55
Views
0
CrossRef citations to date
0
Altmetric
Review

Methods to predict heart failure in diabetes patients

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 241-256 | Received 26 Jan 2024, Accepted 10 Apr 2024, Published online: 15 Apr 2024

References

  • Hostalek U. Global epidemiology of prediabetes - present and future perspectives. Clin Diabetes Endocrinol. 2019;5(1):5. doi: 10.1186/s40842-019-0080-0
  • Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabet Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119
  • Volaco A, Cavalcanti AM, Filho RP, et al. Socioeconomic status: the missing link between obesity and diabetes mellitus? Curr Diabetes Rev. 2018;14(4):321–326. doi: 10.2174/1573399813666170621123227
  • Chang WW, Zhang L, Wen LY, et al. Association between the MCP-1 -2518 a > g (rs1024611) polymorphism and susceptibility to type 2 diabetes mellitus and diabetic nephropathy: a meta-analysis. BMC Endocr Disord. 2023;23(1):267. doi: 10.1186/s12902-023-01514-z
  • Menon S, Rossi R, Nshimyumukiza L, et al. Convergence of a diabetes mellitus, protein energy malnutrition, and TB epidemic: the neglected elderly population. BMC Infect Dis. 2016;16(1):361. doi: 10.1186/s12879-016-1718-5
  • Mehta P, Gasparyan AY, Zimba O, et al. Interplay of diabetes mellitus and rheumatic diseases amidst the COVID-19 pandemic: influence on the risk of infection, outcomes, and immune responses. Clin Rheumatol. 2022;41(12):3897–3913. doi: 10.1007/s10067-022-06365-y
  • Glovaci D, Fan W, Wong ND. Epidemiology of diabetes mellitus and cardiovascular disease. Curr Cardiol Rep. 2019;21(4):21. doi: 10.1007/s11886-019-1107-y
  • Berezin AE, Berezin AA, Lichtenauer M. Emerging role of adipocyte dysfunction in inducing heart failure among obese patients with prediabetes and known diabetes mellitus. Front Cardiovasc Med. 2020;7:583175. doi: 10.3389/fcvm.2020.583175
  • Park JJ. Epidemiology, pathophysiology, diagnosis and treatment of heart failure in diabetes. Diabetes Metab J. 2021;45(2):146–157. doi: 10.4093/dmj.2020.0282
  • Kenny HC, Abel ED. Heart failure in type 2 diabetes mellitus. Circ Res. 2019;124(1):121–141. doi: 10.1161/CIRCRESAHA.118.311371
  • Aune D, Schlesinger S, Neuenschwander M, et al. Diabetes mellitus, blood glucose and the risk of heart failure: a systematic review and meta-analysis of prospective studies. Nutr Metab Cardiovasc Dis. 2018;28(11):1081–1091. doi: 10.1016/j.numecd.2018.07.005
  • Kodama S, Fujihara K, Horikawa C, et al. Diabetes mellitus and risk of new-onset and recurrent heart failure: a systematic review and meta-analysis. ESC Heart Fail. 2020;7(5):2146–2174. doi: 10.1002/ehf2.12782
  • Dunlay SM, Givertz MM, Aguilar D, et al. American heart association heart failure and transplantation committee of the council on clinical cardiology; council on cardiovascular and stroke nursing; and the heart failure society of america. type 2 diabetes mellitus and heart failure: a scientific statement from the American heart association and the heart failure society of America: this statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation. 2019;140(7):e294–e324. doi: 10.1161/CIR.0000000000000691
  • Bozkurt B, Aguilar D, Deswal A, et al. American heart association heart failure and transplantation committee of the council on clinical cardiology; council on cardiovascular surgery and anesthesia; council on cardiovascular and stroke nursing; council on hypertension; and council on quality and outcomes research. contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: a scientific statement from the American heart association. Circulation. 2016;134(23):e535–e78. doi: 10.1161/CIR.0000000000000450
  • Dunlay SM, Killian JM, Mccoy RG, et al. Diabetes mellitus in advanced heart failure. J Card Fail. 2022;28(3):503–508. doi: 10.1016/j.cardfail.2021.09.016
  • Sharma A, Cooper LB, Fiuzat M, et al. Antihyperglycemic therapies to treat patients with heart failure and diabetes mellitus. JACC Heart Fail. 2018;6(10):813–822. doi: 10.1016/j.jchf.2018.05.020
  • Malik A, Garland E, Drozd M, et al. Diabetes mellitus and the causes of hospitalization in people with heart failure. Diab Vasc Dis Res. 2022;19(1):14791641211073943. doi: 10.1177/14791641211073943
  • Jankauskas SS, Kansakar U, Varzideh F, et al. Heart failure in diabetes. Metabolism. 2021;125:154910. doi: 10.1016/j.metabol.2021.154910
  • Marrano N, Biondi G, Borrelli A, et al. Type 2 diabetes and alzheimer’s disease: the emerging role of cellular lipotoxicity. Biomolecules. 2023;13(1):183. doi: 10.3390/biom13010183
  • Monnier L, Colette C, Schlienger JL, et al. Glucocentric risk factors for macrovascular complications in diabetes: glucose ‘legacy’ and ‘variability’-what we see, know and try to comprehend. Diabetes metab. 2019;45(5):401–408. doi: 10.1016/j.diabet.2019.01.007
  • Berezin A. Metabolic memory phenomenon in diabetes mellitus: achieving and perspectives. Diabetes Metab Syndr. 2016;10(2 Suppl 1):S176–83. doi: 10.1016/j.dsx.2016.03.016
  • Singh A, Kukreti R, Saso L, et al. Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules. 2022;27(3):950. doi: 10.3390/molecules27030950
  • Rocha M, Diaz-Morales N, Rovira-Llopis S, et al. Mitochondrial dysfunction and endoplasmic reticulum stress in diabetes. Curr Pharm Des. 2016;22(18):2640–2649. doi: 10.2174/1381612822666160209152033
  • Wimmer RA, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature. 2019;565(7740):505–510. doi: 10.1038/s41586-018-0858-8
