215
Views
2
CrossRef citations to date
0
Altmetric
Review

Revisiting the physiological role of androgens in women

, , , &
Pages 547-561 | Received 20 May 2022, Accepted 03 Nov 2022, Published online: 09 Nov 2022

References

  • Lobo RA. Androgens in postmenopausal women: production, possible role, and replacement options. Obstet Gynecol Surv. 2001;56(6):361–376.
  • Lee AT, Zane LT. Dermatologic manifestations of polycystic ovary syndrome. Am J Clin Dermatol. 2007;8(4):201–219.
  • Ehrmann DA. Polycystic ovary syndrome. N Engl J Med. 2005;352(12):1223–1236.
  • Azziz R, Sanchez LA, Knochenhauer ES, et al. Androgen excess in women: experience with over 1000 consecutive patients. J Clin Endocrinol Metab. 2004;89(2):453–462.
  • Carmina E, Rosato F, Jannì A, et al. Extensive clinical experience: relative prevalence of different androgen excess disorders in 950 women referred because of clinical hyperandrogenism. J Clin Endocrinol Metab. 2006;91(1):2–6.
  • T’Sjoen G, Arcelus J, Gooren L, et al. Endocrinology of transgender medicine. Endocr Rev. 2019;40(1):97–117.
  • Davis SR, Baber R, Panay N, et al. Global consensus position statement on the use of testosterone therapy for women. J Clin Endocrinol Metab. 2019;104(10):4660–4666.
  • Labrie F, Luu-The V, Bélanger A, et al. Is dehydroepiandrosterone a hormone? J Endocrinol. 2005;187(2):169–196.
  • Labrie F. Extragonadal synthesis of sex steroids: intracrinology. Ann Endocrinol. 2003;64(2):95–107.
  • Carreau S, Wolczynski S, Galeraud-Denis I. Aromatase, oestrogens and human male reproduction. Philos Trans R Soc Lond B Biol Sci. 2010;365(1546):1571–1579.
  • Czajka-Oraniec I, Simpson ER. Aromatase research and its clinical significance. Endokrynol Pol. 2010;61(1):126–134.
  • Schiffer L, Arlt W, O’Reilly MW. Understanding the role of androgen action in female adipose tissue. Front Horm Res. 2019;53:33–49.
  • Ceruti JM, Leirós GJ, Balañá ME. Androgens and androgen receptor action in skin and hair follicles. Mol Cell Endocrinol. 2018;465:122–133.
  • Cellai I, Di Stasi V, Comeglio P, et al. Insight on the intracrinology of menopause: androgen production within the human vagina. Endocrinology. 2021;162(2). DOI:10.1210/endocr/bqaa219
  • Gibson DA, Simitsidellis I, Saunders PT. Regulation of androgen action during establishment of pregnancy. J Mol Endocrinol. 2016;57(1):R35–47.
  • Vegeto E, Villa A, Della Torre S, et al. The role of sex and sex hormones in neurodegenerative diseases. Endocr Rev. 2020;41(2):273–319.
  • Schiffer L, Arlt W, Storbeck KH. Intracrine androgen biosynthesis, metabolism and action revisited. Mol Cell Endocrinol. 2018;465:4–26.
  • Labrie C, Belanger A, Labrie F. Androgenic activity of dehydroepiandrosterone and androstenedione in the rat ventral prostate. Endocrinology. 1988;123(3):1412–1417.
  • Labrie F. Intracrinology. Mol Cell Endocrinol. 1991;78(3):C113–8.
  • Simon JA. Estrogen replacement therapy: effects on the endogenous androgen milieu. Fertil Steril. 2002;77(Suppl 4):S77–82.
  • Sourla A, Flamand M, Bélanger A, et al. Effect of dehydroepiandrosterone on vaginal and uterine histomorphology in the rat. J Steroid Biochem Mol Biol. 1998;66(3):137–149.
  • Berger L, El-Alfy M, Martel C, et al. Effects of dehydroepiandrosterone, Premarin and Acolbifene on histomorphology and sex steroid receptors in the rat vagina. J Steroid Biochem Mol Biol. 2005;96(2):201–215.
