 2010;59:2326–2331.
  • Demirbilek H, Hatipoglu N, Gul U, et al. Permanent neonatal diabetes mellitus and neurological abnormalities due to a novel homozygous missense mutation in NEUROD1. Pediatr Diabetes. 2018;19. 898–904.
  • Naya FJ, Huang H-P, Qiu Y, et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice. Genes Dev. 1997;11:2323–2334.
  • Smith SB, Qu HQ, Taleb N, et al. Rfx6 direct islet formation and insulin production in mice and humans. Nature. 2010;463:775–780.
  • Mitchell J, Punthakee Z, Lo B, et al. Neonatal diabetes, with hypoplastic pancreas, intestinal atresia and gall bladder hypoplasia: search for the aetiology of a new autosomal recessive syndrome. Diabetologia. 2004;47:2160–2167.
  • Piccand J, Strasser P, Hodson DJ, et al. Rfx6 maintains the functional identity of adult pancreatic b cells. Cell Rep. 2014;9:2219–2232.
  • Chandra V, Albagli-Curiel O, Hastoy B, et al. RFX6 regulates insulin secretion by modulating Ca2+ homeostasis in human b cells. Cell Rep. 2014;9:2206–2218.
  • Zhu Z, Li QV, Lee K, et al. Genome editing of lineage determinants in human pluripotent stem cells reveals mechanisms of pancreatic development and diabetes. Cell Stem Cell. 2016;18:755–786. **(**This important paper illustrates the formidable power of pluripotent stem cell technology to study endocrine pancreas biology).
  • Trott J, Alpagu Y, Tan EK, et al. Mitchell-Riley syndrome iPSCs exhibit reduced pancreatic endoderm differentiation due to a mutation in RFX6. Development. 2020;147:dev194878.
  • Haumaitre C, Fabre M, Cormier S, et al. Severe pancreas hypoplasia and multicystic renal dysplasia in two human fetuses carrying novel HNF1beta/MODY5 mutations. Hum Mol Genet. 2006;15:2363–2375.
  • Yorifuji T, Kurokawa K, Mamada M, et al. Neonatal diabetes mellitus and neonatal polycystic, dysplastic kidneys: phenotypically discordant recurrence of a mutation in the hepatocyte nuclear factor-1b gene due to a germline mosaicism. J Clin Endocrinol Metab. 2004;89:2905–2908.
  • Al‐Khawaga S, Mohammed I, Saraswathi S, et al. The clinical and genetic characteristics of permanent neonatal diabetes (PNDM) in the state of Quatar. Mol Genet Genomic Med. 2019;7:e00753.
  • De Franco E, Watson RA, Weninger WJ, et al. A specific CNOT1 mutation results in a novel syndrome of pancreatic agenesis and holoprosencephaly through impaired pancreatic and neurological development. Am J Hum Genet. 2019;104:985–989.
  • Kruszka P, Berger SI, Weiss K, et al. A CCR4-NOT transcription complex, subunit 1, CNOT1, variant associated with holoprosencephaly. Am J Hum Genet. 2019;104:990–993.
  • Wang J, Cortina G, Wu SV, et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N Engl J Med. 2006;355:270–280.
  • Jensen JN, Rosenberg LC, Hecksher-Sørensen J, et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N Engl J Med. 2007;356:1781–1782.
  • Rubio-Cabezas O, Jensen JN, Hodgson MI, et al. Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic mutations in NEUROG3. Diabetes. 2011;60:1349–1353.
  • Azab B, Dardas Z, Rabab’h O, et al. Enteric anendocrinosis attributable to a novel Neurogenin-3 variant. Eur J Med Genet. 2020;63:103981.
  • Zhang X, McGrath PS, Salomone J, et al. A comprehensive structure-function study of Neurogenin3 disease-causing alleles during human pancreas and intestinal organoid development. Dev Cell. 2019;50:367–80.e7.
  • Flanagan SE, De Franco E, Lango Allen H, et al. Analysis of transcription factors key for mouse pancreatic development establishes NKX2-2 and MNX1 mutations as cause of neonatal diabetes in man. Cell Metab. 2014;19:146–154. *(*An important paper investigating the role of transcription factors in pancres development and disease).
