1,051
Views
3
CrossRef citations to date
0
Altmetric
Review

Thyroid hormones as a disease modifier and therapeutic target in nonalcoholic steatohepatitis

, , &
Pages 425-434 | Received 03 Jun 2022, Accepted 03 Aug 2022, Published online: 11 Aug 2022

References

  • Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018 Jan;15(1):11–20.
  • Williams CD, Stengel J, Asike MI, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology. 2011 Jan;140(1):124–131.
  • Lonardo A, Nascimbeni F, Mantovani A, et al. Hypertension, diabetes, atherosclerosis and NASH: cause or consequence? J Hepatol. 2018 Feb;68(2):335–352.
  • Yki-Jarvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014 Nov;2(11):901–910.
  • Younossi Z, Tacke F, Arrese M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019 Jun;69(6):2672–2682.
  • Sanyal AJ, Van Natta ML, Clark J, et al. Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N Engl J Med. 2021 Oct 21;385(17):1559–1569.
  • Adams LA, Lymp JF, St Sauver J, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005 Jul;129(1):113–121.
  • Dulai PS, Singh S, Patel J, et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatology. 2017 May;65(5):1557–1565.
  • Simon TG, Roelstraete B, Khalili H, et al. Mortality in biopsy-confirmed nonalcoholic fatty liver disease: results from a nationwide cohort. Gut. 2021 Jul;70(7):1375–1382.
  • Ekstedt M, Hagstrom H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology. 2015 May;61(5):1547–1554.
  • Kanwal F, Kramer JR, Mapakshi S, et al. Risk of hepatocellular cancer in patients with non-alcoholic fatty liver disease. Gastroenterology. 2018 Dec;155(6):1828–1837 e2.
  • Araujo AR, Rosso N, Bedogni G, et al. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: what we need in the future. Liver Int. 2018 Feb;38(Suppl 1):47–51.
  • Haldar D, Kern B, Hodson J, et al. Outcomes of liver transplantation for non-alcoholic steatohepatitis: a European Liver Transplant Registry study. J Hepatol. 2019 Aug;71(2):313–322.
  • Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011 Aug;34(3):274–285.
  • Younossi Z, Stepanova M, Ong JP, et al. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin Gastroenterol Hepatol. 2019 Mar;17(4):748–755 e3.
  • Hagstrom H, Nasr P, Ekstedt M, et al. Health care costs of patients with biopsy-confirmed nonalcoholic fatty liver disease are nearly twice those of matched controls. Clin Gastroenterol Hepatol. 2020 Jun;18(7):1592–1599 e8.
  • Sutton KC, Wolfson SK Jr., Kuller LH. Carotid and lower extremity arterial disease in elderly adults with isolated systolic hypertension. Stroke. 1987 Sep-Oct;18(5):817–822.
  • Schattenberg JM, Lazarus JV, Newsome PN, et al. Disease burden and economic impact of diagnosed non-alcoholic steatohepatitis in five European countries in 2018: a cost-of-illness analysis. Liver Int. 2021 Jun;41(6):1227–1242.
  • O’Hara J, Finnegan A, Dhillon H, et al. Cost of non-alcoholic steatohepatitis in Europe and the USA: the GAIN study. JHEP Rep. 2020 Oct;2(5):100142.
  • McSweeney L, Breckons M, Fattakhova G, et al. Health-related quality of life and patient-reported outcome measures in NASH-related cirrhosis. JHEP Rep. 2020 Jun;2(3):100099.
  • Golabi P, Otgonsuren M, Cable R, et al. Non-alcoholic fatty liver disease (NAFLD) is associated with impairment of health related quality of life (HRQOL). Health Qual Life Outcomes. 2016 Feb 9;14:18.
  • Younossi ZM, Blissett D, Blissett R, et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 2016 Nov;64(5):1577–1586.
  • Lazarus JV, Mark HE, Anstee QM, et al. Advancing the global public health agenda for NAFLD: a consensus statement. Nat Rev Gastroenterol Hepatol. 2022 Jan;19(1):60–78.