  • Gibson DA, Simitsidellis I, Cousins FL, et al. Intracrine androgens enhance decidualization and modulate expression of human endometrial receptivity genes. Sci Rep. 2016;6(1):19970.
  • Huhtinen K, Saloniemi-Heinonen T, Keski-Rahkonen P, et al. Intra-tissue steroid profiling indicates differential progesterone and testosterone metabolism in the endometrium and endometriosis lesions. J Clin Endocrinol Metab. 2014;99(11):E2188–97.
  • Rhee HS, Oh SH, Ko BJ, et al. Expression of 3 beta-hydroxysteroid dehydrogenase and P450 side chain cleavage enzyme in the human uterine endometrium. Exp Mol Med. 2003;35(3):160–166.
  • Rižner TL, Penning TM. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids. 2014;79:49–63.
  • Catalano RD, Wilson MR, Boddy SC, et al. Comprehensive expression analysis of prostanoid enzymes and receptors in the human endometrium across the menstrual cycle. Mol Hum Reprod. 2011;17(3):182–192.
  • Gibson DA, Greaves E, Critchley HO, et al. Estrogen-dependent regulation of human uterine natural killer cells promotes vascular remodelling via secretion of CCL2. Hum Reprod. 2015;30(6):1290–1301.
  • Pelletier G, Luu-The V, Têtu B, et al. Immunocytochemical localization of type 5 17beta-hydroxysteroid dehydrogenase in human reproductive tissues. J Histochem Cytochem. 1999;47(6):731–737.
  • Garcia-Ovejero D, Azcoitia I, Doncarlos LL, et al. Glia-neuron crosstalk in the neuroprotective mechanisms of sex steroid hormones. Brain Res Brain Res Rev. 2005;48(2):273–286.
  • Diczfalusy E. Endocrine functions of the human fetoplacental unit. 1964. Am J Obstet Gynecol. 2005;193(6):2024. discussion 2025.
  • Pasqualini JR. Enzymes involved in the formation and transformation of steroid hormones in the fetal and placental compartments. J Steroid Biochem Mol Biol. 2005;97(5):401–415.
  • Loganath A, Peh KL, Wong PC. Evidence for the biosynthesis of DHEA from cholesterol by first-trimester human placental tissue: source of androgens. Hormone Metab Res. 2002;34(3):116–120.
  • Escobar JC, Patel SS, Beshay VE, et al. The human placenta expresses CYP17 and generates androgens de novo. J Clin Endocrinol Metab. 2011;96(5):1385–1392.
  • Noyola-Martínez N, Halhali A, Zaga-Clavellina V, et al. A time-course regulatory and kinetic expression study of steroid metabolizing enzymes by calcitriol in primary cultured human placental cells. J Steroid Biochem Mol Biol. 2017;167:98–105.
  • Noyola-Martínez N, Halhali A, Barrera D. Steroid hormones and pregnancy. Gynecol Endocrinol. 2019;35(5):376–384.
  • Mendel CM. The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev. 1989;10(3):232–274.
  • Hammes A, Andreassen TK, Spoelgen R, et al. Role of endocytosis in cellular uptake of sex steroids. Cell. 2005;122(5):751–762.
  • Porto CS, Lazari MF, Abreu LC, et al. Receptors for androgen-binding proteins: internalization and intracellular signalling. J Steroid Biochem Mol Biol. 1995;53(1–6):561–565.
  • Krupenko SA, Krupenko NI, Danzo BJ. Interaction of sex hormone-binding globulin with plasma membranes from the rat epididymis and other tissues. J Steroid Biochem Mol Biol. 1994;51(1–2):115–124.
  • Hammond GL. Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action. J Endocrinol. 2016;230(1):R13–25.
  • Keevil BG, Adaway J. Assessment of free testosterone concentration. J Steroid Biochem Mol Biol. 2019;190:207–211.
