185
Views
0
CrossRef citations to date
0
Altmetric
Review

Resistance of neuroendocrine tumours to somatostatin analogs

, , &
Pages 33-52 | Received 29 Sep 2022, Accepted 05 Jan 2023, Published online: 18 Jan 2023

References

  • Gil J, Jordà M, Soldevila B, et al. Epithelial–mesenchymal transition in the resistance to somatostatin receptor ligands in acromegaly. Front Endocrinol (Lausanne). 2021;12.
  • Kaltsas GA, Besser GM, Grossman AB. The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev. 2004;25(3):458–511.
  • Caplin ME, Pavel M, Ćwikła JB, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371(3):224–233.
  • Rinke A, Müller -H-H, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID study group. J Clin Oncol. 2009;27(28):4656–4663.
  • Colao A, Auriemma RS, Lombardi G, et al. Resistance to somatostatin analogs in acromegaly. Endocr Rev. 2011;32(2):247–271.
  • Colao A, Pivonello R, Auriemma RS, et al. Growth hormone-secreting tumor shrinkage after 3 months of octreotide-long-acting release therapy predicts the response at 12 months. J Clin Endocrinol Metab. 2008;93(9):3436–3442.
  • Colao A, Pivonello R, Auriemma RS, et al. Predictors of tumor shrinkage after primary therapy with somatostatin analogs in acromegaly: a prospective study in 99 patients. J Clin Endocrinol Metab. 2006;91(6):2112–2118.
  • Günther T, Tulipano G, Dournaud P, et al. International union of basic and clinical pharmacology. CV. Somatostatin Receptors: structure, Function, Ligands, and New Nomenclature. Pharmacol Rev. 2018;70(4):763–835.
  • Bo Q, Yang F, Li Y, et al. Structural insights into the activation of somatostatin receptor 2 by cyclic SST analogues. Cell Discov. 2022;8(1):47.
  • Zhao W, Han S, Qiu N, et al. Structural insights into ligand recognition and selectivity of somatostatin receptors. Cell Res. 2022;32(8):761–772.
  • Olias G, Viollet C, Kusserow H, et al. Regulation and function of somatostatin receptors. J. Neurochem. 2004;89(5):1057–1091.
  • Chatzellis E, Kaltsas G. Somatostatin receptor expression in gastrointestinal tumors. In: Huhtaniemi I, Martini L, editors. Encyclopedia of endocrine diseases; Elsevier. Academic Press. 2019. p. 587–596. https://doi.org/10.1016/B978-0-12-801238-3.64282-4
  • Bruns C, Lewis I, Briner U, et al. SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur J Endocrinol. 2002;146(5):707–716.
  • Barbieri F, Bajetto A, Pattarozzi A, et al. Peptide receptor targeting in cancer: the somatostatin paradigm. Int J Pept. 2013;2013:1–20.
  • Patel YC. Somatostatin and Its Receptor Family. Front. Neuroendocrinol. 1999;20(3):157–198.
  • Lesche S, Lehmann D, Nagel F, et al. Differential effects of octreotide and pasireotide on somatostatin receptor internalization and trafficking in vitro. J Clin Endocrinol Metab. 2009;94(2):654–661.
  • Schmid HA. Pasireotide (SOM230): development, mechanism of action and potential applications. Mol Cell Endocrinol. 2008;286(1–2):69–74.
  • Ambrosini V, Fani M, Fanti S, et al. Radiopeptide imaging and therapy in Europe. J Nucl Med. 2011;52(Supplement 2):42S–55S.
  • Hofland LJ, Lamberts SWJ. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev. 2003;24(1):28–47.
  • Modlin IM, PAVEL M, Kidd M, et al. Review article: somatostatin analogs in the treatment of gastro-entero-pancreatic neuroendocrine (carcinoid) tumors. Aliment Pharmacol Ther. 2009. DOI:10.1111/j.1365-2036.2009.04174.x
  • Kvols LK, Moertel CG, O’Connell MJ, et al. Treatment of the malignant carcinoid syndrome. N Engl J Med. 1986;315(11):663–666.
  • Cives M, Strosberg JR. Gastroenteropancreatic Neuroendocrine Tumors. CA Cancer J Clin. 2018;68(6):471–487.