  • Yuan Q, Sun Y, Yang F, et al. CircRNA DICAR as a novel endogenous regulator for diabetic cardiomyopathy and diabetic pyroptosis of cardiomyocytes. Signal Transduct Target Ther. 2023;8(1):99. doi: 10.1038/s41392-022-01306-2
  • Chen Y, Xin Y, Cheng Y, et al. Mitochondria-endoplasmic reticulum contacts: the promising regulators in diabetic cardiomyopathy. Oxid Med Cell Longevity. 2022;2022:1–13. doi: 10.1155/2022/2531458
  • van den Oever IA, Raterman HG, Nurmohamed MT, et al. Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediators Inflamm. 2010;2010:1–15. doi: 10.1155/2010/792393
  • Makowski LM, Leffers M, Waltenberger J, et al. Transforming growth factor-β1 signaling triggers vascular endothelial growth factor resistance and monocyte dysfunction in type 2 diabetes mellitus. J Cell Mol Med. 2021;25(11):5316–5325. doi: 10.1111/jcmm.16543
  • Khalid M, Petroianu G, Adem A. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules. 2022;12(4):542. doi: 10.3390/biom12040542
  • Al Kury LT, Sardu C. Calcium homeostasis in ventricular myocytes of diabetic cardiomyopathy. J Diabetes Res. 2020;2020:1–12. doi: 10.1155/2020/1942086
  • Komici K, Femminella GD, de Lucia C, et al. Predisposing factors to heart failure in diabetic nephropathy: a look at the sympathetic nervous system hyperactivity. Aging Clin Exp Res. 2019;31(3):321–330. doi: 10.1007/s40520-018-0973-2
  • Pan KL, Hsu YC, Chang ST, et al. The role of cardiac fibrosis in diabetic cardiomyopathy: from pathophysiology to clinical diagnostic tools. Int J Mol Sci. 2023;24(10):8604. doi:10.3390/ijms24108604
  • Lafuse WP, Wozniak DJ, Rajaram MVS. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair. Cells. 2020;10(1):51. doi: 10.3390/cells10010051
  • Wang M, Li Y, Li S, et al. Endothelial dysfunction and diabetic cardiomyopathy. Front Endocrinol. 2022;13:851941. doi: 10.3389/fendo.2022.851941
  • Prandi FR, Evangelista I, Sergi D, et al. Mechanisms of cardiac dysfunction in diabetic cardiomyopathy: molecular abnormalities and phenotypical variants. Heart Fail Rev. 2023;28(3):597–606. doi: 10.1007/s10741-021-10200-y
  • Kolaczynski JW, Caro JF. Insulin-like growth factor-1 therapy in diabetes: physiologic basis, clinical benefits, and risks. Ann Intern Med. 1994;120(1):47–55. doi: 10.7326/0003-4819-120-1-199401010-00009
  • Mohamed-Ali V, Pinkney J. Therapeutic potential of insulin-like growth factor-1 in patients with diabetes mellitus. Treat Endocrinol. 2002;1(6):399–410. doi: 10.2165/00024677-200201060-00005
  • Halim M, Halim A. The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes Metab Syndr. 2019;13(2):1165–1172. doi:10.1016/j.dsx.2019.01.040
  • Galley JC, Singh S, Awata WMC, et al. Adipokines: deciphering the cardiovascular signature of adipose tissue. Biochem Pharmacol. 2022;206:115324. doi: 10.1016/j.bcp.2022.115324
  • Berezin AE, Berezin AA. Impaired function of fibroblast growth factor 23/Klotho protein axis in prediabetes and diabetes mellitus: promising predictor of cardiovascular risk. Diabetes Metab Syndr. 2019;13(4):2549–2556. doi: 10.1016/j.dsx.2019.07.018
  • Verma S, Szmitko PE. The vascular biology of peroxisome proliferator-activated receptors: modulation of atherosclerosis. Can J Cardiol. 2006;22(Suppl B):12B–17B. doi: 10.1016/s0828-282x(06)70981-3
  • Qi Y, Zhu Q, Zhang K, et al. Activation of Foxo1 by insulin resistance promotes cardiac dysfunction and β-myosin heavy chain gene expression. Circ Heart Fail. 2015;8(1):198–208. doi: 10.1161/CIRCHEARTFAILURE.114.001457
  • Ren Y, Zhao H, Yin C, et al. Adipokines, hepatokines and myokines: focus on their role and molecular mechanisms in adipose tissue inflammation. Front Endocrinol. 2022;13:873699. doi: 10.3389/fendo.2022.873699
  • Berezin AE, Samura TA, Kremzer AA, et al. An association of serum vistafin level and number of circulating endothelial progenitor cells in type 2 diabetes mellitus patients. Diabetes Metab Syndr. 2016;10(4):205–212. doi: 10.1016/j.dsx.2016.06.008
  • de Oliveira Dos Santos AR, de Oliveira Zanuso B, Miola VFB, et al. Adipokines, myokines, and hepatokines: crosstalk and metabolic repercussions. Int J Mol Sci. 2021;22(5):2639. doi: 10.3390/ijms22052639
  • Marx N, Federici M, Schütt K, et al. ESC Scientific Document Group. ESC guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J. 2023;44(39):4043–4140. doi: 10.1093/eurheartj/ehad192
  • Heidenreich PA, Bozkurt B, Aguilar D, et al. AHA/ACC/HFSA guideline for the management of heart failure: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. J Am Coll Cardiol. 2022;79(17):e263–e421. doi: 10.1016/j.jacc.2021.12.012
  • Segar MW, Vaduganathan M, Patel KV, et al. Machine learning to predict the risk of incident heart failure hospitalization among patients with diabetes: the WATCH-DM risk score. Diabetes Care. 2019;42(12):2298–2306. doi: 10.2337/dc19-0587
  • Elharram M, Ferreira JP, Huynh T, et al. Prediction of heart failure outcomes in patients with type 2 diabetes mellitus: validation of the thrombolysis in myocardial infarction risk score for heart failure in diabetes (TRS-HFDM) in patients in the ACCORD trial. Diab Obes Metab. 2021;23(3):782–790. doi: 10.1111/dom.14283
  • Basu S, Sussman JB, Berkowitz SA, et al. Validation of risk equations for complications of type 2 diabetes (RECODe) using individual participant data from diverse longitudinal cohorts in the U.S. Diabetes Care. 2018;41(3):586–595. doi: 10.2337/dc17-2002
  • Segar MW, Patel KV, Hellkamp AS, et al. Validation of the WATCH-DM and TRS-HFDM risk scores to predict the risk of incident hospitalization for heart failure among adults with type 2 diabetes: a multicohort analysis. J Am Heart Assoc. 2022;11(11):e024094. doi: 10.1161/JAHA.121.024094
