233
Views
0
CrossRef citations to date
0
Altmetric
Review

A current perspective of pituitary adenoma MRI characteristics: a review

ORCID Icon
Pages 499-511 | Received 27 Apr 2022, Accepted 02 Nov 2022, Published online: 13 Nov 2022

References

  • Lundin P, Nyman R, Burman P, et al. MRI of pituitary macroadenomas with reference to hormonal activity. Neuroradiology. 1992;34:43–51.
  • Lundin P, Pedersen F. Volume of pituitary macroadenomas - assessment by MRI. J Comput Assist Tomogr. 1992;16(4):519–528.
  • Lundin P, Bergstrom K, Nyman R, et al. Macroprolactinomas: serial MR imaging in long-term bromocriptine therapy. Am J Neuroradiol. 1992;13(5):1279–1291.
  • Lundin P, Engström BE, Karlsson F, et al. Long-term octreotide therapy in growth hormone-secreting pituitary adenomas: evaluation with serial MR. Am J Neuroradiol. 1997;18(4):765–772.
  • Marro B, Zouaoui A, Sahel M, et al. MRI of pituitary adenomas in acromegaly. Neuroradiology. 1997;39(6):394–399.
  • Hagiwara A, Inoue Y, Wakasa K, et al., Comparison of growth hormone–producing and non–growth hormone–producing pituitary adenomas: imaging characteristics and pathologic correlation. Radiology. 2003;228(2): 533–538.
  • Bonneville J-F, Bonneville F, Cattin F. Magnetic resonance imaging of pituitary adenomas. Eur Radiol. 2005;15:543–548.
  • Bonneville J-F, Bonneville F, Cattin F, et al. MRI of the pituitary gland. Switzerland: Springer; 2016.
  • Bashari WA, Senanayake R, Fernandez-Pombo A, et al. Modern imaging of pituitary adenomas. Best Pract Res Clin Endocrinol Metab. 2019;33(2):101278.
  • Buchfelder M, Schlaffer S. Imaging of pituitary pathology. Handb Clin Neurol. 2014;124:151–166.
  • Pinker K, Ba-Ssalamah A, Wolfsberger S, et al. The value of high-field MRI (3 T) in the assessment of sellar lesions. Eur J Radiol. 2005;54(3):327–334.
  • Katznelson L, Laws ER Jr, Melmed S, et al. Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(11):3933–3951.
  • Melmed S. Melmed S new therapeutic agents for acromegaly. Nat Rev Endocrinol. 2016;12(2):90–98.
  • Giustina A, Chanson P, Kleinberg D, et al. Expert consensus document: a consensus on the medical treatment of acromegaly. Nat Rev Endocrinol. 2014;10:243–248.
  • Bourdelot A, Coste J, Hazebroucq V, et al. Clinical, hormonal and magnetic resonance imaging (MRI) predictors of transsphenoidal surgery outcome in acromegaly. Eur J Endocrinol. 2004;150(6):763–771.
  • Giustina A, Barkhoudarian G, Beckers A, et al. Multidisciplinary management of acromegaly: a consensus. Rev Endocr Metab Disord. 2020;21(4):667–678.
  • Fleseriu M, Biller BM, Freda PU, et al. A pituitary society update to acromegaly management guidelines. Pituitary. 2021;24(1):1–13.
  • Fleseriu M, Auchus R, Bancos I, et al. Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol. 2021;9(12):847–875.
  • Melmed S, Casanueva FF, Hoffman AR, et al. Diagnosis and treatment of hyperprolactinemia: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:273–288.
  • Varlamov EV, Hinojosa-Amaya JM, Fleseriu M. Magnetic resonance imaging in the management of prolactinomas; a review of the evidence. Pituitary. 2020;23(1):16–26.
  • Esposito D, Olsson DS, Ragnarsson O, et al. Non-functioning pituitary adenomas: indications for pituitary surgery and post-surgical management. Pituitary. 2019;22(4):422–434.
  • Freda PU, Beckers AM, Katznelson L, et al. Pituitary incidentaloma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(4):894–904.
  • Vasilev V, Rostomyan L, Daly AF, et al. Management of endocrine disease: pituitary ‘incidentaloma’: neuroradiological assessment and differential diagnosis. Eur J Endocrinol. 2016;175(4):R171–R184.
  • Raverot G, Burman P, McCormack A, et al. European society of endocrinology clinical practice guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol. 2018;178:G1–G24.
  • Daly AF, Rixhon M, Adam C, et al. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege. Belgium J Clin Endocrinol Metab. 2006;91: 4769–4775.
  • Fernandez A, Karavitaki N, Wass JA. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol (Oxf). 2010;72:377–382.
  • Raappana A, Koivukangas J, Ebeling T, et al. Incidence of pituitary adenomas in Northern Finland in 1990–2007. J Clin Endocrinol Metab. 2010;95:4268–4275.
