170
Views
0
CrossRef citations to date
0
Altmetric
Perspective

The unique pathophysiological features of diabetes mellitus secondary to total pancreatectomy: proposal for a new classification distinct from diabetes of the exocrine pancreas

ORCID Icon & ORCID Icon
Pages 19-32 | Received 07 Sep 2022, Accepted 11 Jan 2023, Published online: 24 Jan 2023

References

  • American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022 Jan 1;45(Suppl 1):S17–S38.
  • Petrov MS, Basina M. Diagnosis of endocrine disease: diagnosing and classifying diabetes in diseases of the exocrine pancreas. Eur J Endocrinol. 2021;184(4):R151–R63.
  • Petrov MS, Yadav D. Global epidemiology and holistic prevention of pancreatitis. Nat Rev Gastroenterol Hepatol. 2019;16(3):175–184.
  • Vonderau JS, Desai CS. Type 3c: understanding pancreatogenic diabetes. JAAPA. 2022;35(11):20–24.
  • Woodmansey C, McGovern AP, McCullough KA, et al. Incidence, demographics, and clinical characteristics of diabetes of the exocrine pancreas (type 3c): a retrospective cohort study. Diabetes Care. 2017;40(11):1486–1493.
  • Infante M, Alejandro R, Fabbri A, et al. The heterogeneity of type 1 diabetes: from immunopathology to immune intervention. Chapter 5 in: translational Autoimmunity. Autoimmune Diseases in Different Organs, 1st, May 1 2022;Vol. 4. Netherlands: Elsevier. DOI: 10.1016/B978-0-12-824466-1.00001-7.
  • Alexandre-Heymann L, Mallone R, Boitard C, et al. Structure and function of the exocrine pancreas in patients with type 1 diabetes. Rev Endocr Metab Disord. 2019;20(2):129–149.
  • Zsóri G, Illés D, Terzin V, et al. Exocrine pancreatic insufficiency in type 1 and type 2 diabetes mellitus: do we need to treat it? A systematic review. Pancreatology. 2018;18(5):559–565.
  • Shivaprasad C, Aiswarya Y, Kejal S, et al. Comparison of CGM-derived measures of glycemic variability between pancreatogenic diabetes and type 2 diabetes mellitus. J Diabetes Sci Technol. 2021;15(1):134–140.
  • Cho J, Scragg R, Petrov MS. Risk of mortality and hospitalization after post-pancreatitis diabetes mellitus vs type 2 diabetes mellitus: a population-based matched cohort study. Am J Gastroenterol. 2019;114(5):804–812.
  • Cho J, Scragg R, Petrov MS. Postpancreatitis diabetes confers higher risk for pancreatic cancer than type 2 diabetes: results from a nationwide cancer registry. Diabetes Care. 2020;43(9):2106–2112.
  • Rickels MR, Bellin M, Toledo FG, et al. Detection, evaluation and treatment of diabetes mellitus in chronic pancreatitis: recommendations from pancreasfest 2012. Pancreatology. 2013;13(4):336–342.
  • Wynne K, Devereaux B, Dornhorst A. Diabetes of the exocrine pancreas. J Gastroenterol Hepatol. 2019;34(2):346–354.
  • Murphy MM, Knaus WJ, Ng SC, et al. Total pancreatectomy: a national study. HPB (Oxford). 2009;11(6):476–482.
  • Scholten L, Stoop TF, Del Chiaro M, et al. Systematic review of functional outcome and quality of life after total pancreatectomy. Br J Surg. 2019;106(13):1735–1746.
  • Pandiri AR. Overview of exocrine pancreatic pathobiology. Toxicol Pathol. 2014;42(1):207–216.
  • Da Silva Xavier G. The Cells of the Islets of Langerhans. J Clin Med. 2018 Mar 12;7(3):54.
  • Maker AV, Sheikh R, Bhagia V, Diabetes Control and Complications Trial (DCCT) Research Group. Perioperative management of endocrine insufficiency after total pancreatectomy for neoplasia. Langenbecks Arch Surg. 2017 Sep;402(6):873–883.
  • Niwano F, Hiromine Y, Noso S, et al. Insulin deficiency with and without glucagon: a comparative study between total pancreatectomy and type 1 diabetes. J Diabetes Investig. 2018;9(5):1084–1090.
  • Slezak LA, Andersen DK. Pancreatic resection: effects on glucose metabolism. World J Surg. 2001;25(4):452–460.