  • Kostopoulos G, Doundoulakis I, Toulis KA, et al. Prognostic models for heart failure in patients with type 2 diabetes: a systematic review and meta-analysis. Heart. 2023;109(19):1436–1442. doi: 10.1136/heartjnl-2022-322044
  • Marwick TH, Shah SJ, Thomas JD. Myocardial strain in the assessment of patients with heart failure: a review. JAMA Cardiol. 2019;4(3):287–294. doi: 10.1001/jamacardio.2019.0052
  • Tao Y, Wang W, Zhu J, et al. H2FPEF score predicts 1-year rehospitalisation of patients with heart failure with preserved ejection fraction. Postgrad Med J. 2021;97(1145):164–167. doi: 10.1136/postgradmedj-2019-137434
  • Sueta D, Yamamoto E, Nishihara T, et al. H2FPEF score as a prognostic value in HFpEF patients. Am J Hypertens. 2019;32(11):1082–1090. doi: 10.1093/ajh/hpz108
  • Carluccio E, Dini FL, Biagioli P, et al. The ‘Echo Heart Failure Score’: an echocardiographic risk prediction score of mortality in systolic heart failure. Eur J Heart Fail. 2013;15(8):868–876. doi: 10.1093/eurjhf/hft038
  • D’Alto M, Romeo E, Argiento P, et al. A simple echocardiographic score for the diagnosis of pulmonary vascular disease in heart failure. J Cardiovasc Med (Hagerstown). 2017;18(4):237–243. doi: 10.2459/JCM.0000000000000485
  • Yang HH, Li FR, Chen ZK, et al. Duration of diabetes, glycemic control, and risk of heart failure among adults with diabetes: a cohort study. J Clin Endocrinol Metab. 2023;108(5):1166–1172. doi: 10.1210/clinem/dgac642
  • Ghouse J, Isaksen JL, Skov MW, et al. Effect of diabetes duration on the relationship between glycaemic control and risk of death in older adults with type 2 diabetes. Diab Obes Metab. 2020;22(2):231–242. doi: 10.1111/dom.13891
  • Seferovic JP, Tesic M, Seferovic PM, et al. Increased left ventricular mass index is present in patients with type 2 diabetes without ischemic heart disease. Sci Rep. 2018;8(1):926. doi: 10.1038/s41598-018-19229-w
  • Patel KV, Khan MS, Segar MW, et al. Optimal cardiometabolic health and risk of heart failure in type 2 diabetes: an analysis from the Look AHEAD trial. Eur J Heart Fail. 2022;24(11):2037–2047. doi: 10.1002/ejhf.2723
  • Rawshani A, Rawshani A, Franzén S, et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018;379(7):633–644. doi: 10.1056/NEJMoa1800256
  • Kong MG, Jang SY, Jang J, et al. Impact of diabetes mellitus on mortality in patients with acute heart failure: a prospective cohort study. Cardiovasc Diabetol. 2020;19(1):49. doi: 10.1186/s12933-020-01026-3
  • Li S, Nemeth I, Donnelly L, et al. Visit-to-visit HbA1c variability is associated with cardiovascular disease and microvascular complications in patients with newly diagnosed type 2 diabetes. Diabetes Care. 2020;43(2):426–432. doi: 10.2337/dc19-0823
  • Lichtenauer M, Jirak P, Paar V, et al. Heart failure and diabetes mellitus: biomarkers in risk stratification and prognostication. Appl Sci. 2021;11(10):4397. doi: 10.3390/app11104397
  • Ciardullo S, Rea F, Cannistraci R, et al. NT-ProBNP and mortality across the spectrum of glucose tolerance in the general US population. Cardiovasc Diabetol. 2022;21(1):236. doi: 10.1186/s12933-022-01671-w
  • Cao Z, Jia Y, Zhu B. BNP and NT-proBNP as diagnostic biomarkers for cardiac dysfunction in both clinical and forensic medicine. Int J Mol Sci. 2019;20(8):1820. doi: 10.3390/ijms20081820
  • Huelsmann M, Neuhold S, Strunk G, et al. NT-proBNP has a high negative predictive value to rule-out short-term cardiovascular events in patients with diabetes mellitus. Eur Heart J. 2008;29(18):2259–2264. doi: 10.1093/eurheartj/ehn334
  • Neuhold S, Resl M, Huelsmann M, et al. Repeat measurements of glycated haemoglobin A(1c) and N-terminal pro-B-type natriuretic peptide: divergent behaviour in diabetes mellitus. Eur J Clin Invest. 2011;41(12):1292–1298. doi: 10.1111/j.1365-2362.2011.02539.x
  • Scirica BM, Bhatt DL, Braunwald E, et al. SAVOR-TIMI 53 steering committee and investigators. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–1326. doi: 10.1056/NEJMoa1307684
  • Ohkuma T, Jun M, Woodward M, et al. ADVANCE Collaborative Group. Cardiac stress and inflammatory markers as predictors of heart failure in patients with type 2 diabetes: the ADVANCE trial. Diabetes Care. 2017;40(9):1203–1209. doi: 10.2337/dc17-0509
  • Huelsmann M, Neuhold S, Resl M, et al. PONTIAC (NT-proBNP selected prevention of cardiac events in a population of diabetic patients without a history of cardiac disease): a prospective randomized controlled trial. J Am Coll Cardiol. 2013;62(15):1365–1372. doi: 10.1016/j.jacc.2013.05.069
  • Ledwidge M, Gallagher J, Conlon C, et al. Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA. 2013;310(1):66–74. doi: 10.1001/jama.2013.7588
  • Pandey A, Vaduganathan M, Patel KV, et al. Biomarker-based risk prediction of incident heart failure in pre-diabetes and diabetes. JACC Heart Fail. 2021;9(3):215–223. doi: 10.1016/j.jchf.2020.10.013
  • Berg DD, Wiviott SD, Scirica BM, et al. A biomarker-based score for risk of hospitalization for heart failure in patients with diabetes. Diabetes Care. 2021;44(11):2573–2581. doi: 10.2337/dc21-1170
  • Segar MW, Khan MS, Patel KV, et al. Incorporation of natriuretic peptides with clinical risk scores to predict heart failure among individuals with dysglycaemia. Eur J Heart Fail. 2022;24(1):169–180. doi: 10.1002/ejhf.2375
  • Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122(4):624–638. doi: 10.1161/CIRCRESAHA.117.311586
