891
Views
67
CrossRef citations to date
0
Altmetric
Review

Biomarkers in sarcoidosis

, &
Pages 1191-1208 | Received 25 Jan 2016, Accepted 27 May 2016, Published online: 27 Jun 2016

References

  • Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–466.
  • Biomarkers Definition Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.
  • Hunninghake GW, Costabel U, Ando M, et al. ATS/ERS/WASOG statement on sarcoidosis. American thoracic society/European respiratory society/World association of sarcoidosis and other granulomatous disorders. Sarcoidosis Vasc Diffuse Lung Dis. 1999;16(2):149–173.
  • Judson MA. Advances in the diagnosis and treatment of sarcoidosis. F1000Prime Rep. 2014;6:89.
  • Baughman RP, Nagai S, Balter M, et al. Defining the clinical outcome status (COS) in sarcoidosis: results of WASOG task force. Sarcoidosis Vasc Diffuse Lung Dis. 2011;28(1):56–64.
  • Baydur A, Alsalek M, Louie SG, et al. Respiratory muscle strength, lung function, and dyspnea in patients with sarcoidosis. Chest. 2001;120(1):102–108.
  • Judson MA. Quality of life assessment in sarcoidosis. Clin Chest Med. 2015;36(4):739–750.
  • Jameson JL, Longo DL. Precision medicine–personalized, problematic, and promising. N Engl J Med. 2015;372(23):2229–2234.
  • Ryan JW, Smith U, Niemeyer RS. Angiotensin I: metabolism by plasma membrane of lung. Science. 1972;176(4030):64–66.
  • Coates D. The angiotensin converting enzyme (ACE). Int J Biochem Cell Biol. 2003;35(6):769–773.
  • Sheffield EA. Pathology of sarcoidosis. Clin Chest Med. 1997;18(4):741–754.
  • Lynch JP 3rd, Kazerooni EA, Gay SE. Pulmonary sarcoidosis. Clin Chest Med. 1997;18(4):755–785.
  • Rohatgi PK, Ryan JW. Simple radioassay for measuring serum activity of angiotensin-converting enzyme in sarcoidosis. Chest. 1980;78(1):69–76.
  • Studdy P, Bird R, James DG. Serum angiotensin-converting enzyme (SACE) in sarcoidosis and other granulomatous disorders. Lancet. 1978;2(8104–5):1331–1334.
  • Lavaud F, Nou JM, Hinnrasky J, et al. Assay of angiotensin converting enzyme (ACE) in thoracic forms of sarcoidosis and other pulmonary diseases. Nouv Presse Med. 1979;8(45):3755.
  • Nosal A, Schleissner LA, Mishkin FS, et al. Angiotensin-I-converting enzyme and gallium scan in noninvasive evaluation of sarcoidosis. Ann Intern Med. 1979;90(3):328–331.
  • Lieberman J. The specificity and nature of serum-angiotensin-converting enzyme (serum ACE) elevations in sarcoidosis. Ann N Y Acad Sci. 1976;278:488–497.
  • Lieberman J, Schleissner LA, Nosal A, et al. Clinical correlations of serum angiotensin-converting enzyme (ACE) in sarcoidosis. A longitudinal study of serum ACE, 67gallium scans, chest roentgenograms, and pulmonary function. Chest. 1983;84(5):522–528.
  • Ashutosh K, Keighley JF. Diagnostic value of serum angiotensin converting enzyme activity in lung diseases. Thorax. 1976;31(5):552–557.
  • Rohrbach MS, Deremee RA. Serum angiotensin converting enzyme activity in sarcoidosis as measured by a simple radiochemical assay. Am Rev Respir Dis. 1979;119(5):761–767.
  • Klech H, Kohn H, Kummer F, et al. Assessment of activity in sarcoidosis. Sensitivity and specificity of 67Gallium scintigraphy, serum ACE levels, chest roentgenography, and blood lymphocyte subpopulations. Chest. 1982;82(6):732–738.