  • Lee L, Ramos-Alvarez I, Jensen RT. Predictive factors for resistant disease with medical/radiologic/liver-directed anti-tumor treatments in patients with advanced pancreatic neuroendocrine neoplasms: recent advances and controversies. Cancers (Basel). 2022;14(5):1250.
  • Kunz PL, Reidy-Lagunes D, Anthony LB, et al. Consensus guidelines for the management and treatment of neuroendocrine tumors. Pancreas. 2013;42(4):557–577.
  • Pavel M, Baudin E, Couvelard A, et al. ENETS consensus guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95(2):157–176.
  • Vinik A, Wolin EM, Audry H, et al. ELECT: a phase 3 study of efficacy and safety of lanreotide autogel/depot (LAN) treatment for carcinoid syndrome in patients with neuroendocrine tumors (NETs). J Clin Oncol. 2014;32(3_suppl):268.
  • Pavel M, Ćwikła JB, Lombard-Bohas C, et al. Efficacy and safety of high-dose lanreotide autogel in patients with progressive pancreatic or midgut neuroendocrine tumours: CLARINET forte phase 2 study results. Eur J Cancer. 2021;157:403–414.
  • Strosberg JR, Caplin ME, Kunz PL, et al. 177Lu-dotatate plus long-acting octreotide versus high‑dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021;22(12):1752–1763.
  • Wolin E, Jarzab B, Eriksson B, et al. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. Drug Des Devel Ther. 2015;5075. DOI:10.2147/DDDT.S84177.
  • Yao J, Chan JA, Mita A, et al. Phase I dose-escalation study of long-acting pasireotide in patients with neuroendocrine tumors. Onco Targets Ther. 2017;10:3177–3186.
  • Kulke MH, Ruszniewski P, Van Cutsem E, et al. A randomized, open-label, phase 2 study of everolimus in combination with pasireotide LAR or everolimus alone in advanced, well-differentiated, progressive pancreatic neuroendocrine tumors: COOPERATE-2 trial. Ann Oncol. 2017;28(6):1309–1315.
  • Chadha MK, Lombardo J, Mashtare T, et al. Acetate for management of gastroenteropancreatic neuroendocrine tumors. Anticancer Res. 2009;29(10):4127–4130.
  • Lamberti G, Faggiano A, Brighi N, et al. Nonconventional doses of somatostatin analogs in patients with progressing well-differentiated neuroendocrine tumor. J Clin Endocrinol Metab. 2020;105(1):194–200.
  • Lau SC, Abdel-Rahman O, Cheung WY. Improved survival with higher doses of octreotide long-acting release in gastroenteropancreatic neuroendocrine tumors. Med Oncol. 2018;35(9):123.
  • Eriksson B, Renstrup J, Imam H, et al. High-dose treatment with lanreotide of patients with advanced neuroendocrine gastrointestinal tumors: clinical and biological effects. Ann Oncol. 1997;8(10):1041–1044.
  • Ferolla P, Faggiano A, Grimaldi F, et al. Shortened interval of long-acting octreotide administration is effective in patients with well-differentiated neuroendocrine carcinomas in progression on standard doses. J Endocrinol Invest. 2012;35(3):326–331
  • Strosberg J, Weber J, Feldman M, et al. Above-label doses of octreotide-LAR in patients with metastatic small intestinal carcinoid tumors. Gastrointest Cancer Res. 2013;6(3):81–85.
  • Strosberg JR, Benson AB, Huynh L, et al. Clinical benefits of above-standard dose of octreotide LAR in patients with neuroendocrine tumors for control of carcinoid syndrome symptoms: a multicenter retrospective chart review study. Oncologist. 2014;19(9):930–936.
  • Diamantopoulos LN, Laskaratos F-M, Kalligeros M, et al. Antiproliferative effect of above-label doses of somatostatin analogs for the management of gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology. 2021;111(7):650–659.
  • Al‐Efraij K, Aljama MA, Kennecke HF. Association of dose escalation of octreotide long‐acting release on clinical symptoms and tumor markers and response among patients with neuroendocrine tumors. Cancer Med. 2015;4(6):864–870.