  • Segar MW, Khan MS, Patel KV, et al. Prevalence and prognostic implications of diabetes with cardiomyopathy in community-dwelling adults. J Am Coll Cardiol. 2021;78(16):1587–1598. doi: 10.1016/j.jacc.2021.08.020
  • Iwakura K, Onishi T, Okamura A, et al. PURSUIT-HFpEF investigators. The WATCH-DM risk score estimates clinical outcomes in type 2 diabetic patients with heart failure with preserved ejection fraction. Sci Rep. 2024;14(1):1746. doi: 10.1038/s41598-024-52101-8
  • Sandoval Y, Apple FS, Saenger AK, et al. 99th percentile upper-reference limit of cardiac troponin and the diagnosis of acute myocardial infarction. Clin Chem. 2020;66(9):1167–1180. doi: 10.1093/clinchem/hvaa158
  • Katrukha IA, Katrukha AG. Myocardial injury and the release of troponins I and T in the blood of patients. Clin Chem. 2021;67(1):124–130. doi: 10.1093/clinchem/hvaa281
  • Selvin E, Lazo M, Chen Y, et al. Diabetes mellitus, prediabetes, and incidence of subclinical myocardial damage. Circulation. 2014;130(16):1374–1382. doi: 10.1161/CIRCULATIONAHA.114.010815
  • Yan I, Börschel CS, Neumann JT, et al. High-sensitivity cardiac troponin i levels and prediction of heart failure: results from the BiomarCaRE consortium. JACC Heart Fail. 2020;8(5):401–411. doi: 10.1016/j.jchf.2019.12.008
  • Alonso N, Lupón J, Barallat J, et al. Impact of diabetes on the predictive value of heart failure biomarkers. Cardiovasc Diabetol. 2016;15(1):151. doi: 10.1186/s12933-016-0470-x
  • Rørth R, Jhund PS, Kristensen SL, et al. The prognostic value of troponin T and N-terminal pro B-type natriuretic peptide, alone and in combination, in heart failure patients with and without diabetes. Eur J Heart Fail. 2019;21(1):40–49. doi: 10.1002/ejhf.1359
  • Jia X, Sun W, Hoogeveen RC, et al. High-sensitivity troponin i and incident coronary events, stroke, heart failure hospitalization, and mortality in the ARIC study. Circulation. 2019;139(23):2642–2653. doi: 10.1161/CIRCULATIONAHA.118.038772
  • Florido R, Kwak L, Echouffo-Tcheugui JB, et al. Obesity, galectin-3, and incident heart failure: the ARIC study. J Am Heart Assoc. 2022;11(9):e023238. doi: 10.1161/JAHA.121.023238
  • Baccouche BM, Mahmoud MA, Nief C, et al. Galectin-3 is associated with heart failure incidence: a meta-analysis. Curr Cardiol Rev. 2023;19(3):e171122211004. doi: 10.2174/1573403X19666221117122012
  • Aguilar D, Sun C, Hoogeveen RC, et al. Levels and change in galectin-3 and association with cardiovascular events: the ARIC study. J Am Heart Assoc. 2020;9(13):e015405. doi: 10.1161/JAHA.119.015405
  • de Boer RA, Edelmann F, Cohen-Solal A, et al. Galectin-3 in heart failure with preserved ejection fraction. Eur J Heart Fail. 2013;15(10):1095–1101. doi: 10.1093/eurjhf/hft077
  • Djoussé L, Matsumoto C, Petrone A, et al. Plasma galectin 3 and heart failure risk in the P hysicians’ H ealth S tudy. European J Heart Fail. 2014;16(3):350–354. doi: 10.1002/ejhf.21
  • Chen A, Hou W, Zhang Y, et al. Prognostic value of serum galectin-3 in patients with heart failure: a meta-analysis. Int J Cardiol. 2015;182:168–170. doi:10.1016/j.ijcard.2014.12.137
  • Holmager P, Egstrup M, Gustafsson I, et al. Galectin-3 and fibulin-1 in systolic heart failure - relation to glucose metabolism and left ventricular contractile reserve. BMC Cardiovasc Disord. 2017;17(1):22. doi: 10.1186/s12872-016-0437-6
  • Trippel TD, Mende M, Düngen HD, et al. The diagnostic and prognostic value of galectin-3 in patients at risk for heart failure with preserved ejection fraction: results from the DIAST-CHF study. ESC Heart Fail. 2021;8(2):829–841. doi: 10.1002/ehf2.13174
  • Gruson D, Mancini M, Ahn SA, et al. Galectin-3 testing: validity of a novel automated assay in heart failure patients with reduced ejection fraction. Clin Chim Acta. 2014;429:189–193. doi: 10.1016/j.cca.2013.12.017
  • Ianoș RD, Pop C, Iancu M, et al. Diagnostic performance of serum biomarkers fibroblast growth factor 21, galectin-3 and copeptin for heart failure with preserved ejection fraction in a sample of patients with type 2 diabetes mellitus. Diagn (Basel). 2021;11(9):1577. doi: 10.3390/diagnostics11091577
  • de Boer RA, Lok DJ, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43(1):60–68. doi: 10.3109/07853890.2010.538080
  • AbouEzzeddine OF, McKie PM, Dunlay SM, et al. Suppression of tumorigenicity 2 in heart failure with preserved ejection fraction. J Am Heart Assoc. 2017;6(2):e004382. doi: 10.1161/JAHA.116.004382
  • Beetler DJ, Bruno KA, Di Florio DN, et al. Sex and age differences in sST2 in cardiovascular disease. Front Cardiovasc Med. 2023;9:1073814. doi: 10.3389/fcvm.2022.1073814
  • Kim AJ, Ro H, Kim H, et al. Soluble ST2 and galectin-3 as predictors of chronic kidney disease progression and outcomes. Am J Nephrol. 2021;52(2):119–130. doi: 10.1159/000513663
  • Li M, Duan L, Cai Y, et al. Prognostic value of soluble suppression of tumorigenesis-2 (sST2) for cardiovascular events in coronary artery disease patients with and without diabetes mellitus. Cardiovasc Diabetol. 2021;20(1):49. doi: 10.1186/s12933-021-01244-3
  • Lin YH, Zhang RC, Hou LB, et al. Distribution and clinical association of plasma soluble ST2 during the development of type 2 diabetes. Diabet Res Clin Pract. 2016;118:140–145. doi: 10.1016/j.diabres.2016.06.006
  • Hughes MF, Appelbaum S, Havulinna AS, et al. FINRISK and BiomarCaRE investigators. ST2 may not be a useful predictor for incident cardiovascular events, heart failure and mortality. Heart. 2014;100(21):1715–1721. doi: 10.1136/heartjnl-2014-305968
  • Johann K, Kleinert M, Klaus S. The role of GDF15 as a myomitokine. Cells. 2021;10(11):2990. doi: 10.3390/cells10112990