  • Krasowski MD, Savage J, Ehlers A, et al. Ordering of the serum angiotensin-converting enzyme test in patients receiving angiotensin-converting enzyme inhibitor therapy: an avoidable but common error. Chest. 2015;148(6):1447–1453.
  • Lieberman J, Rea TH. Serum angiotensin-converting enzyme in leprosy and coccidioidomycosis. Ann Intern Med. 1977;87(4):423–425.
  • Ryder KW, Jay SJ, Kiblawi SO, et al. Serum angiotensin converting enzyme activity in patients with histoplasmosis. JAMA. 1983;249(14):1888–1889.
  • Brice EA, Friedlander W, Bateman ED, et al. Serum angiotensin-converting enzyme activity, concentration, and specific activity in granulomatous interstitial lung disease, tuberculosis, and COPD. Chest. 1995;107(3):706–710.
  • Lieberman J, Beutler E. Elevation of serum angiotensin-converting enzyme in Gaucher’s disease. N Engl J Med. 1976;294(26):1442–1444.
  • Bunting PS, Szalai JP, Katic M. Diagnostic aspects of angiotensin converting enzyme in pulmonary sarcoidosis. Clin Biochem. 1987;20(3):213–219.
  • Lieberman J, Nosal A, Schlessner A, et al. Serum angiotensin-converting enzyme for diagnosis and therapeutic evaluation of sarcoidosis. Am Rev Respir Dis. 1979;120(2):329–335.
  • Joseph FG, Scolding NJ. Neurosarcoidosis: a study of 30 new cases. J Neurol Neurosurg Psychiatry. 2009;80(3):297–304.
  • Khoury J, Wellik KE, Demaerschalk BM, et al. Cerebrospinal fluid angiotensin-converting enzyme for diagnosis of central nervous system sarcoidosis. Neurologist. 2009;15(2):108–111.
  • Sharma OP. Neurosarcoidosis: a personal perspective based on the study of 37 patients. Chest. 1997;112(1):220–228.
  • Dale JC, O’Brien JF. Determination of angiotensin-converting enzyme levels in cerebrospinal fluid is not a useful test for the diagnosis of neurosarcoidosis. Mayo Clinic Proc. 1999;74(5):535.
  • Tahmoush AJ, Amir MS, Connor WW, et al. CSF-ACE activity in probable CNS neurosarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2002;19(3):191–197.
  • Pietinalho A, Furuya K, Yamaguchi E, et al. The angiotensin-converting enzyme DD gene is associated with poor prognosis in Finnish sarcoidosis patients. Eur Respir J. 1999;13(4):723–726.
  • Tomita H, Ina Y, Sugiura Y, et al. Polymorphism in the angiotensin-converting enzyme (ACE) gene and sarcoidosis. Am J Respir Crit Care Med. 1997;156(1):255–259.
  • Furuya K, Yamaguchi E, Itoh A, et al. Deletion polymorphism in the angiotensin I converting enzyme (ACE) gene as a genetic risk factor for sarcoidosis. Thorax. 1996;51(8):777–780.
  • Floe A, Hoffmann HJ, Nissen PH, et al. Genotyping increases the yield of angiotensin-converting enzyme in sarcoidosis–a systematic review. Dan Med J. 2014;61(5):A4815.
  • Stokes GS, Monaghan JC, Schrader AP, et al. Influence of angiotensin converting enzyme (ACE) genotype on interpretation of diagnostic tests for serum ACE activity. Aust N Z J Med. 1999;29(3):315–318.
  • De Smet D, Martens GA, Berghe BV, et al. Use of likelihood ratios improves interpretation of laboratory testing for pulmonary sarcoidosis. Am J Clin Pathol. 2010;134(6):939–947.