  • Sinha RA, Singh BK, Yen PM. Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends Endocrinol Metab. 2014 Oct;25(10):538–545.
  • Hönes GS, Geist D, Moeller LC. Noncanonical action of thyroid hormone receptors alpha and beta. Exp Clin Endocrinol Diabetes. 2020 Jun;128(6–7):383–387.
  • Hönes GS, Rakov H, Logan J, et al. Noncanonical thyroid hormone signaling mediates cardiometabolic effects in vivo. Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):E11323–E11332.
  • Magnus-Levy A. Ueber den respiratorischen Gaswechsel unter dem Einfluss der Thyroidea sowie unter verschiedenen pathologischen Zuständen. Berlin Klin Wochenschr. 1895;32:650–652.
  • Magnus-Levy A. Gaswechsel und Fettumsatz bei Myxoedem und Schilddrüsenfütterung. Verhandl. D XIV Kongr. F Inn. Med. S. 1896;140:137–142.
  • Boothby WM, Sandiford I. Basal metabolism. Physiol Rev. 1924;4(1):69–162.
  • Mason R, Hunt H, Hurxthal L. Blood cholesterol values in hyperthyroidism and hypothyroidism – their significance. New England Jr Med. 1930;203(26):1273–1278.
  • Duntas LH. Thyroid disease and lipids. Thyroid. 2002 Apr;12(4):287–293.
  • Duntas LH, Brenta G. A renewed focus on the association between thyroid hormones and lipid metabolism. Front Endocrinol (Lausanne). 2018;9:511.
  • Muls E, Rosseneu M, Blaton V, et al. Serum lipids and apolipoproteins A-I, A-II and B in primary hypothyroidism before and during treatment. Eur J Clin Invest. 1984 Feb;14(1):12–15.
  • Friis T, Pedersen LR. Serum lipids in hyper- and hypothyroidism before and after treatment. Clin Chim Acta. 1987 Jan 30;162(2):155–163.
  • Ness GC, Dugan RE, Lakshmanan MR, et al. Stimulation of hepatic beta-hydroxy-beta-methylglutaryl coenzyme A reductase activity in hypophysectomized rats by L-triiodothyronine. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3839–3842.
  • Bakker O, Hudig F, Meijssen S, et al. Effects of triiodothyronine and amiodarone on the promoter of the human LDL receptor gene. Biochem Biophys Res Commun. 1998 Aug 19;249(2):517–521.
  • Shin DJ, Osborne TF. Thyroid hormone regulation and cholesterol metabolism are connected through Sterol Regulatory Element-Binding Protein-2 (SREBP-2). J Biol Chem. 2003 Sep 5;278(36):34114–34118.
  • Ito M, Arishima T, Kudo T, et al. Effect of levo-thyroxine replacement on non-high-density lipoprotein cholesterol in hypothyroid patients. J Clin Endocrinol Metab. 2007 Feb;92(2):608–611.
  • Brenta G, Berg G, Arias P, et al. Lipoprotein alterations, hepatic lipase activity, and insulin sensitivity in subclinical hypothyroidism: response to L-T(4) treatment. Thyroid. 2007 May;17(5):453–460.
  • Brenta G, Berg G, Miksztowicz V, et al. Atherogenic lipoproteins in subclinical hypothyroidism and their relationship with hepatic lipase activity: response to replacement treatment with levothyroxine. Thyroid. 2016 Mar;26(3):365–372.
  • Pazos F, Alvarez JJ, Rubies-Prat J, et al. Long-term thyroid replacement therapy and levels of lipoprotein(a) and other lipoproteins. J Clin Endocrinol Metab. 1995 Feb;80(2):562–566.
  • Tzotzas T, Krassas GE, Konstantinidis T, et al. Changes in lipoprotein(a) levels in overt and subclinical hypothyroidism before and during treatment. Thyroid. 2000 Sep;10(9):803–808.
  • Spira D, Buchmann N, Dorr M, et al. Association of thyroid function with insulin resistance: data from two population-based studies. Eur Thyroid J. 2022 Feb 28;11(2). DOI:10.1530/ETJ-21-0063.