  • Auerbach A, Cohen A, Ofek Shlomai N, et al. NKX2-2 mutation causes congenital diabetes and infantile obesity with paradoxical glucose-induced ghrelin secretion. J Clin Endocrinol Metab. 2020;105:dgaa563.
  • Sussel L, Kalamaras J, and Hartigan-O’Connor DJ, et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta-cells. Development. 1998;125:2213–2221.
  • Qi Y, Cai J, Wu Y, et al. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development. 2001;128:2723–2733.
  • Mastracci TL, Lin C-S, Sussel L. Generation of mice encoding a conditional allele in Nkx2.2. Transgenic Res. 2013;22:965–972.
  • Pan FC, Brissova M, Powers AC, et al. Inactivating the permanent neonatal diabetes gene Mnx1 switches insulin-producing β-cells to a d-like fate and reveals a facultative proliferative capacity in aged β-cells. Development. 2015;142:3637–3648.
  • Solomon BD, Pineda-Alvarez DE, Balog JZ, et al. Compound heterozygosity for mutations in PAX6 in a patient with complex brain anomaly, neonatal diabetes mellitus, and microphthalmia. Am J Med Genet PartA. 2009;149A. 2543–2546.
  • Hart AW, Mella S, Mendrychowski J, et al. The developmental regulator Pax6 is essential for maintenance of islet cell function in the adult mouse pancreas. PLoS ONE. 2013;8:e54173.
  • Poulton CJ, Schot R, and Kheradmand Kia S, et al. Microcephaly with simplified gyration,epilepsy, and infantile diabetes linked to inappropriate apoptosis of neural progenitors. Am J Hum Gen. 2011;89:265–276.
  • Abdel-Salam GMH, Schaffer AE, Zaki MS, et al. A homozygous IER3IP1 mutation causes microcephaly with simplified gyral pattern, epilepsy, and permanent neonatal diabetes syndrome (MEDS. Am J Med Genet Part A. 2012;158A:2788–2796.
  • Valenzuela I, Boronat S, Martínez-Sáez E, et al. Microcephaly with simplified gyral pattern, epilepsy and permanent neonatal diabetes syndrome (MEDS). A new patient and review of the literature. Eur J Med Genet. 2017;60:517–520.
  • Flanagan SE, Patch AM, Mackay DJ, et al. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes. 2007;56:1930–1937.
  • Liu M, Sun J, and Cui J, et al. INS-gene mutations: from genetics and beta-cell biology to clinical disease. Mol Aspect Med. 2015;42:3–18.
  • Sumnik Z, Kolouskova S, Wales JKH, et al. Sulphonylurea treatment does not improve psychomotor development in children with KCNJ11 mutations causing permanent neonatal diabetes mellitus accompanied by developmental delay and epilepsy (DEND syndrome). Diabetic Med. 2007;24:1172–1178.
  • Senée V, Vattem KM, Delépine M, et al. Clinical, genetic and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity. Diabetes. 2004;53:1876–1883.
  • Julier C, Nicolino M. Wolcott-Rallison Syndrome. Orphanet J Rare Dis. 2010;5:29.
  • Tzakis AG, Nunnelley MJ, Tekin A, et al. Liver, pancreas and kidney transplantation for the treatment of Wolcott-rallison syndrome. Am J Transplant. 2015;15:565–567.
  • Harding HP, Zeng H, Zhang Y, et al. Diabetes mellitus and exocrine pancreatic dysfunction in Perk -/- mice reveals a role for translational control in secretory cell survival. Mol Cell. 2001;7:1153–1163.
  • Zhang P, McGrath B, Li S, et al. The PERK eukaryotic initiation factor 2a kinase is required for the development of skeletal system, postnatal growth and the function and viability of the pancreas. Mol Cell Biol. 2002;22:3864–3874.
  • Cavener DR, Gupta S, and McGrath BC. PERK in beta-cell biology and insulin biogenesis. Trends Endocrinol Metab. 2010;21:714–721.
