3,104
Views
0
CrossRef citations to date
0
Altmetric
Review

Low cholesterol states: clinical implications and management

ORCID Icon & ORCID Icon
Pages 241-253 | Received 04 Feb 2023, Accepted 17 Apr 2023, Published online: 23 Apr 2023

References

  • Hegele RA. Plasma lipoproteins: genetic influences and clinical implications. Nat Rev Genet. 2009;10:109–121.
  • Tabara Y, Ueshima H, Takashima N, et al. Mendelian randomization analysis in three Japanese populations supports a causal role of alcohol consumption in lowering low-density lipid cholesterol levels and particle numbers. Atherosclerosis. 2016;254:242–248.
  • Wang F, Zheng J, Yang B, et al. Effects of vegetarian diets on blood lipids: a systematic review and meta‐analysis of randomized controlled trials. J Am Heart Assoc. 2015;4:e002408.
  • Hartman C, Tamary H, Tamir A, et al. Hypocholesterolemia in children and adolescents with β-thalassemia intermedia. J Pediatr. 2002;141:543–547.
  • Giovannini I, Boldrini G, Chiarla C, et al. Pathophysiologic correlates of hypocholesterolemia in critically ill surgical patients. Intensive care Med. 1999;25:748–751.
  • Obialo CI, Okonofua EC, Nzerue MC, et al. Role of hypoalbuminemia and hypocholesterolemia as copredictors of mortality in acute renal failure. Kidney Int. 1999;56:1058–1063.
  • Shalev H, Kapelushnik J, Moser A, et al. Hypocholesterolemia in chronic anemias with increased erythropoietic activity. Am J Hematol. 2007;82:199–202.
  • Zwickl H, Hackner K, Köfeler H, et al. Reduced LDL-cholesterol and reduced total cholesterol as potential indicators of early cancer in male treatment-naïve cancer patients with pre-cachexia and cachexia. Front Oncol. 2020;10:1262.
  • Ginsberg H, Grabowski GA, Gibson JC, et al. Reduced plasma concentrations of total, low density lipoprotein and high density lipoprotein cholesterol in patients with Gaucher type I disease. Clin Genet. 1984;26:109–116.
  • Iseki K, Yamazato M, Tozawa M, et al. Hypocholesterolemia is a significant predictor of death in a cohort of chronic hemodialysis patients. Kidney Int. 2002;61:1887–1893.
  • Rizos CV. Effects of thyroid dysfunction on lipid profile. Open Cardiovasc Med J. 2011;5:76–84.
  • Bonville DA, Parker TS, Levine DM, et al. The relationships of hypocholesterolemia to cytokine concentrations and mortality in critically ill patients with systemic inflammatory response syndrome. Surg Infect. 2004;5:39–49.
  • Yalcinkaya A, Unal S, Oztas Y. Altered HDL particle in sickle cell disease: decreased cholesterol content is associated with hemolysis, whereas decreased apolipoprotein A1 is linked to inflammation. Lipids Health Dis. 2019;18:225.
  • Zorca S, Freeman L, Hildesheim M, et al. Lipid levels in sickle-cell disease associated with haemolytic severity, vascular dysfunction and pulmonary hypertension. Br J Haematol. 2010;149:436–445.
  • Flores MS, Obregón-Cárdenas A, Tamez E, et al. Hypocholesterolemia in patients with an amebic liver abscess. Gut Liver. 2014;8:415–420.
  • Bima AI, Hooper AJ, van Bockxmeer FM, et al. Hypobetalipoproteinaemia secondary to chronic hepatitis C virus infection in a patient with familial hypercholesterolaemia. Ann Clin Biochem. 2009;46:420–422.
  • Shor-Posner G, Basit A, Lu Y, et al. Hypocholesterolemia is associated with immune dysfunction in early human immunodeficiency virus-1 infection. Am j med. 1993;94:515–519.
  • Lal CS, Kumar A, Kumar S, et al. Hypocholesterolemia and increased triglyceride in pediatric visceral leishmaniasis. Clin Chim Acta. 2007;382:151–153.
  • Moutzouri E, Elisaf M, Liberopoulos N. Hypocholesterolemia. Curr Vasc Pharmacol. 2011;9:200–212.