  • Parsaik AK, Murad MH, Sathananthan A, et al. Metabolic and target organ outcomes after total pancreatectomy: Mayo Clinic experience and meta-analysis of the literature. Clin Endocrinol (Oxf). 2010;73(6):723–731.
  • Horie H, Matsuyama T, Namba M, et al. Responses of catecholamines and other counterregulatory hormones to insulin-induced hypoglycemia in totally pancreatectomized patients. J Clin Endocrinol Metab. 1984;59(6):1193–1196.
  • Maeda H, Hanazaki K. Pancreatogenic diabetes after pancreatic resection. Pancreatology. 2011;11(2):268–276.
  • Kwon JH, Kim SC, Shim IK, et al. Factors affecting the development of diabetes mellitus after pancreatic resection. Pancreas. 2015;44(8):1296–1303.
  • Hwang HK, Park J, Choi SH, et al. Predicting new-onset diabetes after minimally invasive subtotal distal pancreatectomy in benign and borderline malignant lesions of the pancreas. Medicine (Baltimore). 2017;96(51):e9404.
  • Scavini M, Dugnani E, Pasquale V, et al. Diabetes after pancreatic surgery: novel issues. Curr Diab Rep. 2015;15(4):16.
  • Ferrara MJ, Lohse C, Kudva YC, et al. Immediate post-resection diabetes mellitus after pancreaticoduodenectomy: incidence and risk factors. HPB (Oxford). 2013;15(3):170–174.
  • Maxwell DW, Jajja MR, Tariq M, et al. Development of diabetes after pancreaticoduodenectomy: results of a 10-year series using prospective endocrine evaluation. J Am Coll Surg. 2019;228(4):400–12.e2.
  • Wu L, Nahm CB, Jamieson NB, et al. Risk factors for development of diabetes mellitus (Type 3c) after partial pancreatectomy: a systematic review. Clin Endocrinol (Oxf). 2020;92(5):396–406.
  • Ravi PK, Singh SR, Mishra PR. Redefining the tail of pancreas based on the islets microarchitecture and inter-islet distance: an immunohistochemical study. Medicine (Baltimore). 2021;100(17):e25642.
  • Wang X, Misawa R, Zielinski MC, et al. Regional differences in islet distribution in the human pancreas–preferential beta-cell loss in the head region in patients with type 2 diabetes. PLoS One. 2013;8(6):e67454.
  • Brereton MF, Vergari E, Zhang Q, et al. Alpha-, delta- and PP-cells: are they the architectural cornerstones of islet structure and co-ordination? J Histochem Cytochem. 2015;63(8):575–591.
  • Nguyen A, Demirjian A, Yamamoto M, et al. Development of postoperative diabetes mellitus in patients undergoing distal pancreatectomy. Am Surg. 2017;83(10):1050–1053.
  • You DD, Choi SH, Choi DW, et al. Long-term effects of pancreaticoduodenectomy on glucose metabolism. ANZ J Surg. 2012;82(6):447–451.
  • Wu JM, Ho TW, Kuo TC, et al. Glycemic change after pancreaticoduodenectomy: a population-based study. Medicine (Baltimore). 2015;94(27):e1109.
  • Elliott IA, Epelboym I, Winner M, et al. Population-level incidence and predictors of surgically induced diabetes and exocrine insufficiency after partial pancreatic resection. Perm J. 2017;21:16–095.
  • Infante M, Ricordi C. Editorial - Moving forward on the pathway of targeted immunotherapies for type 1 diabetes: the importance of disease heterogeneity. Eur Rev Med Pharmacol Sci. 2019;23(19):8702–8704.
  • Keenan HA, Sun JK, Levine J, et al. Residual insulin production and pancreatic ß-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes. 2010;59(11):2846–2853.
  • Perry RJ, Zhang D, Guerra MT, et al. Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature. 2020;579(7798):279–283.
  • Taleb N, Haidar A, Messier V, et al. Glucagon in artificial pancreas systems: potential benefits and safety profile of future chronic use. Diabetes Obes Metab. 2017;19(1):13–23.
  • Draznin B, Aroda VR, Bakris G, et al., American Diabetes Association Professional Practice Committee. 6. glycemic targets: standards of medical care in diabetes-2022. Diabetes Care. 2022 Jan 1;45(Suppl 1):S83–S96.
  • Vigili de Kreutzenberg S, Maifreni L, Lisato G, et al. Glucose turnover and recycling in diabetes secondary to total pancreatectomy: effect of glucagon infusion. J Clin Endocrinol Metab. 1990;70(4):1023–1029.