  • De Franco E, Caswell R, Johnson MB, et al. De novo mutations in EIF2B1 affecting eIF2 signaling cause neonatal/early onset diabetes and transient hepatic dysfunction. Diabetes. 2020;69:477–483.
  • Steinmüller R, Steinberger D, Müller U. MEHMO (mental retardation, epileptic seizures, hypogonadism and -genitalism, microcephaly, obesity), a novel syndrome: assignment of disease locus to Xp21.1-p22.13. Eur J Hum Genet. 1998;6:201–206.
  • Skopkova M, Hennig F, Shin B-S, et al. EIF2S3 mutations associated with severe X-linked intellectual disability syndrome MEHMO. Hum Mutat. 2017;38:409–425.
  • De Franco E, Lytrivi M, Ibrahim H, et al. YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress. J Clin Invest. 2020;130:6338–6353.
  • Rubio-Cabezas O, Flanagan SE, and Damhuis A, et al. KATP channel mutations in infants with permanent diabetes diagnosed after 6 months of life. Pediatr Diabetes. 2012;13:322–325.
  • Stanik J, Skopkova M, Stanikova D, et al. Neonatal hypoglycemia, early-onset diabetes and hypopituitarism due to the mutation in EIF2S3 gene causing MEHMO syndrome. Physiol Res. 2018;67:331–337.
  • Iafusco D, Stazi MA, Cotichini R, et al. Permanent diabetes in the first year of life. Diabetologia. 2002;45:798–804.
  • Wildin RS, Ramsdell F, Peake J, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001;27:18–20.
  • Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27:20–22.
  • Johnson MB, Hattersley AT, Flanagan SE. Monogenic autoimmune diseases of the endocrine system. Lancet Diab Endocrinol. 2016;4:862–872.
  • Chaimowitz NS, Ebenezer SJ, Hanson IC, et al. STAT1 gain of function, type 1 diabetes, and reversal with JAK inhibition. N Engl J Med. 2020;383:1494–1496.
  • Bowman P, Sulen A, and Barbetti F, et al. Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study. Lancet Diabetes Endocrinol. 2018;6:637–646.
  • Bowman P, Mathews F, Barbetti F, et al. Long-term follow-up of glycemic and neurological outcomes in an international series of patients with sulfonylurea-treated ABCC8 permanent neonatal diabetes. Diabetes Care. 2021;44:35–42.
  • Rabbone I, Barbetti F, and Gentilella R, et al. Insulin therapy in neonatal diabetes mellitus: a review of the literature. Diabetes Res Clin Pract . 2017;129. 126–135.
  • Barbetti F,D, Annunzio G. Genetic causes and treatment of neonatal diabetes and early childhood diabetes. Best Pract Res Clin Endocrinol Metab. 2018;32:575–591.
  • Froguel P, Zouali H, Vionnet N, et al. Familial hyperglycemia due to mutations in glucokinase. N Engl J Med. 1993;328:697–702.
  • Velho G, Blanché H, Vaxillaire M, et al. Identification of 14 new glucokinase mutations an description of the clinical profile of 42 MODY-2 families. Diabetologia. 1997;40:217–224.
  • The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26:3160–3167, 2003
  • Lorini R, Alibrandi A, Vitali LK, et al. Risk of type 1 diabetes development in children with incidental hyperglycemia. Diabetes Care. 2001;24:1210–1216.
  • Lorini R, Klersy C D, Annunzio G, et al. Maturity-onset diabetes of the young in children with incidental hyperglycemia. A multicenter Italian study of 172 families. Diabetes Care. 2009;32:1864–1866.
  • Delvecchio M, Mozzillo E, Salzano G, et al. Monogenic diabetes accounts for 6.3% of cases referred to 15 Italian pediatric diabetes centers during 2007-2012. J Clin Endocrinol Metab. 2017;102:1826–1834.
  • Raimondo A, Chakera AJ, Thomsen SK, et al. Phenotypic severity of homozygous GCK mutations causing neonatal or childhood-onset diabetes is primarily mediated through effects on protein stability. Hum Mol Genet. 2014;23:6432–6440.