  • Wilson DE, Birchfield GR, Hejazi JS, et al. Hypocholesterolemia in patients treated with recombinant interleukin-2: appearance of remnant-like lipoproteins. J Clin Oncol. 1989;7:1573–1577.
  • Bassen FA, Kornzweig AL. Malformation of the erythrocytes in a case of atypical retinitis pigmentosa. Blood. 1950;5:381–387.
  • Gutiérrez-Cirlos C, Ordóñez-Sánchez ML, Tusié-Luna MT, et al. Familial hypobetalipoproteinemia in a hospital survey: genetics, metabolism and non-alcoholic fatty liver disease. Ann Hepatol. 2011;10:155–164.
  • Nowak JK, Szczepanik M, Wojsyk-Banaszak I, et al. Cystic fibrosis dyslipidaemia: a cross-sectional study. J Cyst Fibros. 2019;18:566–571.
  • Ettinger WH, Harris T, Verdery RB, et al. Evidence for inflammation as a cause of hypocholesterolemia in older people. J Am Geriatr Soc. 1995;43:264–266.
  • Nakamura T, Takebe K, Yamada N, et al. Bile acid malabsorption as a cause of hypocholesterolemia seen in patients with chronic pancreatitis. Int J Pancreatol off J Int Assoc Pancreatol. 1994;16:165–169.
  • Hegele RA, Borén J, Ginsberg HN, et al. Rare dyslipidaemias, from phenotype to genotype to management: a European atherosclerosis society task force consensus statement. Lancet Diabetes Endocrinol. 2020;8:50–67.
  • Kwong LK, Ridinger DN, Bandhauer M, et al. Acute dyslipoproteinemia induced by interleukin-2: lecithin: cholesteryl acyltransferase, lipoprotein lipase, and hepatic lipase deficiencies. J Clin Endocrinol Metab. 1997;82:1572–1581.
  • Di Filippo M, Moulin P, Roy P, et al. Homozygous MTTP and APOB mutations may lead to hepatic steatosis and fibrosis despite metabolic differences in congenital hypocholesterolemia. J Hepatol. 2014;61:891–902.
  • Rodríguez Gutiérrez PG, González García JR, De León YA C, et al. A novel p.Gly417Valfs*12 mutation in the MTTP gene causing abetalipoproteinemia: presentation of the first patient in Mexico and analysis of the previously reported cases. J Clin Lab Anal. 2021;35:e23672.
  • Barakizou H, Gannouni S, Messaoui K, et al. Abetalipoproteinemia: a novel mutation of microsomal triglyceride transfer protein (MTP) gene in a young Tunisian patient. Egypt J Med Hum Genet. 2016;17:251–254.
  • Chardon L, Sassolas A, Dingeon B, et al. Identification of two novel mutations and long-term follow-up in abetalipoproteinemia: a report of four cases. Eur J Pediatr. 2009;168:983–989.
  • Najah M, Youssef SM, Yahia HM, et al. Molecular characterization of Tunisian families with abetalipoproteinemia and identification of a novel mutation in MTTP gene. Diagn Pathol. 2013;8:54.
  • Sivamurukan P, Boddu D, Pulimood A, et al. An unusual presentation of hemorrhagic disease in an infant: a probable case of abetalipoproteinemia. J Pediatr Hematol Oncol. 2021;43:e429.
  • Walsh MT, Iqbal J, Josekutty J, et al. Novel abetalipoproteinemia missense mutation highlights the importance of the n-terminal β-barrel in microsomal triglyceride transfer protein function. Circ Cardiovasc Genet. 2015;8:677–687.
  • Lee J, Hegele RA. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: a framework for diagnosis and management. J Inherit Metab Dis. 2014;37:333–339.
  • Wang J, Hegele RA. Microsomal triglyceride transfer protein (MTP) gene mutations in Canadian subjects with abetalipoproteinemia. Hum Mutat. 2000;15:294–295.
  • Welty FK. Hypobetalipoproteinemia and abetalipoproteinemia. Curr Opin Lipidol. 2014;25:161–168.