  • Aguilar-Recarte D, Barroso E, Gumà A, et al. GDF15 mediates the metabolic effects of PPARβ/δ by activating AMPK. Cell Rep. 2021;36(6):109501. doi: 10.1016/j.celrep.2021.109501
  • Breit SN, Brown DA, Tsai VW. The GDF15-GFRAL pathway in health and metabolic disease: friend or foe? Annu Rev Physiol. 2021;83(1):127–151. doi: 10.1146/annurev-physiol-022020-045449
  • Laurens C, Parmar A, Murphy E, et al. Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI Insight. 2020;5(6):e131870. doi: 10.1172/jci.insight.131870
  • Tsai VWW, Husaini Y, Sainsbury A, et al. The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases. Cell Metab. 2018;28(3):353–368. doi:10.1016/j.cmet.2018.07.018
  • Wang D, Day EA, Townsend LK, et al. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat Rev Endocrinol. 2021;17(10):592–607. doi: 10.1038/s41574-021-00529-7
  • Berezin AE. Diabetes mellitus related biomarker: the predictive role of growth-differentiation factor-15. Diabetes Metab Syndr. 2016;10(1 Suppl 1):S154–7. doi: 10.1016/j.dsx.2015.09.016
  • Wang Z, Yang F, Ma M, et al. The impact of growth differentiation factor 15 on the risk of cardiovascular diseases: two-sample mendelian randomization study. BMC Cardiovasc Disord. 2020;20(1):462. doi: 10.1186/s12872-020-01744-2
  • Li T, Chen Y, Ye T, et al. Association of growth differentiation factor-15 level with adverse outcomes in patients with stable coronary artery disease: a meta-analysis. Atheroscler Plus. 2021;47:1–7. doi: 10.1016/j.athplu.2021.11.003
  • Gürgöze MT, van Vark LC, Baart SJ, et al. Multimarker analysis of serially measured GDF-15, NT-proBNP, ST2, GAL-3, cTnI, creatinine, and prognosis in acute heart failure. Circ Heart Fail. 2023;16(1):e009526. doi: 10.1161/CIRCHEARTFAILURE.122.009526
  • Hongisto M, Lassus J, Tarvasmäki T, et al. CardShock study investigators and the GREAT network. Mortality risk prediction in elderly patients with cardiogenic shock: results from the CardShock study. ESC Heart Fail. 2021;8(2):1398–1407. doi: 10.1002/ehf2.13224
  • Wiklund FE, Bennet AM, Magnusson PK, et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15): a new marker of all-cause mortality. Aging Cell. 2010;9(6):1057–1064. doi: 10.1111/j.1474-9726.2010.00629.x
  • Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, et al. Metformin and growth differentiation factor 15 (GDF15) in type 2 diabetes mellitus: a hidden treasure. J Diabetes. 2022;14(12):806–814. doi: 10.1111/1753-0407.13334
  • Coll AP, Chen M, Taskar P, et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature. 2020;578(7795):444–448. doi: 10.1038/s41586-019-1911-y
  • Sen T, Li J, Neuen BL, et al. Association between circulating GDF-15 and cardio-renal outcomes and effect of Canagliflozin: results from the CANVAS trial. J Am Heart Assoc. 2021;10(23):e021661. doi: 10.1161/JAHA.121.021661
  • Ferrannini E, Murthy AC, Lee YH, et al. Mechanisms of sodium-glucose cotransporter 2 inhibition: insights from large-scale proteomics. Diabetes Care. 2020;43(9):2183–2189. doi: 10.2337/dc20-0456
  • Xie S, Li Q, Luk AOY, et al. Major adverse cardiovascular events and mortality prediction by circulating GDF-15 in patients with type 2 diabetes: a systematic review and meta-analysis. Biomolecules. 2022;12(7):934. doi: 10.3390/biom12070934
  • Carlsson AC, Nowak C, Lind L, et al. Growth differentiation factor 15 (GDF-15) is a potential biomarker of both diabetic kidney disease and future cardiovascular events in cohorts of individuals with type 2 diabetes: a proteomics approach. Ups J Med Sci. 2020;125(1):37–43. doi: 10.1080/03009734.2019.1696430
  • Nair V, Robinson-Cohen C, Smith MR, et al. Growth differentiation factor-15 and risk of CKD progression. J Am Soc Nephrol. 2017;28(7):2233–2240. doi: 10.1681/ASN.2016080919
  • Nauck MA, Quast DR, Wefers J, et al. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab. 2021;46:101102. doi: 10.1016/j.molmet.2020.101102
  • Frikke-Schmidt H, Hultman K, Galaske JW, et al. GDF15 acts synergistically with liraglutide but is not necessary for the weight loss induced by bariatric surgery in mice. Molecular Metabolism. 2019;21:13–21. doi: 10.1016/j.molmet.2019.01.003
  • Liu S, Cui F, Ning K, et al. Role of irisin in physiology and pathology. Front Endocrinol. 2022;13:962968. doi: 10.3389/fendo.2022.962968
  • Kim H, Wrann CD, Jedrychowski M, et al. Irisin mediates effects on bone and fat via αv integrin receptors. Cell. 2018;175(7):1756–1768.e17. doi: 10.1016/j.cell.2018.10.025
  • Hu X, Wang Z, Wang W, et al. Irisin as an agent for protecting against osteoporosis: a review of the current mechanisms and pathways. J Adv Res. 2023;S2090-1232(23). doi: 10.1016/j.jare.2023.09.001
  • Qiongyue Z, Xin Y, Meng P, et al. Post-treatment with irisin attenuates acute kidney injury in sepsis mice through anti-ferroptosis via the SIRT1/Nrf2 pathway. Front Pharmacol. 2022;13:857067. doi: 10.3389/fphar.2022.857067
  • Polyzos SA, Anastasilakis AD, Efstathiadou ZA, et al. Irisin in metabolic diseases. Endocrine. 2018;59(2):260–274. doi: 10.1007/s12020-017-1476-1
  • Zhu B, Wang B, Zhao C, et al. Irisin regulates cardiac responses to exercise in health and diseases: a narrative review. J Cardiovasc Transl Res. 2023;16(2):430–442. doi: 10.1007/s12265-022-10310-4
  • Ho MY, Wang CY. Role of Irisin in myocardial infarction, heart failure, and cardiac hypertrophy. Cells. 2021;10(8):2103. doi: 10.3390/cells10082103
  • Li J, Xie S, Guo L, et al. Irisin: linking metabolism with heart failure. Am J Transl Res. 2020;12(10):6003–6014.