  • Lin Y, Sun Z. Thyroid hormone potentiates insulin signaling and attenuates hyperglycemia and insulin resistance in a mouse model of type 2 diabetes [research support, N.I.H., extramural]. Br J Pharmacol. 2011 Feb;162(3):597–610.
  • Segal J, Ingbar SH. In vivo stimulation of sugar uptake in rat thymocytes. An extranuclear action of 3,5,3’-triiodothyronine. J Clin Invest. 1985 Oct;76(4):1575–1580.
  • Kushchayeva YS, Startzell M, Cochran E, et al. Thyroid hormone effects on glucose disposal in patients with insulin receptor mutations. J Clin Endocrinol Metab. 2020 Mar 1;105(3):e158–e171.
  • Torrance CJ, Devente JE, Jones JP, et al. Effects of thyroid hormone on GLUT4 glucose transporter gene expression and NIDDM in rats. Endocrinology. 1997 Mar;138(3):1204–1214.
  • Torrance CJ, Usala SJ, Pessin JE, et al. Characterization of a low affinity thyroid hormone receptor binding site within the rat GLUT4 gene promoter. Endocrinology. 1997 Mar;138(3):1215–1223.
  • Weinstein SP, O’Boyle E, Haber RS. Thyroid hormone increases basal and insulin-stimulated glucose transport in skeletal muscle. The role of GLUT4 glucose transporter expression. Diabetes. 1994 Oct;43(10):1185–1189.
  • Weinstein SP, Watts J, Haber RS. Thyroid hormone increases muscle/fat glucose transporter gene expression in rat skeletal muscle. Endocrinology. 1991 Jul;129(1):455–464.
  • Weinstein SP, O’Boyle E, Fisher M, et al. Regulation of GLUT2 glucose transporter expression in liver by thyroid hormone: evidence for hormonal regulation of the hepatic glucose transport system. Endocrinology. 1994 Aug;135(2):649–654.
  • Müller MJ, Reynard CA, Burger AG, et al. Kinetic analysis of thyroid hormone action on glucose metabolism in man. Eur J Endocrinol. 1995 Apr;132(4):413–418.
  • Chung GE, Kim D, Kim W, et al. Non-alcoholic fatty liver disease across the spectrum of hypothyroidism. J Hepatol. 2012 Jul;57(1):150–156.
  • Tahara K, Akahane T, Namisaki T, et al. Thyroid-stimulating hormone is an independent risk factor of non-alcoholic fatty liver disease. JGH Open. 2020 Jun;4(3):400–404.
  • Kim D, Kim W, Joo SK, et al. Subclinical hypothyroidism and low-normal thyroid function are associated with nonalcoholic steatohepatitis and fibrosis. Clin Gastroenterol Hepatol. 2018 Jan;16(1):123–131 e1.
  • Guo Z, Li M, Han B, et al. Association of non-alcoholic fatty liver disease with thyroid function: a systematic review and meta-analysis. Dig Liver Dis. 2018 Nov;50(11):1153–1162.
  • Manka P, Bechmann L, Best J, et al. Low free triiodothyronine is associated with advanced fibrosis in patients at high risk for nonalcoholic steatohepatitis. Dig Dis Sci. 2019 Aug;64(8):2351–2358.
  • Yu G, Tzouvelekis A, Wang R, et al. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nat Med. 2018 Jan;24(1):39–49.
  • Bano A, Chaker L, Plompen EP, et al. Thyroid function and the risk of nonalcoholic fatty liver disease: the Rotterdam study. J Clin Endocrinol Metab. 2016 Aug;101(8):3204–3211.
  • Bano A, Chaker L, Muka T, et al. Thyroid function and the risk of fibrosis of the liver, heart, and lung in humans: a systematic review and meta-analysis. Thyroid. 2020 Jun;30(6):806–820.
  • Kannt A, Wohlfart P, Madsen AN, et al. Activation of thyroid hormone receptor-beta improved disease activity and metabolism independent of body weight in a mouse model of non-alcoholic steatohepatitis and fibrosis. Br J Pharmacol. 2021 Jun;178(12):2412–2423.