  • Zamel R, Khan R, Pollex RL, et al. Abetalipoproteinemia: two case reports and literature review. Orphanet J Rare Dis. 2008;3:19.
  • Burnett JR, Bell DA, Hooper AJ, et al. Clinical utility gene card for: abetalipoproteinaemia. Eur J Hum Genet. 2012;20:1–3.
  • Wetterau JR, Aggerbeck LP, Laplaud PM, et al. Structural properties of the microsomal triglyceride-transfer protein complex. Biochemistry. 1991;30:4406–4412.
  • Paquette M, Dufour R, Hegele RA, et al. A tale of 2 cousins: an atypical and a typical case of abetalipoproteinemia. J Clin Lipidol. 2016;10:1030–1034.
  • Bredefeld C, Peretti N, Hussain MM, et al. New classification and management of abetalipoproteinemia and related disorders. Gastroenterology. 2020;160:1912–1916.
  • Burnett JR, Hooper AJ, Ab HR, et al. ipoproteinemia. In: GeneReviews® [Internet] MP A, DB E, GM M, RA P, SE W, LJH B, KW G Amemiya A, editors. 2018 Oct 25[updated 2022 May 19]. Seattle (WA): University of Washington, Seattle; p. 1993–2023.
  • Rashtian P, Najafi Sani M, Jalilian R. A male infant with abetalipoproteinemia: a case report from Iran. Middle East J Dig Dis. 2015;7:181–184.
  • Al‐shali K, Wang J, Rosen F, et al. Ileal adenocarcinoma in a mild phenotype of abetalipoproteinemia. Clin Genet. 2003;63:135–138.
  • Newman RP, Schaefer EJ, Thomas CB, et al. Abetalipoproteinemia and metastatic spinal cord glioblastoma. Arch Neurol. 1984;41:554–556.
  • Burnett JR, Bell DA, Hooper AJ, et al. Clinical utility gene card for: familial hypobetalipoproteinaemia (APOB) – Update 2014. Eur J Hum Genet. 2015;23:890.
  • Noto D, Arca M, Tarugi P, et al. Association between familial hypobetalipoproteinemia and the risk of diabetes. Is this the other side of the cholesterol–diabetes connection? A systematic review of literature. Acta Diabetol. 2017;54:111–122.
  • Anderson CM, Townley RR, Freeman M, et al. Unusual causes of steatorrhoea in infancy and childhood. Med J Aust. 1961;48:617–622.
  • Peretti N, Sassolas A, Roy CC, et al. Guidelines for the diagnosis and management of chylomicron retention disease based on a review of the literature and the experience of two centers. Orphanet J Rare Dis. 2010;5:24.
  • Levy E, Poinsot P, Spahis S. Chylomicron retention disease: genetics, biochemistry, and clinical spectrum. Curr Opin Lipidol. 2019;30:134–139.
  • Sané AT, Seidman E, Peretti N, et al. Understanding chylomicron retention disease through Sar1b GTPase gene disruption. Arterioscler Thromb Vasc Biol. 2017;37:2243–2251.
  • Sané A, Ahmarani L, Delvin E, et al. SAR1B GTPase is necessary to protect intestinal cells from disorders of lipid homeostasis, oxidative stress, and inflammation. J Lipid Res. 2019;60:1755–1764.
  • Li X, Yan M, Guo Z, et al. Inhibition of Sar1b, the gene implicated in chylomicron retention disease, impairs migration and morphogenesis of developing cortical neurons. Neuroscience. 2020;449:228–240.
  • Peretti N. Lessons from chylomicron retention disease: a potential new approach for the treatment of hypercholesterolemia? Expert Opin Orphan Drugs. 2018;6:163–165.
  • Tarugi P, Averna M, Di Leo E, et al. Molecular diagnosis of hypobetalipoproteinemia: an ENID review. Atherosclerosis. 2007;195:e19–27.
  • Surakka I, Hornsby WE, Farhat L, et al. A novel variant in APOB gene causes extremely low LDL-C without known adverse effects. J Am Coll Cardiol: Case Reports. 2020;2:775–779.