  • Longcope C, Franz C, Morello C, et al. Steroid and gonadotropin levels in women during the peri-menopausal years. Maturitas. 1986;8(3):189–196.
  • Baldassarri M, Picchiotti N, Fava F, et al. Shorter androgen receptor polyQ alleles protect against life-threatening COVID-19 disease in European males. EBioMedicine. 2021;65:103246.
  • Brinkmann AO. Molecular basis of androgen insensitivity. Mol Cell Endocrinol. 2001;179(1–2):105–109.
  • Galani A, Kitsiou-Tzeli S, Sofokleous C, et al. Androgen insensitivity syndrome: clinical features and molecular defects. Hormones (Athens). 2008;7(3):217–229.
  • Foradori CD, Weiser MJ, Handa RJ. Non-genomic actions of androgens. Front Neuroendocrinol. 2008;29(2):169–181.
  • Lorigo M, Mariana M, Lemos MC, et al. Vascular mechanisms of testosterone: the non-genomic point of view. J Steroid Biochem Mol Biol. 2020;196:105496.
  • Lucas-Herald AK, Alves-Lopes R, Montezano AC, et al. Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications. Clin sci. 2017;131(13):1405–1418.
  • Tirabassi G, Biagioli A, Balercia G. Bone benefits of testosterone replacement therapy in male hypogonadism. Panminerva Med. 2014;56(2):151–163.
  • Heinlein CA, Chang C. The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol (Baltimore, Md). 2002;16(10):2181–2187.
  • Brinkmann AO, Faber PW, van Rooij HC, et al. The human androgen receptor: domain structure, genomic organization and regulation of expression. J Steroid Biochem. 1989;34(1–6):307–310.
  • El Kharraz S, Dubois V, van Royen ME, et al. The androgen receptor depends on ligand-binding domain dimerization for transcriptional activation. EMBO Rep. 2021;22(12):e52764.
  • El Kharraz S, Dubois V, Launonen KM, et al. N/C interactions are dispensable for normal in vivo functioning of the androgen receptor in male mice. Endocrinology. 2022;163(9):9.
  • Ibáñez L, Ong KK, Mongan N, et al. Androgen receptor gene CAG repeat polymorphism in the development of ovarian hyperandrogenism. J Clin Endocrinol Metab. 2003;88(7):3333–3338.
  • Tirabassi G, Cignarelli A, Perrini S, et al. Influence of CAG repeat polymorphism on the targets of testosterone action. Int J Endocrinol. 2015;2015:298107.
  • Zhang T, Liang W, Fang M, et al. Association of the CAG repeat polymorphisms in androgen receptor gene with polycystic ovary syndrome: a systemic review and meta-analysis. Gene. 2013;524(2):161–167.
  • Tirabassi G, Delli Muti N, Corona G, et al. Androgen receptor gene cag repeat polymorphism regulates the metabolic effects of testosterone replacement therapy in male postsurgical hypogonadotropic hypogonadism. Int J Endocrinol. 2013;2013:816740.
  • Francomano D, Greco EA, Lenzi A, et al. CAG repeat testing of androgen receptor polymorphism: is this necessary for the best clinical management of hypogonadism? J Sex Med. 2013;10(10):2373–2381.
  • Wunderlich F, Benten WP, Lieberherr M, et al. Testosterone signaling in T cells and macrophages. Steroids. 2002;67(6):535–538.
  • Estrada M, Uhlen P, Ehrlich BE. Ca2+ oscillations induced by testosterone enhance neurite outgrowth. J Cell Sci. 2006;119(4):733–743.
  • Lieberherr M, Grosse B. Androgens increase intracellular calcium concentration and inositol 1,4,5-trisphosphate and diacylglycerol formation via a pertussis toxin-sensitive G-protein. J Biol Chem. 1994;269(10):7217–7223.
  • Hampton JH, Manikkam M, Lubahn DB, et al. Androgen receptor mRNA expression in the bovine ovary. Domest Anim Endocrinol. 2004;27(1):81–88.