  • Boden G, Master RW, Rezvani I, et al. Glucagon deficiency and hyperaminoacidemia after total pancreatectomy. J Clin Invest. 1980;65(3):706–716.
  • Martín-Timón I, Del Cañizo-Gómez FJ. Mechanisms of hypoglycemia unawareness and implications in diabetic patients. World J Diabetes. 2015;6(7):912–926.
  • Boyle PJ. Alteration in brain glucose metabolism induced by hypoglycaemia in man. Diabetologia. 1997;40(Suppl 2):S69–74.
  • Rickels MR. Hypoglycemia-associated autonomic failure, counterregulatory responses, and therapeutic options in type 1 diabetes. Ann N Y Acad Sci. 2019;1454(1):68–79.
  • Gerich JE, Langlois M, Noacco C, et al. Lack of glucagon response to hypoglycemia in diabetes: evidence for an intrinsic pancreatic alpha cell defect. Science. 1973;182(4108):171–173.
  • Siafarikas A, Johnston RJ, Bulsara MK, et al. Early loss of the glucagon response to hypoglycemia in adolescents with type 1 diabetes. Diabetes Care. 2012;35(8):1757–1762.
  • Arbelaez AM, Xing D, Cryer PE, et al. Blunted glucagon but not epinephrine responses to hypoglycemia occurs in youth with less than 1 yr duration of type 1 diabetes mellitus. Pediatr Diabetes. 2014;15(2):127–134.
  • Cooperberg BA, Cryer PE. Insulin reciprocally regulates glucagon secretion in humans. Diabetes. 2010;59(11):2936–2940.
  • Mundinger TO, Mei Q, Foulis AK, et al. Human type 1 diabetes is characterized by an early, marked, sustained, and islet-selective loss of sympathetic nerves. Diabetes. 2016;65(8):2322–2330.
  • Brissova M, Haliyur R, Saunders D, et al. α cell function and gene expression are compromised in type 1 diabetes. Cell Rep. 2018;22(10):2667–2676.
  • Unger RH, Cherrington AD. Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J Clin Invest. 2012;122(1):4–12.
  • Hughes JW, Ustione A, Lavagnino Z, et al. Regulation of islet glucagon secretion: beyond calcium. Diabetes Obes Metab. 2018;20(Suppl 2):127–136.
  • Gunawardana SC, Infante M. Brown adipose tissue transplantation as a promising approach for insulin-independent reversal of type 1 diabetes: animal studies and clinical perspectives. CellR4. 2020;8:e2986.
  • Bajorunas DR, Fortner JG, Jaspan J, et al. Total pancreatectomy increases the metabolic response to glucagon in humans. J Clin Endocrinol Metab. 1986;63(2):439–446.
  • Thomas H. Pancreas: extrapancreatic glucagon in humans. Nat Rev Endocrinol. 2016;12(2):63.
  • Juel CTB, Lund A, Andersen MM, et al. The GLP-1 receptor agonist lixisenatide reduces postprandial glucose in patients with diabetes secondary to total pancreatectomy: a randomised, placebo-controlled, double-blinded crossover trial. Diabetologia. 2020;63(7):1285–1298.
  • Dunning BE, Gerich JE. The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr Rev. 2007;28(3):253–283.
  • Bak MJ, Albrechtsen NW, Pedersen J, et al. Specificity and sensitivity of commercially available assays for glucagon and oxyntomodulin measurement in humans. Eur J Endocrinol. 2014;170(4):529–538.
  • Lund A, Bagger JI, Wewer Albrechtsen NJ, et al. Evidence of extrapancreatic glucagon secretion in man. Diabetes. 2016;65(3):585–597.
  • Nosadini R, Del Prato S, Tiengo A, et al. Insulin sensitivity, binding, and kinetics in pancreatogenic and type I diabetes. Diabetes. 1982;31(4 Pt 1):346–355.
  • Permert J, Ihse I, Jorfeldt L, et al. Improved glucose metabolism after subtotal pancreatectomy for pancreatic cancer. Br J Surg. 1993;80(8):1047–1050.
  • Christensen DH, Nicolaisen SK, Ahlqvist E, et al. Type 2 diabetes classification: a data-driven cluster study of the Danish centre for strategic research in Type 2 Diabetes (DD2) cohort. BMJ Open Diabetes Res Care. 2022;10:2.
  • Lonovics J, Devitt P, Watson LC, et al. Pancreatic polypeptide. A review. Arch Surg. 1981;116(10):1256–1264.