  • Musialik J, Boguszewska-Chachulska A, Pojda-Wilczek D, et al. A rare mutation in the APOB gene associated with neurological manifestations in familial hypobetalipoproteinemia. Int J Mol Sci. 2020;21:1439.
  • Di Costanzo A, Di Leo E, Noto D, et al. Clinical and biochemical characteristics of individuals with low cholesterol syndromes: a comparison between familial hypobetalipoproteinemia and familial combined hypolipidemia. J Clin Lipidol. 2017;11:1234–1242.
  • Sankatsing RR, Fouchier SW, de Haan S, et al. Hepatic and cardiovascular consequences of familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol. 2005;25:1979–1984.
  • Castellano G, Garfia C, Gomez-Coronado D, et al. Diffuse fatty liver in familial heterozygous hypobetalipoproteinemia. J Clin Gastroenterol. 1997;25:379–382.
  • Sen D, Dagdelen S, Erbas T. Hepatosteatosis with hypobetalipoproteinemia. J Natl Med Assoc. 2007;99:284–286.
  • Tanoli T, Yue P, Yablonskiy D, et al. Fatty liver in familial hypobetalipoproteinemia. J Lipid Res. 2004;45:941–947.
  • Tarugi P, Lonardo A, Ballarini G, et al. Fatty liver in heterozygous hypobetalipoproteinemia caused by a novel truncated form of apolipoprotein B. Gastroenterology. 1996;111:1125–1133.
  • Bonnefont-Rousselot D, Condat B, Sassolas A, et al. Cryptogenic cirrhosis in a patient with familial hypocholesterolemia due to a new truncated form of apolipoprotein B. Eur J Gastroenterol Hepatol. 2009;21:104–108.
  • Lonardo A, Tarugi P, Ballarini G, et al. Familial heterozygous hypobetalipoproteinemia, extrahepatic primary malignancy, and hepatocellular carcinoma. Dig Dis Sci. 1998;43:2489–2492.
  • Pelusi S, Baselli G, Pietrelli A, et al. Rare pathogenic variants predispose to hepatocellular carcinoma in nonalcoholic fatty liver disease. Sci Rep. 2019;9:3682.
  • Welty FK. Hypobetalipoproteinemia and abetalipoproteinemia: liver disease and cardiovascular disease. Curr Opin Lipidol. 2020;31:49–55.
  • Peloso GM, Nomura A, Khera AV, et al. Rare protein-truncating variants in APOB, lower low-density lipoprotein cholesterol, and protection against coronary heart disease. Circ Genomic Precis Med. 2019;12:e002376.
  • Bayona A, Arrieta F, Rodríguez-Jiménez C, et al. Loss-of-function mutation of PCSK9 as a protective factor in the clinical expression of familial hypercholesterolemia: a case report. Medicine (Baltimore). 2020;99:e21754.
  • Small AM, Huffman JE, Klarin D, et al. PCSK9 loss of function is protective against extra-coronary atherosclerotic cardiovascular disease in a large multi-ethnic cohort. PLoS ONE. 2020;15:e0239752.
  • Paquette M, Saavedra YGL, Poirier J, et al. Loss-of-function PCSK9 mutations are not associated with Alzheimer disease. J Geriatr Psychiatry Neurol. 2018;31:90–96.
  • Rimbert A, Smati S, Dijk W, et al. Genetic inhibition of PCSK9 and liver function. JAMA Cardiol. 2021;6:353–354.
  • Tada H, Okada H, Nomura A, et al. A healthy family of familial hypobetalipoproteinemia caused by a protein-truncating variant in the PCSK9 gene. Intern Med. 2020;59:783–787.
  • Lebeau PF, Wassef H, Byun JH, et al. The loss-of-function PCSK9Q152H variant increases ER chaperones GRP78 and GRP94 and protects against liver injury. J Clin Invest. 2021;131:e128650.
  • Grimaudo S, Bartesaghi S, Rametta R, et al. PCSK9 rs11591147 R46L loss-of-function variant protects against liver damage in individuals with NAFLD. Liver Int. 2021;41:321–332.
  • Di Filippo M, Vokaer B, Seidah NG. A case of hypocholesterolemia and steatosis in a carrier of a PCSK9 loss-of-function mutation and polymorphisms predisposing to nonalcoholic fatty liver disease. J Clin Lipidol. 2017;11:1101–1105.