  • Hickey TE, Marrocco DL, Amato F, et al. Androgens augment the mitogenic effects of oocyte-secreted factors and growth differentiation factor 9 on porcine granulosa cells. Biol Reprod. 2005;73(4):825–832.
  • Magamage MPS, Zengyo M, Moniruzzaman M, et al. Testosterone induces activation of porcine primordial follicles in vitro. Reprod Med Biol. 2011;10(1):21–30.
  • Gill A, Jamnongjit M, Hammes SR. Androgens promote maturation and signaling in mouse oocytes independent of transcription: a release of inhibition model for mammalian oocyte meiosis. Mol Endocrinol (Baltimore, Md). 2004;18(1):97–104.
  • Kimura S, Matsumoto T, Matsuyama R, et al. Androgen receptor function in folliculogenesis and its clinical implication in premature ovarian failure. Trends Endocrinol Metab. 2007;18(5):183–189.
  • Sen A, Prizant H, Light A, et al. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc Natl Acad Sci U S A. 2014;111(8):3008–3013.
  • Guo J, Zhang Q, Li Y, et al. Predictive value of androgens and multivariate model for poor ovarian response. Reprod Biomed Online. 2014;28(6):723–732.
  • Rice S, Ojha K, Whitehead S, et al. Stage-specific expression of androgen receptor, follicle-stimulating hormone receptor, and anti-Müllerian hormone type II receptor in single, isolated, human preantral follicles: relevance to polycystic ovaries. J Clin Endocrinol Metab. 2007;92(3):1034–1040.
  • Simitsidellis I, Saunders PTK, Gibson DA. Androgens and endometrium: new insights and new targets. Mol Cell Endocrinol. 2018;465:48–60.
  • Mertens HJ, Heineman MJ, Theunissen PH, et al. Androgen, estrogen and progesterone receptor expression in the human uterus during the menstrual cycle. Eur J Obstet Gynecol Reprod Biol. 2001;98(1):58–65.
  • Marshall E, Lowrey J, MacPherson S, et al. In silico analysis identifies a novel role for androgens in the regulation of human endometrial apoptosis. J Clin Endocrinol Metab. 2011;96(11):E1746–55.
  • Milne SA, Henderson TA, Kelly RW, et al. Leukocyte populations and steroid receptor expression in human first-trimester decidua; regulation by antiprogestin and prostaglandin E analog. J Clin Endocrinol Metab. 2005;90(7):4315–4321.
  • Critchley HO, Saunders PT. Hormone receptor dynamics in a receptive human endometrium. Reprod Sci. 2009;16(2):191–199.
  • Massafra C, Gioia D, De Felice C, et al. Effects of estrogens and androgens on erythrocyte antioxidant superoxide dismutase, catalase and glutathione peroxidase activities during the menstrual cycle. J Endocrinol. 2000;167(3):447–452.
  • Cousins FL, Kirkwood PM, Murray AA, et al. Androgens regulate scarless repair of the endometrial “wound” in a mouse model of menstruation. FASEB J. 2016;30(8):2802–2811.
  • Perrone AM, Cerpolini S, Maria Salfi NC, et al. Effect of long-term testosterone administration on the endometrium of female-to-male (FtM) transsexuals. J Sex Med. 2009;6(11):3193–3200.
  • Tuckerman EM, Okon MA, Li T, et al. Do androgens have a direct effect on endometrial function? An in vitro study. Fertil Steril. 2000;74(4):771–779.
  • Diao HL, Su RW, Tan HN, et al. Effects of androgen on embryo implantation in the mouse delayed-implantation model. Fertil Steril. 2008;90(4):1376–1383.
  • Bertin J, Dury AY, Ouellet J, et al. Localization of the androgen-synthesizing enzymes, androgen receptor, and sex steroids in the vagina: possible implications for the treatment of postmenopausal sexual dysfunction. J Sex Med. 2014;11(8):1949–1961.
  • Traish AM, Vignozzi L, Simon JA, et al. Role of androgens in female genitourinary tissue structure and function: implications in the genitourinary syndrome of menopause. Sex Med Rev. 2018;6(4):558–571.