  • Grupe A, Hultgren B, Ryan A, et al. Transgenic knockouts reveal a critical requirement for pancreatic b cell glucokinase in maintaining glucose homeostasis. Cell. 1995;83:69–78.
  • Delvecchio M, Ludovico O, Menzaghi C, et al. Low prevalence of HNF1A mutations after molecular screening of multiple MODY genes in 58 Italian families recruited in the pediatric or adult diabetes clinic from a single Italian hospital. Diabetes Care. 2014;37:e258–60.
  • Stride A, Vaxillaire M, Tuomi T, et al. The genetic abnormality in the beta-cell determines the response to an oral glucose load. Diabetologia. 2002;45:427–435.
  • Kleinberger JW, Copeland KC, Gandica RG, et al. Monogenic diabetes in overweight and obese youth diagnosed with type 2 diabetes: the TODAY clinical trial. Genet Med. 2018;20:583–590.
  • Pontoglio M, Barra J, Hadchouel M, et al. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell. 1996;84:575–585.
  • Haliyur R, Tong X, Sanyoura M, et al. Human islets expressing HNF1A variant have defective β cell transcriptional regulatory networks. J Clin Invest. 2019;129:246–251.
  • Low BSJ, Lim CS, Shirley Ding SSL, et al. Decreased GLUT2 and glucose uptake contribute to insulin secretion defects in MODY3/HNF1A hiPSC-derived mutant β cells. Nat Commun. 2021;12:3133.
  • Cardenas-Diaz FL, Osorio-Quintero C, Diaz-Miranda MA, et al. Modeling monogenic diabetes using human ESCs reveals developmental and metabolic deficiencies caused by mutations in HNF1A. Cell Stem Cell. 2019;25:273–289.
  • Pontoglio M, Sreenan S, Roe M, et al. Defective insulin secretion in hepatocyte nuclear factor 1alpha-deficient mice. J Clin Invest. 1998;101(10):2215–2222.
  • Dukes ID, Sreenan S, Roe MW, et al. Defective pancreatic β-cell glycolytic signaling in hepatocyte nuclear factor-1a-deficient mice. J Biol Chem. 1998;273(38):24457–24464.
  • Shih DQ, Screenan S, Munoz KN, et al. Loss of HNF-1a function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism. Diabetes. 2001;50(11):2472–2480.
  • Colclough K, Bellanne-Chantelot C, Saint-Martin C, et al. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia. Hum Mutat. 2013;34(5):669–685.
  • Herman WH, Fajans SS, Ortiz FJ, et al. Abnormal insulin secretion, not insulin resistance, is the genetic or primary defect of MODY in the RW pedigree. Diabetes. 1994;43(1):40–46.
  • Gupta RK, Vatamaniuk MZ, Lee CS, et al. The MODY1 gene HNF-4α regulates selected genes involved in insulin secretion. J Clin Invest. 2005;115(4):1006–1015.
  • Kuo T, Du W, Miyachi Y, et al. Antagonistic epistasis of Hnf4α and FoxO1 metabolic networks through enhancer interactions in β-cell function. Mol Metab. 2021;53:101256.
  • Ng NHJ, Jasmen JB, Lim CS, et al. HNF4A Haploinsufficiency in MODY1 abrogates liver and pancreas differentiation from patient-derived induced pluripotent stem cells. iScience. 2019;16:192–205.
  • Dubois-Laforgue D, Cornu E, Saint-Martin C, et al. Diabetes, associated clinical spectrum, long-term prognosis, and genotype/phenotype correlations in 201 adult patients with hepatocyte nuclear factor 1B (HNF1B) Molecular Defects. Diabetes Care. 2017;40(11):1436–1443.
  • Heidet L, Decramer S, Pawtowski A, et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol. 2010;5(6):1079–1090.
  • Duval H, Michel-Calemard L, Gonzales M, et al. Fetal anomalies associated with HNF1B mutations: report of 20 autopsy cases. Prenat Diagn 36:744–751, 2016
  • Bellanné-Chantelot C, Clauin S, Chauveau D, et al. Large genomic rearrangements in the hepatocyte nuclear Factor-1β (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. Diabetes. 2005;54(11):3126–3132.