  • Cohen JC, Boerwinkle E, Mosley TH, et al. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–1272.
  • Dron JS, Hegele RA. Complexity of mechanisms among human proprotein convertase subtilisin-kexin type 9 variants. Curr Opin Lipidol. 2017;28:161–169.
  • Hopewell JC, Malik R, Valdés-Márquez E, et al. Differential effects of PCSK9 variants on risk of coronary disease and ischaemic stroke. Eur Heart J. 2018;39:354–359.
  • Kent ST, Rosenson RS, Avery CL, et al. PCSK9 loss-of-function variants, low-density lipoprotein cholesterol, and risk of coronary heart disease and stroke: data from 9 studies of blacks and whites. Circ Cardiovasc Genet. 2017;10:e001632.
  • Langsted A, Nordestgaard BG, Benn M, et al. PCSK9 R46L Loss-of-function mutation reduces lipoprotein(a), LDL cholesterol, and risk of aortic valve stenosis. J Clin Endocrinol Metab. 2016;101:3281–3287.
  • Minicocci I, Montali A, Robciuc MR, et al. Mutations in the ANGPTL3 gene and familial combined hypolipidemia: a clinical and biochemical characterization. J Clin Endocrinol Metab. 2012;97:E1266–1275.
  • Su X. ANGPLT3 in cardio-metabolic disorders. Mol Biol Rep. 2021;48:2729–2739.
  • Musunuru K, Pirruccello JP, Do R, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363:2220–2227.
  • Minicocci I, Santini S, Cantisani V, et al. Clinical characteristics and plasma lipids in subjects with familial combined hypolipidemia: a pooled analysis. J Lipid Res. 2013;54:3481–3490.
  • Dewey FE, Gusarova V, Dunbar RL, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med. 2017;377:211–221.
  • Robciuc MR, Maranghi M, Lahikainen A, et al. Angptl3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids. Arterioscler Thromb Vasc Biol. 2013;33:1706–1713.
  • Stitziel NO, Khera AV, Wang X, et al. ANGPTL3 Deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69:2054–2063.
  • Gretarsdottir S, Helgason H, Helgadottir A, et al. A splice region variant in LDLR lowers non-high density lipoprotein cholesterol and protects against coronary artery disease. PLoS Genet. 2015;11:e1005379.
  • Natarajan P, Peloso GM, Zekavat SM, et al. Deep-coverage whole genome sequences and blood lipids among 16,324 individuals. Nat Commun. 2018;9:3391.
  • van Zyl T, Jerling JC, Conradie KR, et al. Common and rare single nucleotide polymorphisms in the LDLR gene are present in a black south African population and associate with low-density lipoprotein cholesterol levels. J Hum Genet. 2014;59:88–94.
  • Björnsson E, Thorleifsson G, Helgadóttir A, et al. Association of genetically predicted lipid levels with the extent of coronary atherosclerosis in Icelandic adults. JAMA Cardiol. 2020;5:13–20.
  • Blanco-Vaca F, Martin-Campos JM, Beteta-Vicente Á, et al. Molecular analysis of APOB, SAR1B, ANGPTL3, and MTTP in patients with primary hypocholesterolemia in a clinical laboratory setting: evidence supporting polygenicity in mutation-negative patients. Atherosclerosis. 2019;283:52–60.
  • Rimbert A, Vanhoye X, Coulibaly D, et al. Phenotypic differences between polygenic and monogenic hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol. 2020;41:e64–71.
  • Balder JW, Rimbert A, Zhang X, et al. Genetics, lifestyle, and low-density lipoprotein cholesterol in young and apparently healthy women. Circulation. 2018;137(8):820–831.
  • Cefalù AB, Spina R, Noto D, et al. Comparison of two polygenic risk scores to identify non-monogenic primary hypocholesterolemias in a large cohort of Italian hypocholesterolemic subjects. J Clin Lipidol. 2022;16:530–537.
  • van den Boogert MAW, Rader DJ, Holleboom AG. New insights into the role of glycosylation in lipoprotein metabolism. Curr Opin Lipidol. 2017;28:502–506.