  • Simon JA, Goldstein I, Kim NN, et al. The role of androgens in the treatment of genitourinary syndrome of menopause (GSM): international society for the study of women’s sexual health (ISSWSH) expert consensus panel review. Menopause. 2018;25(7):837–847.
  • Maseroli E, Vignozzi L. Testosterone and vaginal function. Sex Med Rev. 2020;8(3):379–392.
  • Comeglio P, Cellai I, Filippi S, et al. Differential effects of testosterone and estradiol on clitoral function: an experimental study in rats. J Sex Med. 2016;13(12):1858–1871.
  • Secreto G, Girombelli A, Krogh V. Androgen excess in breast cancer development: implications for prevention and treatment. Endocr Relat Cancer. 2019;26(2):R81–r94.
  • Dorgan JF, Stanczyk FZ, Kahle LL, et al. Prospective case-control study of premenopausal serum estradiol and testosterone levels and breast cancer risk. BCR. 2010;12(6):R98.
  • Kaaks R, Rinaldi S, Key TJ, et al. Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer. 2005;12(4):1071–1082.
  • Yu H, Shu XO, Shi R, et al. Plasma sex steroid hormones and breast cancer risk in Chinese women. Int J Cancer. 2003;105(1):92–97.
  • Muscogiuri G, Barrea L, Feola T, et al. Pancreatic neuroendocrine neoplasms: does sex matter? Trends Endocrinol Metab. 2020;31(9):631–641.
  • Randall VA, Hibberts NA, Thornton MJ, et al. The hair follicle: a paradoxical androgen target organ. Hormone Res. 2000;54(5–6):243–250.
  • Heberden C. Sex steroids and neurogenesis. Biochem Pharmacol. 2017;141:56–62.
  • Leranth C, Petnehazy O, MacLusky NJ. Gonadal hormones affect spine synaptic density in the CA1 hippocampal subfield of male rats. J Neurosci. 2003;23(5):1588–1592.
  • Marron TU, Guerini V, Rusmini P, et al. Androgen-induced neurite outgrowth is mediated by neuritin in motor neurones. J Neurochem. 2005;92(1):10–20.
  • Edinger KL, Frye CA. Intrahippocampal administration of an androgen receptor antagonist, flutamide, can increase anxiety-like behavior in intact and DHT-replaced male rats. Horm Behav. 2006;50(2):216–222.
  • Hermans EJ, Bos PA, Ossewaarde L, et al. Effects of exogenous testosterone on the ventral striatal BOLD response during reward anticipation in healthy women. NeuroImage. 2010;52(1):277–283.
  • Edinger KL, Frye CA. Testosterone’s analgesic, anxiolytic, and cognitive-enhancing effects may be due in part to actions of its 5alpha-reduced metabolites in the hippocampus. Behav Neurosci. 2004;118(6):1352–1364.
  • Mhaouty-Kodja S. Role of the androgen receptor in the central nervous system. Mol Cell Endocrinol. 2018;465:103–112.
  • Louissaint A Jr., Rao S, Leventhal C, et al. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron. 2002;34(6):945–960.
  • Wu Y, Zhao W, Zhao J, et al. Identification of androgen response elements in the insulin-like growth factor I upstream promoter. Endocrinology. 2007;148(6):2984–2993.
  • Simerly RB, Chang C, Muramatsu M, et al. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol. 1990;294(1):76–95.
  • Banks WA. Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology. 2012;153(9):4111–4119.
  • Bianchi VE, Bresciani E, Meanti R, et al. The role of androgens in women’s health and wellbeing. Pharmacol Res. 2021;171:105758.
  • Mohamad NV, Soelaiman IN, Chin KY. A concise review of testosterone and bone health. Clin Interv Aging. 2016;11:1317–1324.
  • Zhou S, Glowacki J. Dehydroepiandrosterone and bone. Vitam Horm. 2018;108:251–271.
  • Notelovitz M. Androgen effects on bone and muscle. Fertil Steril. 2002;77(Suppl 4):S34–41.