  • Takada Y, Hiwada K, Akutsu H, et al. The immunocytochemical detection of angiotensin-converting enzyme in alveolar macrophages from patients with sarcoidosis. Lung. 1984;162(6):317–323.
  • Silverstein E, Pertschuk LP, Friedland J. Immunofluorescent localization of angiotensin converting enzyme in epithelioid and giant cells of sarcoidosis granulomas. Proc Natl Acad Sci U S A. 1979;76(12):6646–6648.
  • Okabe T, Suzuki A, Ishikawa H, et al. Cells originating from sarcoid granulomas in vitro. Am Rev Respir Dis. 1981;124(5):608–612.
  • Gilbert S, Steinbrech DS, Landas SK, et al. Amounts of angiotensin-converting enzyme mRNA reflect the burden of granulomas in granulomatous lung disease. Am Rev Respir Dis. 1993;148(2):483–486.
  • Selroos OB. Biochemical markers in sarcoidosis. Crit Rev Clin Lab Sci. 1986;24(3):185–216.
  • Selroos OB. Value of biochemical markers in serum for determination of disease activity in sarcoidosis. Sarcoidosis. 1984;1(1):45–49.
  • DeRemee RA, Rohrbach MS. Serum angiotensin-converting enzyme activity in evaluating the clinical course of sarcoidosis. Ann Intern Med. 1980;92(3):361–365.
  • Cohen RD, Bunting PS, Meindok HO, et al. Does serum angiotensin converting enzyme reflect intensity of alveolitis in sarcoidosis? Thorax. 1985;40(7):497–500.
  • Beaumont D, Herry JY, Sapene M, et al. Gallium-67 in the evaluation of sarcoidosis: correlations with serum angiotensin-converting enzyme and bronchoalveolar lavage. Thorax. 1982;37(1):11–18.
  • Finkel R, Teirstein AS, Levine R, et al. Pulmonary function tests, serum angiotensin-converting enzyme levels, and clinical findings as prognostic indicators in sarcoidosis. Ann N Y Acad Sci. 1986;465:665–671.
  • Rust M, Bergmann L, Kuhn T, et al. Prognostic value of chest radiograph, serum-angiotensin-converting enzyme and T helper cell count in blood and in bronchoalveolar lavage of patients with pulmonary sarcoidosis. Respir: Int Rev Thorac Dis. 1985;48(3):231–236.
  • Baughman RP, Ploysongsang Y, Roberts RD, et al. Effects of sarcoid and steroids on angiotensin-converting enzyme. Am Rev Respir Dis. 1983;128(4):631–633.
  • Baughman RP, Fernandez M, Bosken CH, et al. Comparison of gallium-67 scanning, bronchoalveolar lavage, and serum angiotensin-converting enzyme levels in pulmonary sarcoidosis. Predicting response to therapy. Am Rev Respir Dis. 1984;129(5):676–681.
  • Snider GL. Prediction of therapeutic response in steroid-treated pulmonary sarcoidosis. Am Rev Respir Dis. 1985;132(5):1139–1140.
  • Hollinger WM, Staton GW Jr., Fajman WA, et al. Prediction of therapeutic response in steroid-treated pulmonary sarcoidosis. Evaluation of clinical parameters, bronchoalveolar lavage, gallium-67 lung scanning, and serum angiotensin-converting enzyme levels. Am Rev Respir Dis. 1985;132(1):65–69.
  • Gronhagen-Riska C, Selroos O, Niemisto M. Angiotensin converting enzyme. V. Serum levels as monitors of disease activity in corticosteroid-treated sarcoidosis. Eur J Respir Dis. 1980;61(2):113–122.
  • Mordelet-Dambrine MS, Stanislas-Leguern GM, Huchon GJ, et al. Elevation of the bronchoalveolar concentration of angiotensin I converting enzyme in sarcoidosis. Am Rev Respir Dis. 1982;126(3):472–475.