  • van den Boogert MAW, Larsen LE, Ali L, et al. N-glycosylation defects in humans lower low-density lipoprotein cholesterol through increased low-density lipoprotein receptor expression. Circulation. 2019;140:280–292.
  • Chong M, Yoon G, Susan-Resiga D, et al. Hypolipidaemia among patients with PMM2-CDG is associated with low circulating PCSK9 levels: a case report followed by observational and experimental studies. J Med Genet. 2020;57:11–17.
  • Al Teneiji A, Bruun TUJ, Sidky S, et al. Phenotypic and genotypic spectrum of congenital disorders of glycosylation type I and type II. Mol Genet Metab. 2017;120:235–242.
  • Bjornsson E, Gunnarsdottir K, Halldorsson GH, et al. Lifelong reduction in LDL (low-density lipoprotein) cholesterol due to a gain-of-function mutation in LDLR. Circ Genomic Precis Med. 2021;14:e003029.
  • Verweij N, Haas ME, Nielsen JB, et al. Germline mutations in CIDEB and protection against liver disease. N Engl J Med. 2022;387:332–344.
  • Pulai JI, Latour MA, Kwok PY, et al. Diabetes mellitus in a new kindred with familial hypobetalipoproteinemia and an apolipoprotein B truncation (apoB-55). Atherosclerosis. 1998;136:289–295.
  • Della Corte C, Fintini D, Giordano U, et al. Fatty liver and insulin resistance in children with hypobetalipoproteinemia: the importance of aetiology. Clin Endocrinol (Oxf). 2013;79:49–54.
  • Lonardo A, Lombardini S, Scaglioni F, et al. Hepatic steatosis and insulin resistance: does etiology make a difference? J Hepatol. 2006;44:190–196.
  • Ference BA, Robinson JG, Brook RD, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375:2144–2153.
  • Schmidt AF, Swerdlow DI, Holmes MV, et al. PCSK9 genetic variants and risk of type 2 diabetes: a Mendelian randomisation study. Lancet Diabetes Endocrinol. 2017;5:97–105.
  • Lotta LA, Sharp SJ, Burgess S, et al. Association between low-density lipoprotein cholesterol–lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA. 2016;316:1383.
  • Bonnefond A, Yengo L, Le May C, et al. The loss-of-function PCSK9 p.R46L genetic variant does not alter glucose homeostasis. Diabetologia. 2015;58:2051–2055.
  • Khan AO, Basamh O, Alkatan HM. Ophthalmic diagnosis and optical coherence tomography of abetalipoproteinemia, a treatable form of pediatric retinal dystrophy. J Aapos. 2019;23:176–177.
  • Le R, Zhao L, Hegele RA. Forty year follow-up of three patients with complete absence of apolipoprotein B-containing lipoproteins. J Clin Lipidol. 2022;16:155–159.
  • Lam MCW, Singham J, Hegele RA, et al. Familial hypobetalipoproteinemia-induced nonalcoholic steatohepatitis. Case Rep Gastroenterol. 2012;6:429–437.
  • Vlasschaert C, McIntyre AD, Thomson LA, et al. Abetalipoproteinemia due to a novel splicing variant in MTTP in 3 siblings. J Investig Med High Impact Case Rep. 2021;9:232470962110224.
  • Fusaro M, Mereu M, Aghi A, et al. Vitamin K and bone. Clin Cases Miner Bone Metab. 2017;14:200–206.
  • Palermo A, Tuccinardi D, D’Onofrio L, et al. Vitamin K and osteoporosis: myth or reality? Metabolism. 2017;70:57–71.
  • Duell PB, Bakhtiani PA, Connor SL. Long-term 40-year prognosis in abetalipoproteinemia is optimized by early diagnosis and treatment. J Clin Lipidol. 2014;8:336.
  • Handhle A, Viljoen A, Ramachandran R, et al. Low cholesterol syndrome and drug development. Curr Opin Cardiol. 2020;35:423–427.
  • Hegele RA, Tsimikas S. Lipid-lowering agents: targets beyond PCSK9. Circ Res. 2019;124:386–404.