  • Welin S, Janson E, Sundin A, et al. High-dose treatment with a long-acting somatostatin analogue in patients with advanced midgut carcinoid tumours. Eur J Endocrinol. 2004;107–112. DOI:10.1530/eje.0.1510107
  • Faiss S, Räth U, Mansmann U, et al. Ultra-high-dose lanreotide treatment in patients with metastatic neuroendocrine gastroenteropancreatic tumors. Digestion. 1999;60(5):469–476.
  • Faggiano A, Di Maio S, Mocerino C, et al. Therapeutic sequences in patients with grade 1−2 neuroendocrine tumors (NET): an observational multicenter study from the ELIOS group. Endocrine. 2019;66(2):417–424.
  • Modica R, Liccardi A, Minotta R, et al. Therapeutic strategies for patients with neuroendocrine neoplasms: current perspectives. Expert Rev Endocrinol Metab. 2022;17(5):389–403.
  • Vezzosi D, Bennet A, Rochaix P, et al. Octreotide in insulinoma patients: efficacy on hypoglycemia, relationships with octreoscan scintigraphy and immunostaining with anti-Sst2A and anti-Sst5 antibodies. Eur J Endocrinol. 2005;152(5):757–767.
  • Tirosh A, Stemmer S, Solomonov E, et al. Pasireotide for malignant insulinoma. Hormones. 2015. DOI:10.14310/horm.2002.1639
  • Oziel-Taieb S, Maniry-Quellier J, Chanez B, et al. Pasireotide for refractory hypoglycemia in malignant insulinoma- case report and review of the literature. Front Endocrinol (Lausanne). 2022;13.
  • Sileo F, Cangiano B, Cacciatore C, et al. Off-label pasireotide treatment in one insulinoma patient with an atypical presentation and intolerant to diazoxide. Endocrine. 2020;70(2):435–438.
  • Wolin EM, Hu K, Hughes G, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of a long-acting release (LAR) formulation of pasireotide (SOM230) in patients with gastroenteropancreatic neuroendocrine tumors: results from a randomized, multicenter, open-label, phase I stud. Cancer Chemother Pharmacol. 2013;72(2):387–395.
  • Tomassetti P, Campana D, Piscitelli L. Treatment of Zollinger-Ellison syndrome. World J Gastroenterol. 2005;11(35):5423.
  • Prommegger R, Bale R, Ensinger C, et al. Gastric carcinoid type I tumour. Eur J Gastroenterol Hepatol. 2003;15(6):705–707.
  • Wermers RA, Fatourechi V, Wynne AG, et al. The glucagonoma syndrome clinical and pathologic features in 21 patients. Medicine (Baltimore). 1996;75(2):53–63.
  • Ghaferi AA, Chojnacki KA, Long WD, et al. Pancreatic VIPomas: subject review and one institutional experience. J Gastrointest Surg. 2008;12(2):382–393.
  • Song S, Shi R, Li B, et al. Treatment of pancreatic vasoactive intestinal peptide endocrine tumors. Pancreas. 2009;38(7):811–814.
  • Melmed S, Bronstein MD, Chanson P, et al. Statement on acromegaly therapeutic outcomes. Nat Rev Endocrinol. 2018;14(9):552–561.
  • Molitch ME. Diagnosis and treatment of pituitary adenomas. JAMA. 2017;317(5):516.
  • Gadelha MR, Wildemberg LE, Bronstein MD, et al. Somatostatin receptor ligands in the treatment of acromegaly. Pituitary. 2017;20(1):100–108.
  • Bonert V, Mirocha J, Carmichael J, et al. Cost-effectiveness and efficacy of a novel combination regimen in acromegaly: a prospective, randomized trial. J Clin Endocrinol Metab. 2020;105(9):e3236–e3245.
  • Shimon I, Adnan Z, Gorshtein A, et al. Efficacy and safety of long-acting pasireotide in patients with somatostatin-resistant acromegaly: a multicenter study. Endocrine. 2018;62(2):448–455.
  • Muhammad A, van der Lely AJ, Delhanty PJD, et al. Efficacy and safety of switching to pasireotide in patients with acromegaly controlled with pegvisomant and first-generation somatostatin analogues (PAPE study). J Clin Endocr. 2018;103(2):586–595.