  • Gruppetta M, Mercieca C, Vassallo J. Prevalence and incidence of pituitary adenomas: a population based study in Malta. Pituitary. 2013;16:545–553.
  • Tjörnstrand A, Gunnarsson K, Evert M, et al. The incidence rate of pituitary adenomas in western Sweden for the period 2001-2011. Eur J Endocrinol. 2014;171(4):519–526.
  • Agustsson TT, Baldvinsdottir T, Jonasson JG, et al. The epidemiology of pituitary adenomas in Iceland, 1955-2012: a nationwide population-based study. Eur J Endocrinol. 2015;173(5):655–664.
  • Oh JS, Kim HJ, Hann HJ, et al. Incidence, mortality, and cardiovascular diseases in pituitary adenoma in Korea: a nationwide population-based study. Pituitary. 2021;24(1):38–47.
  • Choi SH, Kwon BJ, Na DG, et al. Pituitary adenoma, craniopharyngioma, and Rathke cleft cyst involving both intrasellar and suprasellar regions: differentiation using MRI. Clin Radiol. 2007;62(5):453–462.
  • Bakhtiar Y, Hanaya R, Tokimura H, et al. Geometric survey on magnetic resonance imaging of growth hormone producing pituitary adenoma. Pituitary. 2014;17(2):142–149.
  • Gruppetta M, Vassallo J. Epidemiology and radiological geometric assessment of pituitary macroadenomas: population‐based study. Clin Endocrinol (Oxf). 2016;85(2):223–231.
  • Dogansen SC, Yalin GY, Tanrikulu S, et al., Clinicopathological significance of baseline T2-weighted signal intensity in functional pituitary adenomas. Pituitary. 2018;21(4): 347.
  • Gruppetta M, Formosa R, Falzon S, et al. Expression of cell cycle regulators and biomarkers of proliferation and regrowth in human pituitary adenomas. Pituitary. 2017;20(3):358–371.
  • Chacko G, Chacko AG, Kovacs K, et al. The clinical significance of MIB-1 labeling index in pituitary adenomas. Pituitary. 2010;13(4):337–344.
  • Fougner SL, Casar-Borota O, Heck A, et al. Adenoma granulation pattern correlates with clinical variables and effect of somatostatin analogue treatment in a large series of patients with acromegaly. Clin Endocrinol (Oxf). 2012;76(1):96–102.
  • Larkin S, Reddy R, Karavitaki N, et al. Granulation pattern, but not GSP or GHR mutation, is associated with clinical characteristics in somatostatin-naive patients with somatotroph adenomas. Eur J Endocrinol. 2013;168(4):491–499.
  • Cuevas-Ramos D, Fleseriu M. Somatostatin receptor ligands and resistance to treatment in pituitary adenomas. J Mol Endocrinol. 2014;52(3):R223–R240.
  • Pierallini A, Caramia F, Falcone C, et al. Pituitary macroadenomas: preoperative evaluation of consistency with diffusion-weighted MR imaging—initial experience. Radiology. 2006;239(1):223–231.
  • Yiping L, Ji X, Daoying G, et al. Prediction of the consistency of pituitary adenoma: a comparative study on diffusion-weighted imaging and pathological results. J Neuroradiol. 2016;43(3):186–194.
  • Zeynalova A, Kocak B, Durmaz ES, et al. Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI. Neuroradiology. 2019;61(7):767–774.
  • Puig-Domingo M, Resmini E, Gomez-Anson B, et al. Magnetic resonance imaging as a predictor of response to somatostatin analogs in acromegaly after surgical failure. J Clin Endocrinol Metab. 2010;95(11):4973–4978.
  • Heck A, Ringstad G, Fougner SL, et al. Intensity of pituitary adenoma on T2‐weighted magnetic resonance imaging predicts the response to octreotide treatment in newly diagnosed acromegaly. Clin Endocrinol (Oxf). 2012;77(1):72–78.
  • Potorac I, Petrossians P, Daly AF, et al., Pituitary MRI characteristics in 297 acromegaly patients based on T2-weighted sequences. Endocr Relat Cancer. 2015;22(2): 169–177.
  • Swanson AA, Erickson D, Donegan DM, et al. Clinical, biological, radiological, and pathological comparison of sparsely and densely granulated somatotroph adenomas: a single center experience from a cohort of 131 patients with acromegaly. Pituitary. 2021;24(2):192–206.
  • Heck A, Emblem KE, Casar-Borota O, et al. Quantitative analyses of T2-weighted MRI as a potential marker for response to somatostatin analogs in newly diagnosed acromegaly. Endocrine. 2016;52(2):333–343.
  • Heck A, Emblem KE, Casar-Borota O, et al. MRI T2 characteristics in somatotroph adenomas following somatostatin analog treatment in acromegaly. Endocrine. 2016;53(1):327–330.