  • Blom DJ, Cuchel M, Ager M, et al. Target achievement and cardiovascular event rates with lomitapide in homozygous familial hypercholesterolaemia. Orphanet J Rare Dis. 2018;13:96.
  • Berberich AJ, Hegele RA. Lomitapide for the treatment of hypercholesterolemia. Expert Opin Pharmacother. 2017;18:1261–1268.
  • Fogacci F, Ferri N, Toth PP, et al. Efficacy and safety of mipomersen: a systematic review and meta-analysis of randomized clinical trials. Drugs. 2019;79:751–766.
  • Nohara A, Otsubo Y, Yanagi K, et al. Safety and efficacy of Lomitapide in Japanese patients with homozygous familial hypercholesterolemia (HoFH): results from the AEGR-733-301 long-term extension study. J Atheroscler Thromb. 2019;26:368–377.
  • Underberg JA, Cannon CP, Larrey D, et al. Long-term safety and efficacy of lomitapide in patients with homozygous familial hypercholesterolemia: five-year data from the lomitapide observational worldwide evaluation registry (LOWER). J Clin Lipidol. 2020;14:807–817.
  • Aljenedil S, Alothman L, Bélanger AM, et al. Lomitapide for treatment of homozygous familial hypercholesterolemia: the Québec experience. Atherosclerosis. 2020;310:54–63.
  • Brandts J, Dharmayat KI, Vallejo-Vaz AJ, et al. A meta-analysis of medications directed against PCSK9 in familial hypercholesterolemia. Atherosclerosis. 2021;325:46–56.
  • Rakipovski G, Hovingh GK, Nyberg M. Proprotein convertase subtilisin/kexin type 9 inhibition as the next statin? Curr Opin Lipidol. 2020;31:340–346.
  • Raal FJ, Kallend D, Ray KK, et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med. 2020;382:1520–1530.
  • Ray KK, Landmesser U, Leiter LA, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376:1430–1440.
  • Rosenson RS, Hegele RA, Fazio S, et al. The evolving future of PCSK9 inhibitors. J Am Coll Cardiol. 2018;72:314–329.
  • Rosenson RS, Hegele RA, Koenig W. Cholesterol-Lowering Agents: pCSK9 inhibitors today and tomorrow. Circ Res. 2019;124:364–385.
  • Raal FJ, Rosenson RS, Reeskamp LF, et al. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med. 2020;383:711–720.
  • Rosenson RS, Burgess LJ, Ebenbichler CF, et al. Evinacumab in patients with refractory hypercholesterolemia. N Engl J Med. 2020;383:2307–2319.
  • Bredefeld C, Hussain MM, Averna M, et al. Guidance for the diagnosis and treatment of hypolipidemia disorders. J Clin Lipidol. 2022;16:797–812.
  • Lima Pessoa E, Costa Vilella dos Reis M, Sayuri Yamamoto T, et al. Familial heterozygous hypobetalipoproteinemia and breast cancer risk: a systematic review and suggestions for further research. Breast J. 2019;25:763–765.
  • Wilson MH, Rajan S, Danoff A, et al. A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer protein. PLoS Genet. 2020;16:e1008941.
  • Musunuru K, Chadwick AC, Mizoguchi T, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature. 2021;593:429–434.
  • Momtazi-Borojeni AA, Jaafari MR, Afshar M, et al. PCSK9 immunization using nanoliposomes: preventive efficacy against hypercholesterolemia and atherosclerosis. Arch Med Sci. 2021;17:1365–1377.
  • Fowler A, Sampson M, Remaley AT, et al. A VLP-based vaccine targeting ANGPTL3 lowers plasma triglycerides in mice. Vaccine. 2021;39:5780–5786.
  • Fukami H, Morinaga J, Nakagami H, et al. Vaccine targeting ANGPTL3 ameliorates dyslipidemia and associated diseases in mouse models of obese dyslipidemia and familial hypercholesterolemia. Cell Rep Med. 2021;2:100446.
  • Zhang YY, Fu ZY, Wei J, et al. A LIMA1 variant promotes low plasma LDL cholesterol and decreases intestinal cholesterol absorption. Science. 2018;360:1087–1092.