  • Stelmachowska-Banaś M, Czajka-Oraniec I, Tomasik A, et al. Real-world experience with pasireotide-lar in resistant acromegaly: a single center 1-year observation. Pituitary. 2022;25(1):180–190.
  • Chiloiro S, Giampietro A, Mirra F, et al. Pegvisomant and pasireotide LAR as second line therapy in acromegaly: clinical effectiveness and predictors of response. Eur J Endocrinol. 2021;184(2):217–229.
  • Taboada GF, Luque RM, Bastos W, et al. Quantitative analysis of somatostatin receptor subtype (SSTR1–5) gene expression levels in somatotropinomas and non-functioning pituitary adenomas. Eur J Endocrinol. 2007;156(1):65–74.
  • Witek P, Bolanowski M, Szamotulska K, et al. The effect of 6 months’ treatment with pasireotide LAR on glucose metabolism in patients with resistant acromegaly in real-world clinical settings. Front. Endocrinol. 2021;12.
  • Bevan JS. The antitumoral effects of somatostatin analog therapy in acromegaly. J Clin Endocrinol Metab. 2005;90(3):1856–1863.
  • Kuhn E, Caron P, Delemer B, et al. Pegvisomant in combination or pegvisomant alone after failure of somatostatin analogs in acromegaly patients: an observational French ACROSTUDY cohort study. Endocrine. 2021;71(1):158–167.
  • Bernabéu I, Fajardo C, Marazuela M, et al. Effectiveness of lanreotide autogel 120 mg at extended dosing intervals for acromegaly. Endocrine. 2020;70(3):575–583.
  • Losa M, Resmini E, Barzaghi LR, et al. Resistance to first-generation somatostatin receptor ligands does not impair the results of gamma knife radiosurgery in acromegaly. Clin Endocrinol. 2021;95(6):849–855.
  • Samson SL, Nachtigall LB, Fleseriu M, et al. Maintenance of acromegaly control in patients switching from injectable somatostatin receptor ligands to oral octreotide. J Clin Endocrinol Metab. 2020;105(10):e3785–e3797.
  • Störmann S, Schopohl J, Bullmann C, et al. Multicenter, observational study of lanreotide autogel for the treatment of patients with acromegaly in routine clinical practice in Germany, Austria and Switzerland. Exp Clin Endocrinol Diabetes. 2021;129(3):224–233.
  • Quinkler M, Petroff D, Knappe UJ, et al. Medical therapy of acromegaly in Germany 2019 – data from the German acromegaly registry. Exp Clin Endocrinol Diabetes. 2021;129(3):216–223.
  • Colao A, Bronstein MD, Brue T, et al. Pasireotide for acromegaly: long-term outcomes from an extension to the phase III PAOLA study. Eur J Endocrinol. 2020;182(6):583.
  • Puig-Domingo M, Bernabéu I, Picó A, et al. Pasireotide in the personalized treatment of acromegaly. Front. Endocrinol. 2021;12.
  • Resmini E, Dadati P, Ravetti J-L, et al. Rapid pituitary tumor shrinkage with dissociation between antiproliferative and antisecretory effects of a long-acting octreotide in an acromegalic patient. J Clin Endocrinol Metab. 2007;92(5):1592–1599.
  • Brighi N, Panzuto F, Modica R, et al. Biliary stone disease in patients with neuroendocrine tumors treated with somatostatin analogs: a multicenter study. Oncol. 2020;25(3):259–265.
  • Howe JR, Cardona K, Fraker DL, et al. The surgical management of small bowel neuroendocrine tumors. Pancreas. 2017;46(6):715–731.
  • Patel KR, Nahar A, Elhassan YS, et al. The effects of somatostatin analogues on glycaemia in the treatment of neuroendocrine tumours. J Neuroendocrinol. 2022;34(4)
  • An Z, Lei T, Duan L, et al. Efficacy and safety of lanreotide autogel compared with lanreotide 40 Mg prolonged release in Chinese patients with active acromegaly: results from a phase 3, prospective, randomized, and open-label study (LANTERN). BMC Endocr Disord. 2020;20(1):57.
  • Pavel M, Gross DJ, Benavent M, et al. Telotristat ethyl in carcinoid syndrome: safety and efficacy in the TELECAST phase 3 trial. Endocr Relat Cancer. 2018;25(3):309–322.
  • Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (Version 1.1). Eur J Cancer. 2009;45(2):228–247.
  • Giustina A, Barkan A, Casanueva FF, et al. Criteria for cure of acromegaly: a consensus statement 1 †. J Clin Endocrinol Metab. 2000;85(2):526–529.
  • Gola M, Bonadonna S, Mazziotti G, et al. Resistance to somatostatin analogs in acromegaly: an evolving concept? J Endocrinol Invest. 2006;29(1):86–93.
  • Lamberts SWJ, Pieters GFFM, Metselaar HJ, et al. Development of resistance to a long-acting somatostatin analogue during treatment of two patients with metastatic endocrine pancreatic tumours. Acta Endocrinol (Copenh). 1988;119(4):561–566.
  • Pape U-F, Perren A, Niederle B, et al. ENETS consensus guidelines for the management of patients with neuroendocrine neoplasms from the jejuno-ileum and the appendix including goblet cell carcinomas. Neuroendocrinology. 2012;95(2):135–156.
  • Fuentes-Fayos AC, García-Martínez A, Herrera-Martínez AD, et al. Molecular determinants of the response to medical treatment of growth hormone secreting pituitary neuroendocrine tumors. Minerva Endocrinol. 2019;44(2)
  • Venegas-Moreno E, Vazquez-Borrego MC, Dios E, et al. Association between dopamine and somatostatin receptor expression and pharmacological response to somatostatin analogues in acromegaly. J Cell Mol Med. 2018;22(3):1640–1649.
  • Pedraza‐Arevalo S, Ibáñez‐Costa A, Blázquez‐Encinas R, et al. Epigenetic and post-transcriptional regulation of somatostatin receptor subtype 5 (SST 5) in pituitary and pancreatic neuroendocrine tumors. Mol Oncol. 2022;16(3):764–779.
  • Reubi JC, Laissue J, Krenning E, et al. Somatostatin receptors in human cancer: incidence, characteristics, functional correlates and clinical implications. J Steroid Biochem Mol Biol. 1992;43(1–3):27–35.
  • Fougner SL, Lekva T, Borota OC, et al. The expression of e-cadherin in somatotroph pituitary adenomas is related to tumor size, invasiveness, and somatostatin analog response. J Clin Endocrinol Metab. 2010;95(5):2334–2342.
  • Rocheville M, Lange DC, Kumar U, et al. Subtypes of the Somatostatin Receptor Assemble as Functional Homo- and Heterodimers. J Biol Chem. 2000;275(11):7862–7869.
  • Cantone MC, Dicitore A, Vitale G. Somatostatin-dopamine chimeric molecules in neuroendocrine neoplasms. J Clin Med. 2021;10(3):501.
  • Graf J, Pape U-F, Jann H, et al. Prognostic significance of somatostatin receptor heterogeneity in progressive neuroendocrine tumor treated with Lu-177 DOTATOC or Lu-177 DOTATATE. Eur J. Nucl Med Mol Imaging. 2020;47(4):881–894.
  • Curt AM, Popa Ilie IR, Cainap C, et al. MicroRNAs and treatment with somatostatin analogs in gastro- entero-pancreatic neuroendocrine neoplasms: challenges in personalized medicine. J Gastrointest Liver Dis. 2020;29(4):647–659.
  • Melone V, Salvati A, Palumbo D, et al. Identification of functional pathways and molecular signatures in neuroendocrine neoplasms by multi-omics analysis. J Transl Med. 2022;20(1):306.
  • Bösch F, Bazhin AV, Heublein S, et al. Treatment with somatostatin analogs induces differentially expressed Let-7c-5p and Mir-3137 in small intestine neuroendocrine tumors. BMC Cancer. 2019;19(1):575.
  • Krug S, Abbassi R, Griesmann H, et al. Therapeutic targeting of tumor‐associated macrophages in pancreatic neuroendocrine tumors. Int J Cancer. 1806–1816;2018(143)
  • Cai L, Michelakos T, Deshpande V, et al. Role of tumor-associated macrophages in the clinical course of pancreatic neuroendocrine tumors (PanNETs). Clin Cancer Res. 2019;25:2644–2655.