  • Batterham RL, Le Roux CW, Cohen MA, et al. Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab. 2003;88(8):3989–3992.
  • Seymour NE, Volpert AR, Lee EL, et al. Alterations in hepatocyte insulin binding in chronic pancreatitis: effects of pancreatic polypeptide. Am J Surg. 1995 Jan;169(1):105–109. discussion 110.
  • Seymour NE, Volpert AR, Andersen DK. Regulation of hepatic insulin receptors by pancreatic polypeptide in fasting and feeding. J Surg Res. 1996;65(1):1–4.
  • Rabiee A, Galiatsatos P, Salas-Carrillo R, et al. Pancreatic polypeptide administration enhances insulin sensitivity and reduces the insulin requirement of patients on insulin pump therapy. J Diabetes Sci Technol. 2011;5(6):1521–1528.
  • Seymour NE, Brunicardi FC, Chaiken RL, et al. Reversal of abnormal glucose production after pancreatic resection by pancreatic polypeptide administration in man. Surgery. 1988;104(2):119–129.
  • Denroche HC, Verchere CB. IAPP and type 1 diabetes: implications for immunity, metabolism and islet transplants. J Mol Endocrinol. 2018;60(2):R57–R75.
  • Bower RL, Hay DL. Amylin structure-function relationships and receptor pharmacology: implications for amylin mimetic drug development. Br J Pharmacol. 2016;173(12):1883–1898.
  • Scherbaum WA. The role of amylin in the physiology of glycemic control. Exp Clin Endocrinol Diabetes. 1998;106(2):97–102.
  • Young AA. Amylin’s physiology and its role in diabetes. Curr Opin Endocrinol Diabetes. 1997;4:282–290.
  • Kruger DF, Gatcomb PM, Owen SK. Clinical implications of amylin and amylin deficiency. Diabetes Educ. 1999;25(3):389–397. quiz 98.
  • Riddle MC. Rediscovery of the second β-cell hormone: co-replacement with pramlintide and insulin in type 1 diabetes. Diabetes Care. 2020;43(3):518–521.
  • Francis BH, Baskin DG, Saunders DR, et al. Distribution of somatostatin-14 and somatostatin-28 gastrointestinal-pancreatic cells of rats and humans. Gastroenterology. 1990;99(5):1283–1291.
  • Sakata N, Yoshimatsu G, Kodama S. Development and characteristics of pancreatic epsilon cells. Int J Mol Sci. 2019;20:8.
  • Sakata I, Sakai T. Ghrelin cells in the gastrointestinal tract. Int J Pept. 2010;2010:945056.
  • Phillips ME. Pancreatic exocrine insufficiency following pancreatic resection. Pancreatology. 2015;15(5):449–455.
  • Poulia KA, Sarantis P, Antoniadou D, et al. Pancreatic cancer and cachexia-metabolic mechanisms and novel insights. Nutrients. 2020;12:6.
  • Kusakabe J, Anderson B, Liu J, et al. Long-term endocrine and exocrine insufficiency after pancreatectomy. J Gastrointest Surg. 2019;23(8):1604–1613.
  • Min M, Patel B, Han S, et al. Exocrine pancreatic insufficiency and malnutrition in chronic pancreatitis: identification, treatment, and consequences. Pancreas. 2018;47(8):1015–1018.
  • Sankararaman S, Schindler T, Sferra TJ. Management of Exocrine Pancreatic Insufficiency in Children. Nutr Clin Pract. 2019;34(Suppl 1):S27–S42.
  • Hata T, Ishida M, Motoi F, et al. Clinical characteristics and risk factors for the development of postoperative hepatic steatosis after total pancreatectomy. Pancreas. 2016;45(3):362–369.
  • Takemura N, Saiura A, Koga R, et al. Risk factors for and management of postpancreatectomy hepatic steatosis. Scand J Surg. 2017;106(3):224–229.
  • Privitera G, Spadaro L, Alagona C, et al. Hepatic insulin resistance in NAFLD: relationship with markers of atherosclerosis and metabolic syndrome components. Acta Diabetol. 2016;53(3):449–459.
  • Aleotti F, Nano R, Piemonti L, et al. Total pancreatectomy sequelae and quality of life: results of islet autotransplantation as a possible mitigation strategy. Updates Surg. 2021;73(4):1237–1246.
  • Ricordi C, Lacy PE, Finke EH, et al. Automated method for isolation of human pancreatic islets. Diabetes. 1988;37(4):413–420.