  • Potorac I, Petrossians P, Daly A, et al. T2-weighted MRI signal predicts hormone and tumor responses to somatostatin analogs in acromegaly. Endocr Relat Cancer. 2016;23(11):871–881.
  • Bonneville F, Rivière LD, Petersenn S, et al. MRI T2 signal intensity and tumor response in patients with GH-secreting pituitary macroadenoma: PRIMARYS post hoc analysis. Eur J Endocrinol. 2019;180(3):155–164.
  • Coopmans EC, Schneiders JJ, El-Sayed N, et al. T2-signal intensity, SSTR expression, and somatostatin analogs efficacy predict response to pasireotide in acromegaly. Eur J Endocrinol. 2020;182(6):595–605.
  • Shen M, Zhang Q, Liu W, et al. Predictive value of T2 relative signal intensity for response to somatostatin analogs in newly diagnosed acromegaly. Neuroradiology. 2016;58(11):1057–1065.
  • Kocak B, Durmaz ES, Kadioglu P, et al. Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI. Eur Radiol. 2019;29(6):2731–2739.
  • Galm BP, Buckless C, Swearingen B, et al. MRI texture analysis in acromegaly and its role in predicting response to somatostatin receptor ligands. Pituitary. 2020;23(3):212–222.
  • Park YW, Kang Y, Ahn SS, et al. Radiomics model predicts granulation pattern in growth hormone-secreting pituitary adenomas. Pituitary. 2020;23(6):691–700.
  • Kreutz J, Vroonen L, Cattin F, et al. Intensity of prolactinoma on T2-weighted magnetic resonance imaging: towards another gender difference. Neuroradiology. 2015;57(7):679–684.
  • Kitamura K, Nakayama T, Ohata K, et al. Computed tomography and magnetic resonance imaging appearance of prolactinoma with spheroid-type amyloid deposition. J Comput Assist Tomogr. 2011;35(2):313–315.
  • Levine SN, Ishaq S, Nanda A, et al. Occurence of extensive amyloid deposits in a prolactin secreting pituitary macroadenoma: a radiologic-pathologic correlation. Ann Diagn Pathol. 2013;7:361–366.
  • Burlacu MC, Maiter D, Duprez T, et al. T2-weighted magnetic resonance imaging characterization of prolactinomas and association with their response to dopamine agonists. Endocrine. 2019;63(2):323–331.
  • Asa SL, Ezzat S. The pathogenesis of pituitary tumors. Annu Rev Pathol. 2009;4:97–126.
  • Mete O, Asa SL. Asa SL clinicopathological correlations in pituitary adenomas. Brain Pathol. 2012;22(4):443–453.
  • Saeger W, Honegger J, Theodoropoulou M, et al. Clinical impact of the current WHO classification of pituitary adenomas. Endocr Pathol. 2016;27(2):104–114.
  • Liu W, Zahr RS, McCartney S, et al. Clinical outcomes in male patients with lactotroph adenomas who required pituitary surgery: a retrospective single center study. Pituitary. 2018;21(5):454–462.
  • Kurosaki M, Kambe A, Watanabe T, et al. Serial 3 T magnetic resonance imaging during cabergoline treatment of macroprolactinomas. Neurol Res. 2015;37(4):341–346.
  • Faje A, Chunharojrith P, Nency J, et al. Dopamine agonists can reduce cystic prolactinomas. J Clin Endocrinol Metab. 2016;101(10):3709–3715.
  • Syro LV, Rotondo F, Cusimano MD, et al. Current status on histological classification in Cushing’s disease. Pituitary. 2015;18(2):217–224.
  • Zada G, Lin N, Laws JER. Patterns of extrasellar extension in growth hormone-secreting and nonfunctional pituitary macroadenomas. Neurosurg Focus. 2010;29(4):E4.
  • Bette S, Butenschön VM, Diestler B, et al. MRI criteria of subtypes of adenomas and epithelial cysts of the pituitary gland. Neurosurg Rev. 2020;43(1):265–272.
  • Knosp E, Steiner E, Kitz K, et al. Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery. 1993;33(4):610–617.
  • Cottier JP, Destrieux C, Brunereau L, et al. Cavernous sinus invasion by pituitary adenoma: MR imaging 1. Radiology. 2000;215(2):463–469.
  • Micko AS, Wöhrer A, Wolfsberger S, et al. Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI-based classification. J Neurosurg. 2015;122(4):803–811.
  • Micko A, Oberndorfer J, Weninger WJ, et al. Challenging Knosp high-grade pituitary adenomas. J Neurosurg. 2019;132(6):1739–1746.
  • Buchy M, Lapras V, Rabilloud M, et al. Predicting early post-operative remission in pituitary adenomas: evaluation of the modified Knosp classification. Pituitary. 2019;22(5):467–475.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.