  • Klomp MJ, Dalm SU, de Jong M, et al. Epigenetic regulation of somatostatin and somatostatin receptors in neuroendocrine tumors and other types of cancer. Rev Endocr Metab Disord. 2021;22:495–510.
  • Taelman VF, Radojewski P, Marincek N, et al. Upregulation of key molecules for targeted imaging and therapy. J Nucl Med. 1805–1810;2016(57)
  • Torrisani J, Hanoun N, Laurell H, et al. Identification of an upstream promoter of the human somatostatin receptor, HSSTR2, which is controlled by epigenetic modifications. Endocrinology. 2008;149(6):3137–3147.
  • Colao A, de Nigris F, Modica R, et al. Clinical epigenetics of neuroendocrine tumors: the road ahead. Front Endocrinol (Lausanne). 2020;11.
  • Di Domenico A, Wiedmer T, Marinoni I, et al. Genetic and epigenetic drivers of neuroendocrine tumours (NET). Endocr Relat Cancer. 2017;24(9):R315–R334.
  • Pipinikas CP, Dibra H, Karpathakis A, et al. Epigenetic dysregulation and poorer prognosis in DAXX-deficient pancreatic neuroendocrine tumours. Endocr Relat Cancer. 2015;22(3):L13–L18.
  • Arnold CN, Sosnowski A, Schmitt-Gräff A, et al. Analysis of molecular pathways in sporadic neuroendocrine tumors of the gastro-entero-pancreatic system. Int J Cancer. 2007;120(10):2157–2164.
  • Choi I-S, Estecio MRH, Nagano Y, et al. Hypomethylation of LINE-1 and alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors). Mod Pathol. 2007;20(7):802–810.
  • Stricker I, Tzivras D, Nambiar S, et al. Site- and grade-specific diversity of LINE1 methylation pattern in gastroenteropancreatic neuroendocrine tumours. Anticancer Res. 2012;32(9):3699–3706.
  • Dejeux E, Olaso R, Dousset B, et al. Hypermethylation of the IGF2 differentially methylated region 2 is a specific event in insulinomas leading to loss-of-imprinting and overexpression. Endocr Relat Cancer. 2009;16(3):939–952.
  • Stefanoli M, La Rosa S, Sahnane N, et al. Prognostic relevance of aberrant DNA methylation in G1 and G2 pancreatic neuroendocrine tumors. Neuroendocrinology. 2014;100(1):26–34.
  • Arnold CN, Nagasaka T, Goel A, et al. Molecular characteristics and predictors of survival in patients with malignant neuroendocrine tumors. Int J Cancer. 2008;123(7):1556–1564.
  • Andersson E, Swärd C, Stenman G, et al. High-resolution genomic profiling reveals gain of chromosome 14 as a predictor of poor outcome in ileal carcinoids. Endocr Relat Cancer. 2009;16(3):953–966.
  • Sei Y, Zhao X, Forbes J, et al. A hereditary form of small intestinal carcinoid associated with a germline mutation in inositol polyphosphate multikinase. Gastroenterology. 2015;149(1):67–78.
  • Verdugo AD, Crona J, Starker L, et al. Global DNA methylation patterns through an array-based approach in small intestinal neuroendocrine tumors. Endocr Relat Cancer. 2014;21(1):L5–L7.
  • Barazeghi E, Prabhawa S, Norlén O, et al. Decrease of 5-hydroxymethylcytosine and TET1 with nuclear exclusion of TET2 in small intestinal neuroendocrine tumors. BMC Cancer. 2018;18(1):764.
  • Cros J, Hentic O, Rebours V, et al. MGMT expression predicts response to temozolomide in pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2016;23(8):625–633.
  • Markham A. Telotristat ethyl: first global approval. Drugs. 2017;77(7):793–798.
  • Kalshetty A, Ramaswamy A, Ostwal V, et al. Resistant functioning and/or progressive symptomatic metastatic gastroenteropancreatic neuroendocrine tumors. Nucl. Med. Commun. 2018;39(12):1143–1149.
  • Raymond E, Dahan L, Raoul J-L, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):501–513.
  • Yao JC, Fazio N, Singh S, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet. 2016;387(10022):968–977.