  • Piemonti L, Pileggi A. 25 years of the ricordi automated method for islet isolation. Cell Repair Replace Regen Reprogram. 2013;1(1):e128.
  • Jabłońska B, Mrowiec S. Total pancreatectomy with autologous islet cell transplantation-the current indications. J Clin Med. 2021;10:12.
  • McEachron KR, Yang Y, Hodges JS, et al. Alterations in enteroendocrine hormones after total pancreatectomy with islet autotransplantation. Pancreas. 2020;49(6):806–811.
  • Bachul PJ, Grybowski DJ, Anteby R, et al. Total pancreatectomy with islet autotransplantation in diabetic and pre-diabetic patients with intractable chronic pancreatitis. J Pancreatol. 2020;3(2):86–92.
  • Desai CS, Williams BM, Baldwin X, et al. Selection of parenchymal preserving or total pancreatectomy with/without islet cell autotransplantation surgery for patients with chronic pancreatitis. Pancreatology. 2022;22(4):472–478.
  • Cerise A, Nagaraju S, Powelson JA, et al. Pancreas transplantation following total pancreatectomy for chronic pancreatitis. Clin Transplant. 2019;33(12):e13731.
  • Ryan EA, Bigam D, Shapiro AM. Current indications for pancreas or islet transplant. Diabetes Obes Metab. 2006;8(1):1–7.
  • Mosconi C, Cocozza MA, Piacentino F, et al. Interventional radiological management and prevention of complications after pancreatic surgery: drainage, embolization and islet auto-transplantation. J Clin Med. 2022;11:20.
  • Beck RW, Bergenstal RM, Laffel LM, et al. Advances in technology for management of type 1 diabetes. Lancet. 2019;394(10205):1265–1273.
  • Scott ES, Fulcher GR, Clifton-Bligh RJ. Sensor-augmented CSII therapy with predictive low-glucose suspend following total pancreatectomy. Endocrinol Diabetes Metab Case Rep. 2017;2017(1):0093.
  • Hanazaki K, Yatabe T, Kobayashi M, et al. Perioperative glycemic control using an artificial endocrine pancreas in patients undergoing total pancreatectomy: tight glycemic control may be justified in order to avoid brittle diabetes. Biomed Mater Eng. 2013;23(1–2):109–116.
  • Infante M, Baidal DA, Rickels MR, et al. Dual-hormone artificial pancreas for management of type 1 diabetes: recent progress and future directions. Artif Organs. 2021;45(9):968–986.
  • Rayannavar A, Mitteer LM, Balliro CA, et al. The bihormonal bionic pancreas improves glycemic control in individuals with hyperinsulinism and postpancreatectomy diabetes: a pilot study. Diabetes Care. 2021;44(11):2582–2585.
  • Maeda H, Okabayashi T, Yatabe T, et al. Perioperative intensive insulin therapy using artificial endocrine pancreas in patients undergoing pancreatectomy. World J Gastroenterol. 2009;15(33):4111–4115.
  • Okabayashi T, Nishimori I, Yamashita K, et al. Continuous postoperative blood glucose monitoring and control by artificial pancreas in patients having pancreatic resection: a prospective randomized clinical trial. Arch Surg. 2009;144(10):933–937.
  • Russell SJ, Hillard MA, Balliro C, et al. Day and night glycaemic control with a bionic pancreas versus conventional insulin pump therapy in preadolescent children with type 1 diabetes: a randomised crossover trial. Lancet Diabetes Endocrinol. 2016;4(3):233–243.
  • Dresler CM, Fortner JG, McDermott K, et al. Metabolic consequences of (regional) total pancreatectomy. Ann Surg. 1991;214(2):131–140.
  • Kaze AD, Santhanam P, Erqou S, et al. Long-term variability of glycemic markers and risk of all-cause mortality in type 2 diabetes: the Look AHEAD study. BMJ Open Diabetes Res Care. 2020;8:2.
  • Salinero-Fort MA, San Andrés-Rebollo FJ, Cárdenas-Valladolid J, et al. Glycemic variability and all-cause mortality in a large prospective Southern European cohort of patients with differences in glycemic status. PLoS One. 2022;17(7):e0271632.
  • Akirov A, Shochat T, Dotan I, et al. Glycemic variability and mortality in patients hospitalized in general surgery wards. Surgery. 2019;166(2):184–192.
  • Chung WK, Erion K, Florez JC, et al. Precision medicine in diabetes: a consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(7):1617–1635.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.