  • Jardí F, Kim N, Laurent MR, et al. Androgen receptor in neurons slows age-related cortical thinning in male mice. J Bone Miner Res. 2019;34(3):508–519.
  • Hwang AC, Liu LK, Lee WJ, et al. Association of androgen with skeletal muscle mass and muscle function among men and women aged 50 years and older in Taiwan: results from the I-Lan longitudinal aging study. Rejuvenation Res. 2013;16(6):453–459.
  • Dubois V, Laurent M, Boonen S, et al. Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions. Cell Mol Life Sci. 2012;69(10):1651–1667.
  • Douchi T, Yamamoto S, Oki T, et al. Serum androgen levels and muscle mass in women with polycystic ovary syndrome. Obstet Gynecol. 1999;94(3):337–340.
  • Bermon S. Androgens and athletic performance of elite female athletes. Curr Opin Endocrinol Diabetes Obes. 2017;24(3):246–251.
  • Huang G, Basaria S, Travison TG, et al. Testosterone dose-response relationships in hysterectomized women with or without oophorectomy: effects on sexual function, body composition, muscle performance and physical function in a randomized trial. Menopause. 2014;21(6):612–623.
  • Dobs AS, Nguyen T, Pace C, et al. Differential effects of oral estrogen versus oral estrogen-androgen replacement therapy on body composition in postmenopausal women. J Clin Endocrinol Metab. 2002;87(4):1509–1516.
  • Mavros Y, O’Neill E, Connerty M, et al. Oxandrolone augmentation of resistance training in older women: a randomized trial. Med Sci Sports Exerc. 2015;47(11):2257–2267.
  • Tchernof A, Brochu D, Maltais-Payette I, et al. Androgens and the regulation of adiposity and body fat distribution in humans. Compr Physiol. 2018;8(4):1253–1290.
  • Sørensen AE, Udesen PB, Wissing ML, et al. MicroRNAs related to androgen metabolism and polycystic ovary syndrome. Chem Biol Interact. 2016;259(Pt A):8–16.
  • Chazenbalk G, Singh P, Irge D, et al. Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation. Steroids. 2013;78(9):920–926.
  • Kanaya N, Vonderfecht S, Chen S. Androgen (dihydrotestosterone)-mediated regulation of food intake and obesity in female mice. J Steroid Biochem Mol Biol. 2013;138:100–106.
  • Zhang H, Liu Y, Wang L, et al. Differential effects of estrogen/androgen on the prevention of nonalcoholic fatty liver disease in the male rat. J Lipid Res. 2013;54(2):345–357.
  • Völzke H, Aumann N, Krebs A, et al. Hepatic steatosis is associated with low serum testosterone and high serum DHEAS levels in men. Int JAndrology. 2010;33(1):45–53.
  • Bohdanowicz-Pawlak A, Lenarcik-Kabza A, Brona A, et al. Non-alcoholic fatty liver disease in women with polycystic ovary syndrome - clinical and metabolic aspects and lipoprotein lipase gene polymorphism. Endokrynol Pol. 2014;65(6):416–421.
  • Schooling CM. Testosterone and cardiovascular disease. Curr Opin Endocrinol Diabetes Obes. 2014;21(3):202–208.
  • Andrisse S, Feng M, Wang Z, et al. Androgen-induced insulin resistance is ameliorated by deletion of hepatic androgen receptor in females. FASEB J. 2021;35(10):e21921.
  • Ding H, Zhang J, Zhang F, et al. Resistance to the insulin and elevated level of androgen: a major cause of polycystic ovary syndrome. Front Endocrinol (Lausanne). 2021;12:741764.
  • Aydilek N, Aksakal M. Effects of testosterone on lipid peroxidation, lipid profiles and some coagulation parameters in rabbits. J Vet Med A, Physiol, Pathol, Clin Med. 2005;52(9):436–439.
  • Halushka PV, Matsuda K, Masuda A, et al. Testosterone regulation of platelet and vascular thromboxane A2 receptors. Agents and Actions Suppl. 1995;45:19–26.