  • Mazziotti G, Giustina A. Effects of lanreotide SR and autogel on tumor mass in patients with acromegaly: a systematic review. Pituitary. 2010;13(1):60–67.
  • Giustina A, Mazziotti G, Torri V, et al. Meta-analysis on the effects of octreotide on tumor mass in acromegaly. PLoS One. 2012;7(5):e36411.
  • Paragliola RM, Corsello SM, Salvatori R. Somatostatin receptor ligands in acromegaly: clinical response and factors predicting resistance. Pituitary. 2017;20(1):109–115.
  • Jaquet P, Gunz G, Saveanu A, et al. Efficacy of chimeric molecules directed towards multiple somatostatin and dopamine receptors on inhibition of GH and prolactin secretion from GH-secreting pituitary adenomas classified as partially responsive to somatostatin analog therapy. Eur J Endocrinol. 2005;153(1):135–141.
  • Zatelli MC, Piccin D, Tagliati F, et al. Selective activation of somatostatin receptor subtypes differentially modulates secretion and viability in human medullary thyroid carcinoma primary cultures: potential clinical perspectives. J Clin Endocrinol Metab. 2006;91(6):2218–2224.
  • Cuevas-Ramos D, Fleseriu M. Somatostatin receptor ligands and resistance to treatment in pituitary adenomas. J Mol Endocrinol. 2014;52(3):R223–R240.
  • Filopanti M, Ballarè E, Lania AG, et al. Loss of heterozygosity at the SS receptor type 5 locus in human GH- and TSH-secreting pituitary adenomas. J Endocrinol Invest. 2004;27(10):937–942
  • Marina D, Burman P, Klose M, et al. Truncated somatostatin receptor 5 may modulate therapy response to somatostatin analogues — observations in two patients with acromegaly and severe headache. Growth Horm IGF Res. 2015;25(5):262–267.
  • Chatzellis E, Alexandraki KI, Androulakis II, et al. Aggressive pituitary tumors. Neuroendocrinology. 2015;101(2):87–104.
  • Yamamoto M, Takahashi Y. Genetic and epigenetic pathogenesis of acromegaly. Cancers (Basel). 2022;14(16):3861.
  • Spada A, Arosio M, Bochicchio D, et al. Biochemical, and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J Clin Endocrinol Metab. 1990;71(6):1421–1426.
  • Daly AF, Tichomirowa MA, Petrossians P, et al. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. J Clin Endocrinol Metab. 2010;95(11):E373–E383.
  • Dénes J, Kasuki L, Trivellin G, et al. Regulation of aryl hydrocarbon receptor interacting protein (AIP) protein expression by MiR-34a in sporadic somatotropinomas. PLoS One. 2015;10(2):e0117107.
  • Tuominen I, Heliövaara E, Raitila A, et al. AIP inactivation leads to pituitary tumorigenesis through defective Gαi-CAMP signaling. Oncogene. 2015;34(9):1174–1184.
  • Iacovazzo D, Carlsen E, Lugli F, et al. Factors predicting pasireotide responsiveness in somatotroph pituitary adenomas resistant to first-generation somatostatin analogues: an immunohistochemical study. Eur J Endocrinol. 2016;174(2):241–250.
  • Theodoropoulou M, Stalla GK, Spengler D. ZAC1 target genes and pituitary tumorigenesis. Mol Cell Endocrinol. 2010;326(1–2):60–65.
  • Salehi F, Kovacs K, Scheithauer BW, et al. Immunohistochemical expression of pituitary tumor transforming gene (PTTG) in pituitary adenomas: a correlative study of tumor subtypes. Int J Surg Pathol. 2010;18(1):5–13.
  • Gruppetta M, Formosa R, Falzon S, et al. Expression of cell cycle regulators and biomarkers of proliferation and regrowth in human pituitary adenomas. Pituitary. 2017;20(3):358–371.
  • Peverelli E, Treppiedi D, Giardino E, et al. Dopamine and somatostatin analogues resistance of pituitary tumors: focus on cytoskeleton involvement. Front Endocrinol (Lausanne). 2015;6.
  • Fan X, Mao Z, He D, et al. Expression of somatostatin receptor subtype 2 in growth hormone-secreting pituitary adenoma and the regulation of MiR-185. J Endocrinol Invest. 2015;38(10):1117–1128

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.