  • Tzouvelekis A, Yu G, Herazo-Maya J, et al. Thyroid hormone inhibits pulmonary fibrosis through enhancement of mitochondrial function in alveolar epithelial cells. Eur Respir J. 2016;48(suppl 60):A780.
  • Alonso-Merino E, Orozco RM, Ruíz-Llorente L, et al. Thyroid hormones inhibit TGF-b signaling and attenuate fibrotic responses. Proc Nat Acad Sci. 2016;113(24):E3451–E3460.
  • Kahle M, Horsch M, Fridrich B, et al. Phenotypic comparison of common mouse strains developing high-fat diet-induced hepatosteatosis. Mol Metab. 2013;2(4):435–446.
  • Krause C, Grohs M, El Gammal A, et al. Reduced expression of thyroid hormone receptor beta in human nonalcoholic steatohepatitis. Endocr Connect. 2018 Nov 1;7(12):1448–1456.
  • Bohinc BN, Michelotti G, Xie G, et al. Repair-related activation of hedgehog signaling in stromal cells promotes intrahepatic hypothyroidism. Endocrinology. 2014 Nov;155(11):4591–4601.
  • Bruinstroop E, Dalan R, Yang C, et al. Low dose levothyroxine reduces intrahepatic lipid content in patients with type 2 diabetes mellitus and NAFLD. J Clin Endocrinol Metab. 2018 Apr 27;103(7):2698–2706.
  • Papatheodorou I, Moreno P, Manning J, et al. Expression atlas update: from tissues to single cells. Nucleic Acids Res. 2020 Jan 8;48(D1):D77–D83.
  • Wang D, Eraslan B, Wieland T, et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol Syst Biol. 2019 Feb 18;15(2):e8503.
  • Renko K, Wiese N, Goehmann J, et al. Testing of approved drugs on human DIO1 interference - a screening approach. Thyroid. 2019;29(s1):A-177-A–205.
  • Göhmann PJ, Neuenschwander M, Von Kries J, et al. High throughput screening (HTS) for identifying novel DIO3 inhibitors. 42nd Annual Meeting of the European Thyroid Association; 2019; Budapest, Hungary.
  • Short Call Abstracts. Thyroid. Oct 2019;29(s1):A-177-A-205. DOI:10.1089/thy.2019.29087
  • Hornung MW, Korte JJ, Olker JH, et al. Screening the ToxCast phase 1 chemical library for inhibition of deiodinase type 1 activity. Toxicol Sci. 2018 Apr 1;162(2):570–581.
  • Moskovich D, Finkelshtein Y, Alfandari A, et al. Targeting the DIO3 enzyme using first-in-class inhibitors effectively suppresses tumor growth: a new paradigm in ovarian cancer treatment. Oncogene. 2021 Nov;40(44):6248–6257.
  • Moran C, Chatterjee K. Resistance to thyroid hormone due to defective thyroid receptor alpha. Best Pract Res Clin Endocrinol Metab. 2015 Aug;29(4):647–657.
  • Ortiga-Carvalho TM, Sidhaye AR, Wondisford FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol. 2014 Oct;10(10):582–591.
  • Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018 Jul;24(7):908–922.
  • Tacke F, Weiskirchen R. An update on the recent advances in antifibrotic therapy. Expert Rev Gastroenterol Hepatol. 2018 Nov;12(11):1143–1152.
  • Lambrecht J, van Grunsven LA, Tacke F. Current and emerging pharmacotherapeutic interventions for the treatment of liver fibrosis. Expert Opin Pharmacother. 2020 Sep;21(13):1637–1650.
  • Attia SL, Softic S, Mouzaki M. Evolving role for pharmacotherapy in NAFLD/NASH. Clin Transl Sci. 2021 Jan;14(1):11–19.
  • Rinella ME, Tacke F, Sanyal AJ, et al. Report on the AASLD/EASL joint workshop on clinical trial endpoints in NAFLD. J Hepatol. 2019 Oct;71(4):823–833.
  • Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010 Nov;52(5):1836–1846.
  • Reimer KC, Wree A, Roderburg C, et al. New drugs for NAFLD: lessons from basic models to the clinic. Hepatol Int. 2020 Jan;14(1):8–23.
  • Reinehr T. Obesity and thyroid function. Mol Cell Endocrinol. 2010 Mar 25;316(2):165–171.
  • Sinha RA, Bruinstroop E, Singh BK, et al. Nonalcoholic fatty liver disease and hypercholesterolemia: roles of thyroid hormones, metabolites, and agonists. Thyroid. 2019 Sep;29(9):1173–1191.
  • Chiellini G, Apriletti JW, Yoshihara HA, et al. A high-affinity subtype-selective agonist ligand for the thyroid hormone receptor. Chem Biol. 1998 Jun;5(6):299–306.
  • Baxter JD, Webb P. Thyroid hormone mimetics: potential applications in atherosclerosis, obesity and type 2 diabetes. Nat Rev Drug Discov. 2009 Apr;8(4):308–320.
  • Scanlan TS. Sobetirome: a case history of bench-to-clinic drug discovery and development. Heart Fail Rev. 2010 Mar;15(2):177–182.
  • Hartley MD, Kirkemo LL, Banerji T, et al. A thyroid hormone-based strategy for correcting the biochemical abnormality in x-linked adrenoleukodystrophy. Endocrinology. 2017 May 1;158(5):1328–1338.
  • Berkenstam A, Kristensen J, Mellstrom K, et al. The thyroid hormone mimetic compound KB2115 lowers plasma LDL cholesterol and stimulates bile acid synthesis without cardiac effects in humans. Proc Natl Acad Sci USA. 2008 Jan 15;105(2):663–667.
  • Sjouke B, Langslet G, Ceska R, et al. Eprotirome in patients with familial hypercholesterolaemia (the AKKA trial): a randomised, double-blind, placebo-controlled phase 3 study. Lancet Diabetes Endocrinol. 2014 Jun;2(6):455–463.
  • Angelin B, Kristensen JD, Eriksson M, et al. Reductions in serum levels of LDL cholesterol, apolipoprotein B, triglycerides and lipoprotein(a) in hypercholesterolaemic patients treated with the liver-selective thyroid hormone receptor agonist eprotirome. J Intern Med. 2015 Mar;277(3):331–342.
  • Kelly MJ, Pietranico-Cole S, Larigan JD, et al. Discovery of 2-[3,5-dichloro-4-(5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yloxy)phenyl]-3,5-dio xo-2,3,4,5-tetrahydro[1,2,4]triazine-6-carbonitrile (MGL-3196), a highly selective thyroid hormone receptor beta agonist in clinical trials for the treatment of dyslipidemia. J Med Chem. 2014 May 22;57(10):3912–3923.
  • Taub R, Chiang E, Chabot-Blanchet M, et al. Lipid lowering in healthy volunteers treated with multiple doses of MGL-3196, a liver-targeted thyroid hormone receptor-beta agonist. Atherosclerosis. 2013 Oct;230(2):373–380.
  • Harrison SA, Bashir MR, Guy CD, et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2019 Nov 30;394(10213):2012–2024.
  • Harrison SA, Bashir M, Moussa SE, et al. Effects of Resmetirom on noninvasive endpoints in a 36-week phase 2 active treatment extension study in patients with NASH. Hepatol Commun. 2021 Apr;5(4):573–588.
  • Younossi ZM, Stepanova M, Taub RA, et al. Hepatic fat reduction due to Resmetirom in patients with nonalcoholic steatohepatitis is associated with improvement of quality of life. Clin Gastroenterol Hepatol. 2021 Jul 27;20(6): 1354–1361.
  • Ware JE Jr., Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992 Jun;30(6):473–483.
  • Harrison SA, Taub RA, Neff GW, et al. Primary data analyses of MAESTRO-NAFLD-1:a 52-week double-blind, placebo-controlled phase 3 clinical trial of Resmetirom in patients with NAFLD. London: EASL; 2022.