  • Campelo AE, Cutini PH, Massheimer VL. Testosterone modulates platelet aggregation and endothelial cell growth through nitric oxide pathway. J Endocrinol. 2012;213(1):77–87.
  • Karolczak K, Konieczna L, Kostka T, et al. Testosterone and dihydrotestosterone reduce platelet activation and reactivity in older men and women. Aging (Albany NY). 2018;10(5):902–929.
  • Kelly DM, Jones TH. Testosterone: a vascular hormone in health and disease. J Endocrinol. 2013;217(3):R47–71.
  • Yue P, Chatterjee K, Beale C, et al. Testosterone relaxes rabbit coronary arteries and aorta. Circulation. 1995;91(4):1154–1160.
  • Montalcini T, Gorgone G, Gazzaruso C, et al. Endogenous testosterone and endothelial function in postmenopausal women. Coron Artery Dis. 2007;18(1):9–13.
  • Laughlin GA, Goodell V, Barrett-Connor E. Extremes of endogenous testosterone are associated with increased risk of incident coronary events in older women. J Clin Endocrinol Metab. 2010;95(2):740–747.
  • Ben-Batalla I, Vargas-Delgado ME, von Amsberg G, et al. Influence of androgens on immunity to self and foreign: effects on immunity and cancer. Front Immunol. 1184;2020:11.
  • Hazeldine J, Arlt W, Lord JM. Dehydroepiandrosterone as a regulator of immune cell function. J Steroid Biochem Mol Biol. 2010;120(2–3):127–136.
  • Nappi RE. To be or not to be in sexual desire: the androgen dilemma. Climacteric J Int Menopause Soc. 2015;18(5):672–674.
  • Bachmann G, Bancroft J, Braunstein G, et al. Female androgen insufficiency: the Princeton consensus statement on definition, classification, and assessment. Fertil Steril. 2002;77(4):660–665.
  • Wåhlin-Jacobsen S, Pedersen AT, Kristensen E, et al. Is there a correlation between androgens and sexual desire in women? J Sex Med. 2015;12(2):358–373.
  • Davis SR, Davison SL, Donath S, et al. Circulating androgen levels and self-reported sexual function in women. Jama. 2005;294(1):91–96.
  • Rishpon-Meyerstein N, Kilbridge T, Simone J, et al. The effect of testosterone on erythropoietin levels in anemic patients. Blood. 1968;31(4):453–460.
  • Malgor LA, Valsecia M, Vergés E, et al. Blockade of the in vitro effects of testosterone and erythropoietin on Cfu-E and Bfu-E proliferation by pretreatment of the donor rats with cyproterone and flutamide. Acta Physiologica, Pharmacologica Et Therapeutica Latinoamericana: Organo de la Asociacion Latinoamericana de Ciencias Fisiologicas Y [De] la Asociacion Latinoamericana de Farmacologia. 1998;48(2):99–105.
  • Maggio M, Snyder PJ, Ceda GP, et al. Is the haematopoietic effect of testosterone mediated by erythropoietin? The results of a clinical trial in older men. Andrology. 2013;1(1):24–28.
  • Dumontet T, Martinez A. Adrenal androgens, adrenarche, and zona reticularis: a human affair? Mol Cell Endocrinol. 2021;528:111239.
  • Apter D, Pakarinen A, Hammond GL, et al. Adrenocortical function in puberty. serum ACTH, cortisol and dehydroepiandrosterone in girls and boys. Acta paediatrica Scand. 1979;68(4):599–604.
  • Babalola AA, Ellis G. Serum dehydroepiandrosterone sulfate in a normal pediatric population. Clin Biochem. 1985;18(3):184–189.
  • Rege J, Turcu AF, Kasa-Vubu JZ, et al. 11-Ketotestosterone is the dominant circulating bioactive androgen during normal and premature adrenarche. J Clin Endocrinol Metab. 2018;103(12):4589–4598.
  • Turcu AF, Nanba AT, Auchus RJ. The rise, fall, and resurrection of 11-Oxygenated androgens in human physiology and disease. Hormone Res Paediatrics. 2018;89(5):284–291.