  • Pearson ER, Badman MK, Lockwood CR, et al. Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1alpha and −1beta mutations. Diabetes Care. 2004;27(5):1102–1107.
  • Ng N, Mijares Zamuner M, and Siddique N, et al. Genotype-phenotype correlations and response to glucose lowering therapy in subjects with HNF1β associated diabetes. 2022;59(1): 83–93. .
  • Dubois-Laforgue D, Bellanné-Chantelot C, Charles, et al. Intellectual disability in patients with MODY due to hepatocyte nuclear factor 1B (HNF1B) molecular defects. Diabet Metab. 2017;43(1):89–92.
  • Teo AK, Lau HH, Valdez IA, et al. Early developmental perturbations in a human stem cell model of MODY5/HNF1B pancreatic hypoplasia. Stem Cell Reports. 2016;6(3):357–367.
  • Stoffers DA, Ferrer J, Clarke WL, et al. Early-onset type II diabetes mellitus (MODY4) linked to IPF1. Nat Genet. 1997;17(2):138–139.
  • Stoffers DA, Stanojevic V, Habener JF. Insulin promoter factor-1 gene mutation linked to early-onset type 2 diabetes mellitus directs expression of a dominant-negative isoprotein. J Clin Invest. 1998;102(1):232–241.
  • Fajans SS, Bell GI, Paz VP, et al. Obesity and hyperinsulinemia in a family with pancreatic agenesis and MODY caused by the IPF1 mutation Pro63fsX60. Transl Res. 2010;156(1):7–14.
  • Ahlgren U, Jonsson J, Jonsson L, et al. β-Cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev. 1998;12(12):1763–1768.
  • Deng M, Xiao X, Zhou L, et al. First case report of maturity-onset diabetes of the young type 4 pedigree in a Chinese family. Front Endocrinol 10:406, 2019
  • Schwitzgebel VM, Mamin A, Brun T, et al. Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1. J Clin Endocrinol Metab. 2003;88(9):4398–4406.
  • Todd JN, Kleinberger JW, and Zhang H, et al. Monogenic diabetes in youth with presumed type 2 diabetes: results from the progress in diabetes genetics in youth (ProDiGY) collaboration. Diabetes Care, published online ahead of print, doi: https://doi.org/10.2337/dc21-0491 2021
  • MT M, US J, Antonellis A, et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet. 1999;23(3):323–328.
  • Horikawa Y, and Enya M. Genetic dissection and clinical features of MODY6 (NEUROD1-MODY). Curr Diab Rep. 2019;19(3):12.
  • Anderson KR, Torres CA, Solomon K, et al. Cooperative transcriptional regulation of the essential pancreatic islet gene NeuroD1 (beta2) by Nkx2.2 and neurogenin 3. J Biol Chem. 2009;284(45):31236–31248.
  • Romer AI, Singer RA, Sui L, et al. Murine perinatal β-cell proliferation and the differentiation of human stem cell–derived insulin-expressing cells require NEUROD1. Diabetes. 2019;68(12):2259–2271.
  • Horikawa Y, Enya M, and Mabe H, et al. NEUROD1-deficient diabetes (MODY6): identification of the first cases in Japanese and the clinical features. Pediatr Diabetes. 2018;19(2):236–242.
  • Raeder H, Johansson S, Holm PI, et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genet. 2005;38(1):54–62.
  • Pellegrini S, Pipitone GB, Cospito A, et al. Generation of β Cells from iPSC of a MODY8 patient with a novel mutation in the carboxyl ester lipase (CEL) Gene. J Clin Endocrinol Metab. 2021;106(5):e2322–33.
  • Xiao X, Jones G, Sevilla WA, et al. A carboxyl ester lipase (CEL) mutant causes chronic pancreatitis by forming intracellular aggregates that activate apoptosis. J Biol Chem. 2016;291(44):23224–23236.
  • Patel KA, Kettunen J, and Laakso M, et al. Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. Nat Commun. 2017;8(1): 888.
  • Solorzano-Vargas RS, Bjerknes M, Wang J, et al. Null mutations of NEUROG3 are associated with delayed-onset diabetes mellitus. JCI Insight. 2020;5(1):e127657.