  • Berezin AA, Obradovic AB, Fushtey IM, et al. Low plasma levels of irisin predict acutely decompensated heart failure in type 2 diabetes mellitus patients with chronic heart failure. J Cardiovasc Dev Dis. 2023;10(4):136. doi: 10.3390/jcdd10040136
  • Tomasello L, Pitrone M, Guarnotta V, et al. Irisin: a possible marker of adipose tissue dysfunction in obesity. Int J Mol Sci. 2023;24(15):12082. doi: 10.3390/ijms241512082
  • Berezin AA, Obradovic Z, Novikov EV, et al. Interplay between myokine profile and glycemic control in type 2 diabetes mellitus patients with heart failure. Diagn (Basel). 2022;12(12):2940. doi: 10.3390/diagnostics12122940
  • Berezin AA, Fushtey IM, Pavlov SV, et al. Predictive value of serum irisin for chronic heart failure in patients with type 2 diabetes mellitus. Mol Biomed. 2022;3(1):34. doi: 10.1186/s43556-022-00096-x
  • Berezin AA, Lichtenauer M, Boxhammer E, et al. Serum levels of irisin predict cumulative clinical outcomes in heart failure patients with type 2 diabetes mellitus. Front physiol. 2022;13:922775. doi: 10.3389/fphys.2022.922775
  • Berezin AA, Lichtenauer M, Boxhammer E, et al. Discriminative value of serum Irisin in prediction of heart failure with different phenotypes among patients with type 2 diabetes mellitus. Cells. 2022;11(18):2794. doi: 10.3390/cells11182794
  • Berezina TA, Fushtey IM, Berezin AA, et al. Predictors of kidney function outcomes and their relation to SGLT2 inhibitor dapagliflozin in patients with type 2 diabetes mellitus who had chronic heart failure. Adv Ther. 2024;41(1):292–314. doi: 10.1007/s12325-023-02683-y
  • Marczuk N, Cecerska-Heryć E, Jesionowska A, et al. Adropin - physiological and pathophysiological role. Postepy Higieny i Medycyny Doswiadczalnej. 2016;70:981–988. doi: 10.5604/17322693.1220082
  • Wong CM, Wang Y, Lee JT, et al. Adropin is a brain membrane-bound protein regulating physical activity via the NB-3/Notch signaling pathway in mice. J Biol Chem. 2014;289(37):25976–25986. doi: 10.1074/jbc.M114.576058
  • Aydin S, Kuloglu T, Aydin S. Copeptin, adropin and irisin concentrations in breast milk and plasma of healthy women and those with gestational diabetes mellitus. Peptides. 2013;47:66–70. doi: 10.1016/j.peptides.2013.07.001
  • Ganesh Kumar K, Zhang J, Gao S, et al. Adropin deficiency is associated with increased adiposity and insulin resistance. Obesity (Silver Spring). 2012;20(7):1394–1402. doi: 10.1038/oby.2012.31
  • Thapa D, Xie B, Manning JR, et al. Adropin reduces blood glucose levels in mice by limiting hepatic glucose production. Physiol Rep. 2019;7(8):e14043. doi: 10.14814/phy2.14043
  • Ying T, Wu L, Lan T, et al. Adropin inhibits the progression of atherosclerosis in ApoE-/-/Enho-/- mice by regulating endothelial-to-mesenchymal transition. Cell Death Discov. 2023;9(1):402. doi: 10.1038/s41420-023-01697-3
  • Sato K, Yamashita T, Shirai R, et al. Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. Int J Mol Sci. 2018;19(5):1293. doi: 10.3390/ijms19051293
  • Wei W, Liu H, Qiu X, et al. The association between serum adropin and carotid atherosclerosis in patients with type 2 diabetes mellitus: a cross‑sectional study. Diabetol Metab Syndr. 2022;14(1):27. doi: 10.1186/s13098-022-00796-y
  • Wu L, Fang J, Chen L, et al. Low serum adropin is associated with coronary atherosclerosis in type 2 diabetic and non-diabetic patients. Clin Chem Lab Med. 2014;52(5):751–758. doi: 10.1515/cclm-2013-0844
  • Soltani S, Beigrezaei S, Malekahmadi M, et al. Circulating levels of adropin and diabetes: a systematic review and meta-analysis of observational studies. BMC Endocr Disord. 2023;23(1):73. doi: 10.1186/s12902-023-01327-0
  • Jurrissen TJ, Ramirez-Perez FI, Cabral-Amador FJ, et al. Role of adropin in arterial stiffening associated with obesity and type 2 diabetes. Am J Physiol Heart Circ Physiol. 2022;323(5):H879–H891. doi: 10.1152/ajpheart.00385.2022
  • Vivek K, Reddy EP, Thangappazham B, et al. Maternal adropin levels in patients with gestational diabetes mellitus: a systematic review and meta-analysis. Gynecol Endocrinol. 2022;38(2):105–109. doi: 10.1080/09513590.2021.1963703
  • Es-Haghi A, Al-Abyadh T, Mehrad-Majd H. The clinical value of serum adropin level in early detection of diabetic nephropathy. Kidney Blood Press Res. 2021;46(6):734–740. doi: 10.1159/000519173
  • Berezina TA, Obradovic Z, Boxhammer E, et al. Adropin predicts chronic kidney disease in type 2 diabetes mellitus patients with chronic heart failure. J Clin Med. 2023;12(6):2231. doi: 10.3390/jcm12062231
  • Berezin AA, Obradovic Z, Fushtey IM, et al. The impact of SGLT2 inhibitor dapagliflozin on adropin serum levels in men and women with type 2 diabetes mellitus and chronic heart failure. Biomedicines. 2023;11(2):457. doi: 10.3390/biomedicines11020457
  • Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8(3):235–253. doi: 10.1038/nrd2792
  • Luo Y, McKeehan WL. Stressed liver and muscle call on adipocytes with FGF21. Front Endocrinol. 2013;4:194. doi: 10.3389/fendo.2013.00194
  • Itoh N, Ohta H, Konishi M. Endocrine FGFs: evolution, physiology, pathophysiology, and pharmacotherapy. Front Endocrinol. 2015;6:154. doi:10.3389/fendo.2015.00154
  • Lee S, Choi J, Mohanty J, et al. Structures of β-klotho reveal a ‘zip code’-like mechanism for endocrine FGF signaling. Nature. 2018;553(7689):501–505. doi: 10.1038/nature25010
  • Luo Y, Ye S, Chen X, et al. Rush to the fire: FGF21 extinguishes metabolic stress, metaflammation and tissue damage. Cytokine Growth Factor Rev. 2017;38:59–65. doi: 10.1016/j.cytogfr.2017.08.001
  • Guo D, Xiao L, Hu H, et al. FGF21 protects human umbilical vein endothelial cells against high glucose-induced apoptosis via PI3K/Akt/Fox3a signaling pathway. J Diabetes Complications. 2018;32(8):729–736. doi: 10.1016/j.jdiacomp.2018.05.012
  • Zhang Y, Liu D, Long XX, et al. The role of FGF21 in the pathogenesis of cardiovascular disease. Chin Med J (Engl). 2021;134(24):2931–2943. doi: 10.1097/CM9.0000000000001890
  • Choi MJ, Jung SB, Lee SE, et al. An adipocyte-specific defect in oxidative phosphorylation increases systemic energy expenditure and protects against diet-induced obesity in mouse models. Diabetologia. 2020;63(4):837–852. doi: 10.1007/s00125-019-05082-7
  • Geng L, Lam KSL, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol. 2020;16(11):654–667. doi: 10.1038/s41574-020-0386-0
  • Shen Y, Ma X, Zhou J, et al. Additive relationship between serum fibroblast growth factor 21 level and coronary artery disease. Cardiovasc Diabetol. 2013;12(1):124.
  • Chee Y, Toh GL, Lim CJ, et al. Sex modifies the association of fibroblast growth factor 21 with subclinical carotid atherosclerosis. Front Cardiovasc Med. 2021;8:627691. doi: 10.3389/fcvm.2021.627691
  • Sommakia S, Almaw NH, Lee SH, et al. FGF21 (fibroblast growth factor 21) defines a potential cardiohepatic signaling circuit in end-stage heart failure. Circ Heart Fail. 2022;15(3):e008910. doi: 10.1161/CIRCHEARTFAILURE.121.008910
  • Haberka M, Machnik G, Kowalówka A, et al. Epicardial, paracardial, and perivascular fat quantity, gene expressions, and serum cytokines in patients with coronary artery disease and diabetes. Pol Arch Intern Med. 2019;129(11):738–746. doi: 10.20452/pamw.14961
  • Drexler S, Cai C, Hartmann AL, et al. Intestinal BMP-9 locally upregulates FGF19 and is down-regulated in obese patients with diabetes. Mol Cell Endocrinol. 2023;570:111934. doi: 10.1016/j.mce.2023.111934
  • Yang K, Wang H, Wei R, et al. High baseline FGF21 levels are associated with poor glucose-lowering efficacy of exenatide in patients with type 2 diabetes. Acta Diabetol. 2021;58(5):595–602. doi: 10.1007/s00592-020-01660-z
  • Hu X, Ma X, Pan X, et al. Fibroblast growth factor 23 is associated with the presence of coronary artery disease and the number of stenotic vessels. Clin Exp Pharmacol Physiol. 2015;42(11):1152–1157. doi: 10.1111/1440-1681.12467
  • Li Q, Zhang Y, Ding D, et al. Association between serum fibroblast growth factor 21 and mortality among patients with coronary artery disease. J Clin Endocrinol Metab. 2016;101(12):4886–4894. doi: 10.1210/jc.2016-2308
  • Brandenburg VM, Kleber ME, Vervloet MG, et al. Fibroblast growth factor 23 (FGF23) and mortality: the ludwigshafen risk and cardiovascular health study. Atherosclerosis. 2014;237(1):53–59. doi: 10.1016/j.atherosclerosis.2014.08.037
  • Qin Z, Liu X, Song M, et al. Fibroblast growth factor 23 as a predictor of cardiovascular and all-cause mortality in prospective studies. Atherosclerosis. 2017;261:1–11. doi: 10.1016/j.atherosclerosis.2017.03.042
  • Gu L, Jiang W, Jiang W, et al. Elevated serum FGF21 levels predict heart failure during hospitalization of STEMI patients after emergency percutaneous coronary intervention. PeerJ. 2023;11:e14855. doi: 10.7717/peerj.14855
  • Fan L, Gu L, Yao Y, et al. Elevated serum fibroblast growth factor 21 is relevant to heart failure patients with reduced ejection fraction. Comput Math Meth Med. 2022;2022:1–6. doi: 10.1155/2022/7138776
  • Wu G, Wu S, Yan J, et al. Fibroblast growth factor 21 predicts short-term prognosis in patients with acute heart failure: a prospective cohort study. Front Cardiovasc Med. 2022;9:834967. doi: 10.3389/fcvm.2022.834967
  • Chou RH, Huang PH, Hsu CY, et al. Circulating fibroblast growth factor 21 is associated with diastolic dysfunction in heart failure patients with preserved ejection fraction. Sci Rep. 2016;6(1):33953.