  • Harrison SA, Kowdley KV, Taub RA, et al. Biomarkers, imaging, & safety in a well-compensated NASH cirrhotic cohort treated with Resmetirom, a thyroid hormone receptor beta agonist, for 52 weeks. London: EASL; 2022.
  • Zhou J, Waskowicz LR, Lim A, et al. A liver-specific thyromimetic, VK2809, decreases hepatosteatosis in glycogen storage disease type Ia. Thyroid. 2019 Aug;29(8):1158–1167.
  • Erion MD, Cable EE, Ito BR, et al. Targeting thyroid hormone receptor-beta agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. Proc Natl Acad Sci USA. 2007 Sep 25;104(39):15490–15495.
  • Loomba R, Neutel J, Mohseni R, et al. VK2809, a novel liver-directed thyroid receptor beta agonist, significantly reduces liver fat with both low and high doses in patients with non-alcoholic fatty liver disease: a phase 2 randomized, placebo-controlled trial. J Hepatol. 2019 Apr;70(1):E150–E151.
  • Esler WP, Bence KK. Metabolic targets in nonalcoholic fatty liver disease. Cell Mol Gastroenterol Hepatol. 2019;8(2):247–267.
  • Runfola M, Sestito S, Bellusci L, et al. Design, synthesis and biological evaluation of novel TRbeta selective agonists sustained by ADME-toxicity analysis. Eur J Med Chem. 2020 Feb 15;188:112006. DOI:10.1016/j.ejmech.2019.112006.
  • Gasparrini M, Giampieri F, Alvarez Suarez JM, et al. AMPK as a new attractive therapeutic target for disease prevention: the role of dietary compounds AMPK and disease prevention. Curr Drug Targets. 2016;17(8):865–889.
  • Runfola M, Sestito S, Gul S, et al. Collecting data through high throughput in vitro early toxicity and off-target liability assays to rapidly identify limitations of novel thyromimetics. Data Brief. 2020 Apr;29:105206.
  • Perra A, Kowalik MA, Cabras L, et al. Potential role of two novel agonists of thyroid hormone receptor-beta on liver regeneration. Cell Prolif. 2020 May;53(5):e12808.
  • Caddeo A, Kowalik MA, Serra M, et al. TG68, a novel thyroid hormone receptor-beta agonist for the treatment of NAFLD. Int J Mol Sci. 2021 Dec 3;22(23):13105.
  • Finan B, Clemmensen C, Zhu Z, et al. Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease. Cell. 2016 Oct 20;167(3):843–857 e14.
  • Ratziu V, Francque S, Sanyal A. Breakthroughs in therapies for NASH and remaining challenges. J Hepatol. 2022 Jun;76(6):1263–1278.
  • Mantovani A, Csermely A, Petracca G, et al. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: an updated systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2021 Nov;6(11):903–913.
  • Puengel T, Liu H, Guillot A, et al. Nuclear receptors linking metabolism, inflammation, and fibrosis in nonalcoholic fatty liver disease. Int J Mol Sci. 2022 Feb 28;23(5):2668.
  • Younossi ZM, Stepanova M, Taub RA, et al. Hepatic fat reduction due to Resmetirom in patients with nonalcoholic steatohepatitis is associated with improvement of quality of life. Clin Gastroenterol Hepatol. 2022 Jun;20(6):1354–1361 e7.
  • Nock S, Johann K, Harder L, et al. CD5L constitutes a novel biomarker for integrated hepatic thyroid hormone action. Thyroid. 2020 Jun;30(6):908–923.
  • Schwabe RF, Tabas I, Pajvani UB. Mechanisms of fibrosis development in nonalcoholic steatohepatitis. Gastroenterology. 2020 May;158(7):1913–1928.
  • Wenzek C, Boelen A, Westendorf AM, et al. The interplay of thyroid hormones and the immune system – where we stand and why we need to know about it. Eur J Endocrinol. 2022 Mar 23;186(5):R65–R77.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.