  • Iacovazzo D, Flanagan SE, Walker E, et al. MAFA missense mutation causes familial insulinomatosis and diabetes mellitus. Proc Natl Acad Sci. 2018;115(5):1027–1032.
  • Synofzik M, Haack TB, Kopajtich R, et al. Absence of BiP co-chaperone DNAJC3 causes diabetes mellitus and multisystemic neurodegeneration. Am J Hum Genet. 2014;95(6):689–697.
  • Ladiges WC, Knoblaugh SE, Morton JF, et al. Pancreatic beta-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes. 2005;54(4):1074–1081.
  • Lytrivi M, Senée V, Salpea P, et al. DNAJC3 deficiency induces β-cell mitochondrial apoptosis and causes syndromic young-onset diabetes. Eur J Endocrinol. 2021;184(3):455–468.
  • Igoillo-Esteve M, Genin A, Lambert N, et al. tRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans. PLoS Genet. 2013;9(10):e1003888.
  • Bohlega SA, and Abusrair A. Woodhouse-Sakati syndrome. 2016 Aug 4 [updated 2021 Jul 8]. In: Adam MP, Ardinger HH, and Pagon RA, et al., editors. GeneReviews® [Internet].Seattle (WA):University of Washington;Seattle 1993–2022.
  • Alazami AM, Al-Saif A, Al-Semari A, et al. Mutations in C2orf37, encoding a nucleolar protein, cause hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome. Am J Hum Genet. 2008;83(6):684–691.
  • Cliffe ST, Kramer JM, Hussain K, et al. SLC29A3 gene is mutated in pigmented hypertrichosis with insulin-dependent diabetes mellitus syndrome and interacts with the insulin signaling pathway. Hum Mol Genet. 2009;18(12):2257–2265.
  • Molho-Pessach V, Ramot Y, Camille F, et al. H syndrome: the first 79 patients. J Am Acad Dermatol. 2014;70(1):80–88.
  • Ortigoza-Escobar JD, Molero-Luis M, Arias A, et al. Treatment of genetic defects of thiamine transport and metabolism. Exp Rev Neurother. 2016;16(7):755–763.
  • Jungtrakoon P, Shirakawa J, Buranasupkajorn P, et al. Loss-of-function mutation in thiamine transporter 1 in a family with autosomal dominant diabetes. Diabetes. 2019;68(5):1084–1093.
  • Potter K, Wu J, and Lauzon J, et al. Beta-cell function and clinical course in three siblings with thiamine-responsive megaloblastic anemia (TRMA) treated with thiamine supplementation. J Pediatr Endocrinol Metab. 2017;30:241–246.
  • Prudente S, Jungtrakoon P, Marucci A, et al. Loss-of-function mutations in APPL1 in familial diabetes mellitus. Am J Hum Genet. 2015;97(1):177–185.
  • Han W. Dual functions of adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1 (APPL1) in insulin signaling and insulin secretion. Proceedings of the National Academy of Sciences. 2012;109(23):8795–8796.
  • Inoue H, Tanizawa Y, Wasson J, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet. 1998;20(2):143–148.
  • Tranebjærg L, Barrett T, and Rendtorff ND. WFS1 Wolfram Syndrome Spectrum Disorder 2009 Feb 24 [updated 2020 Apr 9]. In: MP A, HH A, and RA P, et al. editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2022
  • Ishihara H, Takeda, S, Tamura, A, et al. Disruption of the WFS1 gene in mice causes progressive -cell loss and impaired stimulus-secretion coupling in insulin secretion. Hum Mol Genet. 2004;13(11):1159–1170.
  • Yamada T, Ishihara H, Tamura A, et al. WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta-cells. Hum Mol Genet. 2006;15:1600–1609.
  • Fonseca SG, Ishigaki S, Oslowski CM, et al. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J Clin Invest. 2010;120:744–755.
  • Hu K, Zatyka M, Astuti D, et al. WFS1 protein expression correlates with clinical progression of optic atrophy in patients with Wolfram syndrome. J Med Genet. jmedgenet-2020-107257. DOI:https://doi.org/10.1136/jmedgenet-2020-107257. Online ahead of print.