  • Turcu AF, Nanba AT, Chomic R, et al. Adrenal-derived 11-oxygenated 19-carbon steroids are the dominant androgens in classic 21-hydroxylase deficiency. Eur J Endocrinol. 2016;174(5):601–609.
  • Bordini B, Rosenfield RL. Normal pubertal development: part II: clinical aspects of puberty. Pediatr Rev. 2011;32(7):281–292.
  • Greaves RF, Wudy SA, Badoer E, et al. A tale of two steroids: the importance of the androgens DHEA and DHEAS for early neurodevelopment. J Steroid Biochem Mol Biol. 2019;188:77–85.
  • Burger HG. Androgen production in women. Fertil Steril. 2002;77(Suppl 4):S3–5.
  • Rothman MS, Carlson NE, Xu M, et al. Reexamination of testosterone, dihydrotestosterone, estradiol and estrone levels across the menstrual cycle and in postmenopausal women measured by liquid chromatography-tandem mass spectrometry. Steroids. 2011;76(1–2):177–182.
  • Abraham GE. Ovarian and adrenal contribution to peripheral androgens during the menstrual cycle. J Clin Endocrinol Metab. 1974;39(2):340–346.
  • Burton KA, Henderson TA, Hillier SG, et al. Local levonorgestrel regulation of androgen receptor and 17 beta-hydroxysteroid dehydrogenase type 2 expression in human endometrium. Hum Reprod. 2003;18(12):2610–2617.
  • Bui HN, Sluss PM, Blincko S, et al. Dynamics of serum testosterone during the menstrual cycle evaluated by daily measurements with an ID-LC-MS/MS method and a 2nd generation automated immunoassay. Steroids. 2013;78(1):96–101.
  • Iannone M, Dima AP, Sciarra F, et al. Development and validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous analysis of androgens, estrogens, glucocorticoids and progestagens in human serum. Biomed Chromatogr. 2022;36(5):e5344.
  • Salonia A, Pontillo M, Nappi RE, et al. Menstrual cycle-related changes in circulating androgens in healthy women with self-reported normal sexual function. J Sex Med. 2008;5(4):854–863.
  • Mushayandebvu T, Castracane VD, Gimpel T, et al. Evidence for diminished midcycle ovarian androgen production in older reproductive aged women. Fertil Steril. 1996;65(4):721–723.
  • Davison SL, Bell R, Donath S, et al. Androgen levels in adult females: changes with age, menopause, and oophorectomy. J Clin Endocrinol Metab. 2005;90(7):3847–3853.
  • Labrie F, Bélanger A, Cusan L, et al. Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab. 1997;82(8):2396–2402.
  • Zumoff B, Strain GW, Miller LK, et al. Twenty-four-hour mean plasma testosterone concentration declines with age in normal premenopausal women. J Clin Endocrinol Metab. 1995;80(4):1429–1430.
  • Burger HG, Dudley EC, Cui J, et al. A prospective longitudinal study of serum testosterone, dehydroepiandrosterone sulfate, and sex hormone-binding globulin levels through the menopause transition. J Clin Endocrinol Metab. 2000;85(8):2832–2838.
  • Labrie F, Martel C, Balser J. Wide distribution of the serum dehydroepiandrosterone and sex steroid levels in postmenopausal women: role of the ovary? Menopause. 2011;18(1):30–43.
  • Labrie F, Labrie C. DHEA and intracrinology at menopause, a positive choice for evolution of the human species. Climacteric J Int Menopause Soc. 2013;16(2):205–213.
  • Labrie F. Intracrinology and menopause: the science describing the cell-specific intracellular formation of estrogens and androgens from DHEA and their strictly local action and inactivation in peripheral tissues. Menopause. 2019;26(2):220–224.
  • Judd HL, Fournet N. Changes of ovarian hormonal function with aging. Exp Gerontol. 1994;29(3–4):285–298.
  • Adashi EY. The climacteric ovary as a functional gonadotropin-driven androgen-producing gland. Fertil Steril. 1994;62(1):20–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.