  • Tucker W, McClelland RL, Allison MA, et al. The association of circulating fibroblast growth factor 21 levels with incident heart failure: the multi-ethnic study of atherosclerosis. Metabolism. 2023;143:155535. doi: 10.1016/j.metabol.2023.155535
  • Zhou Q, Chen L, Tang M, et al. Apelin/APJ system: a novel promising target for anti-aging intervention. Clin Chim Acta. 2018;487:233–240. doi: 10.1016/j.cca.2018.10.011
  • Wang X, Zhang L, Li P, et al. Apelin/APJ system in inflammation. Int Immunopharmacol. 2022;109:108822. doi: 10.1016/j.intimp.2022.108822
  • Cheng J, Luo X, Huang Z, et al. Apelin/APJ system: a potential therapeutic target for endothelial dysfunction-related diseases. J Cell Physiol. 2019;234(8):12149–12160. doi: 10.1002/jcp.27942
  • Pang B, Jiang YR, Xu JY, et al. Apelin/ELABELA-APJ system in cardiac hypertrophy: regulatory mechanisms and therapeutic potential. Eur J Pharmacol. 2023;949:175727. doi: 10.1016/j.ejphar.2023.175727
  • Yang Y, Chen M, Qiu Y, et al. The Apelin/APLNR system modulates tumor immune response by reshaping the tumor microenvironment. Gene. 2022;834:146564. doi: 10.1016/j.gene.2022.146564
  • Huang J, Kang S, Park SJ, et al. Apelin protects against liver X receptor-mediated steatosis through AMPK and PPARα in human and mouse hepatocytes. Cell Signal. 2017;39:84–94. doi: 10.1016/j.cellsig.2017.08.003
  • Ma WY, Yu TY, Wei JN, et al. Plasma apelin: a novel biomarker for predicting diabetes. Clin Chim Acta. 2014;435:18–23. doi: 10.1016/j.cca.2014.03.030
  • Erdem G, Dogru T, Tasci I, et al. Low plasma apelin levels in newly diagnosed type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2008;116(5):289–292. doi: 10.1055/s-2007-1004564
  • Nagib AM, El-Diasty A, El Husseny MA, et al. Apelin and new-onset diabetes after transplant in living kidney allograft recipients. Exp Clin Transplant. 2015;13(4): 319–323. PMID: 26295182.
  • Hosny SS, Nasr MS, Ibrahim RH, et al. Relation between plasma apelin level and peripheral neuropathy in type 2 diabetic patients. Diabetes Metab Syndr. 2019;13(1):626–629. doi: 10.1016/j.dsx.2018.11.027
  • Mund C, Kellellu CK, Rattan R, et al. Study of serum apelin and insulin resistance in type 2 diabetes mellitus patients with or without obesity. Cureus. 2023;15(8):e43401. doi: 10.7759/cureus.43401
  • Berezin AA, Fushtey IM, Berezin AE. Discriminative utility of apelin-to-NT-Pro-brain natriuretic peptide ratio for heart failure with preserved ejection fraction among type 2 diabetes mellitus patients. J Cardiovasc Dev Dis. 2022;9(1):23. doi: 10.3390/jcdd9010023
  • García-Hermoso A, Ramírez-Vélez R, Díez J, et al. Exercise training-induced changes in exerkine concentrations may be relevant to the metabolic control of type 2 diabetes mellitus patients: a systematic review and meta-analysis of randomized controlled trials. J Sport Health Sci. 2023;12(2):147–157. doi: 10.1016/j.jshs.2022.11.003
  • Robillard S, Trân K, Lachance MS, et al. Apelin prevents diabetes-induced poor collateral vessel formation and blood flow reperfusion in ischemic limb. Front Cardiovasc Med. 2023;10:1191891. doi: 10.3389/fcvm.2023.1191891
  • Berezin AA, Fushtey IM, Berezin AE. The effect of SGLT2 inhibitor dapagliflozin on serum levels of apelin in T2DM patients with heart failure. Biomedicines. 2022;10(7):1751. doi: 10.3390/biomedicines10071751
  • Diallo A, Carlos-Bolumbu M, Galtier F. Blood pressure-lowering effects of SGLT2 inhibitors and GLP-1 receptor agonists for preventing of cardiovascular events and death in type 2 diabetes: a systematic review and meta-analysis. Acta Diabetol. 2023;60(12):1651–1662. doi: 10.1007/s00592-023-02154-4
  • Belli M, Barone L, Bellia A, et al. Treatment of HFpEF beyond the SGLT2-is: does the addition of GLP-1 RA improve cardiometabolic risk and outcomes in diabetic patients? Int J Mol Sci. 2022;23(23):14598. doi: 10.3390/ijms232314598
  • Giugliano D, Meier JJ, Esposito K. Heart failure and type 2 diabetes: from cardiovascular outcome trials, with hope. Diab Obes Metab. 2019;21(5):1081–1087. doi: 10.1111/dom.13629
  • Giugliano D, Maiorino MI, Longo M, et al. Type 2 diabetes and risk of heart failure: a systematic review and meta-analysis from cardiovascular outcome trials. Endocrine. 2019;65(1):15–24. doi: 10.1007/s12020-019-01931-y
  • Miyoshi H, Oishi Y, Mizuguchi Y, et al. Association of left atrial reservoir function with left atrial structural remodeling related to left ventricular dysfunction in asymptomatic patients with hypertension: evaluation by two-dimensional speckle-tracking echocardiography. Clin Exp Hypertens. 2015;37(2):155–165. doi: 10.3109/10641963.2014.933962
  • Mu G, Wang W, Liu C, et al. Combination of SVI/S’ and diagnostic scores for heart failure with preserved ejection fraction. Clin Exp Pharmacol Physiol. 2023;50(8):677–687. doi: 10.1111/1440-1681.13782
  • Piccirillo G, Moscucci F, Carnovale M, et al. Glucose dysregulation and repolarization variability markers are short-term mortality predictors in decompensated heart failure. Cardiovasc Endocrinol Metab. 2022;11(3):e0264. doi: 10.1097/XCE.0000000000000264
  • Lazzeri C, Valente S, Chiostri M, et al. Prognostic impact of early glucose variability in acute heart failure patients: a pilot study. Intern J Cardiol. 2014;177(2):693–695. doi: 10.1016/j.ijcard.2014.09.150
  • Wang T, Xu J, Zhang H, et al. Triglyceride-glucose index for the detection of subclinical heart failure with preserved ejection fraction in patients with type 2 diabetes. Front Cardiovasc Med. 2023;10:1086978. doi: 10.3389/fcvm.2023.1086978
  • Khalaji A, Behnoush AH, Khanmohammadi S, et al. Triglyceride-glucose index and heart failure: a systematic review and meta-analysis. Cardiovasc Diabetol. 2023;22(1):244. doi: 10.1186/s12933-023-01973-7
  • Yeung AM, Huang J, Pandey A, et al. Biomarkers for the diagnosis of heart failure in people with diabetes: a consensus report from diabetes technology society. Prog Cardiovasc Dis. 2023;79:65–79. doi: 10.1016/j.pcad.2023.05.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.