  • Saint-Martin C, Bouvet D, Bastide M, et al. Gene panel sequencing of patients with monogenic diabetes brings to light genes typically associated with syndromic presentations. Diabetes. 2021Sep23;db210520. doi:https://doi.org/10.2337/db21-0520 Online ahead of print
  • Li M, Wang S, Xu K, et al. High prevalence of a monogenic cause in Han Chinese diagnosed with type 1 diabetes, partly driven by nonsyndromic recessive WFS1 mutations. Diabetes. 2020;69:121–126.
  • Eiberg H, Hansen L, Kjer B, et al. Autosomal dominant optic atrophy associated with hearing impairment and impaired glucose regulation caused by a missense mutation in the WFS1 gene. J Med Genet. 2006;43:435–440.
  • Bonnycastle LL, Chines PS, Hara T, et al. Autosomal dominant diabetes arising from a Wolfram syndrome 1 mutation. Diabetes. 2013;62:3943–3950.
  • De Franco E, Flanagan SE, Yagi T, et al. Dominant ER stress-inducing WFS1 mutations underlie a genetic syndrome of neonatal/infancy-onset diabetes, congenital sensorineural deafness, and congenital cataracts. Diabetes. 2017;66:2044–2053.
  • El-Shanti H, Lidral AC, Jarrah N, et al. Homozygosity mapping identifies an additional locus for Wolfram syndrome on chromosome 4q. Am J Hum Genet. 2000;66:1229–1236.
  • Mozzillo E, Delvecchio M, Carella M, et al. A novel CISD2 intragenic deletion, optic neuropathy and platelet aggregation defect in Wolfram syndrome type 2. BMC Med.Genet. 2014;15. 88.
  • Rondinelli M, Novara F, Calcaterra V, et al. Wolfram syndrome 2: a novel CISD2 mutation identified in Italian siblings. Acta Diabetol. 2015;52:175–178.
  • Pourreza MR, Sobhani M, Rahimi A, et al. Homozygosity mapping and direct sequencing identify a novel pathogenic variant in the CISD2 gene in an Iranian Wolfram syndrome family. Acta Diabetol. 2020;57:81–87.
  • Rouzier C, Moore D, Delorme C, et al. A novel CISD2 mutation associated with a classical Wolfram syndrome phenotype alters Ca2+ homeostasis and ER-mitochondria interactions. Hum Mol Genet. 2017;26:1599–1611.
  • Chen YF, Kao CH, Chen YT, et al. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev. 2009;23:1183–1194.
  • Chomyn A, Martinuzzi A, Yoneda M, et al. MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci USA. 1992;89:4221–4225.
  • Kadowaki T, Kadowaki H, Mori Y, et al. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N Engl J Med. 1994;330:962–968. *(*A paper revealing the importance of an often overlooked genetic defect leading to diabetes).
  • Guillausseau PJ, Massin P, Dubois-laforgue D, et al. Maternally inherited diabetes and deafness: a multicenter study. Ann Intern Med. 2001;134:721–728.
  • Philippi A, Heller S, Costa IG, et al. Mutations and variants of ONECUT1 in diabetes. Nat Med. 2021;27:1928–1940.
  • Heller S, Li Z, Lin Q, et al. Transcriptional changes and the role of ONECUT1 in hPSC pancreatic differentiation. Commun Biol. 2021;4:1298.
  • Liang L, Li X, Moutton S, et al. De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurological phenotypes. Hum Mol Genet. 2019;28:L2937–51.
  • Mameli C, Cazzola R, Spaccini L, et al. Neonatal diabetes in patients affected by Liang-Wang syndrome carrying KCNMA1 Variant p.(Gly375Arg) suggest a potential role of Ca 2+ and voltage-activated K + channel activity in human insulin secretion. Curr Issues Mol Biol. 2021;43:1036–1042.
  • Graff SM, Johnson SR, Leo PJ, et al. A KCNK16 mutation causing TALK-1 gain of function is associated with maturity-onset diabetes of the young. JCI Insight. 2021;6:e138057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.