  • Specks U, Martin WJ 2nd, Rohrbach MS. Bronchoalveolar lavage fluid angiotensin-converting enzyme in interstitial lung diseases. Am Rev Respir Dis. 1990;141(1):117–123.
  • Hunninghake GW, Crystal RG. Pulmonary sarcoidosis: a disorder mediated by excess helper T-lymphocyte activity at sites of disease activity. N Engl J Med. 1981;305(8):429–434.
  • Saltini C, Spurzem JR, Lee JJ, et al. Spontaneous release of interleukin 2 by lung T lymphocytes in active pulmonary sarcoidosis is primarily from the Leu3+DR+ T cell subset. J Clin Invest. 1986;77(6):1962–1970.
  • Muller-Quernheim J. Sarcoidosis: immunopathogenetic concepts and their clinical application. Eur Respir J. 1998;12(3):716–738.
  • Semenzato G, Pizzolo G, Zambello R. The interleukin-2/interleukin-2 receptor system: structural, immunological, and clinical features. Int J Clin Lab Res. 1992;22(3):133–142.
  • Keicho N, Kitamura K, Takaku F, et al. Serum concentration of soluble interleukin-2 receptor as a sensitive parameter of disease activity in sarcoidosis. Chest. 1990;98(5):1125–1129.
  • Bargagli E, Bianchi N, Margollicci M, et al. Chitotriosidase and soluble IL-2 receptor: comparison of two markers of sarcoidosis severity. Scand J Clin Lab Invest. 2008;68(6):479–483.
  • Grutters JC, Fellrath JM, Mulder L, et al. Serum soluble interleukin-2 receptor measurement in patients with sarcoidosis: a clinical evaluation. Chest. 2003;124(1):186–195.
  • Rothkrantz-Kos S, Van Dieijen-Visser MP, Mulder PG, et al. Potential usefulness of inflammatory markers to monitor respiratory functional impairment in sarcoidosis. Clin Chem. 2003;49(9):1510–1517.
  • Semenzato G, Foa R, Agostini C, et al. High serum levels of soluble interleukin 2 receptor in patients with B chronic lymphocytic leukemia. Blood. 1987;70(2):396–400.
  • Tung KS, Umland E, Matzner P, et al. Soluble serum interleukin 2 receptor levels in leprosy patients. Clin Exp Immunol. 1987;69(1):10–15.
  • Meliconi R, Lalli E, Borzi RM, et al. Idiopathic pulmonary fibrosis: can cell mediated immunity markers predict clinical outcome? Thorax. 1990;45(7):536–540.
  • Kloster BE, John PA, Miller LE, et al. Soluble interleukin 2 receptors are elevated in patients with AIDS or at risk of developing AIDS. Clin Immunol Immunopathol. 1987;45(3):440–446.
  • Clements PJ, Peter JB, Agopian MS, et al. Elevated serum levels of soluble interleukin 2 receptor, interleukin 2 and neopterin in diffuse and limited scleroderma: effects of chlorambucil. J Rheumatol. 1990;17(7):908–910.
  • Brown AE, Rieder KT, Webster HK. Prolonged elevations of soluble interleukin-2 receptors in tuberculosis. Am Rev Respir Dis. 1989;139(4):1036–1038.
  • Lawrence EC, Brousseau KP, Berger MB, et al. Elevated concentrations of soluble interleukin-2 receptors in serum samples and bronchoalveolar lavage fluids in active sarcoidosis. Am Rev Respir Dis. 1988;137(4):759–764.
  • Ziegenhagen MW, Rothe ME, Schlaak M, et al. Bronchoalveolar and serological parameters reflecting the severity of sarcoidosis. Eur Respir J. 2003;21(3):407–413.
  • Ziegenhagen MW, Benner UK, Zissel G, et al. Sarcoidosis: TNF-alpha release from alveolar macrophages and serum level of sIL-2R are prognostic markers. Am J Respir Crit Care Med. 1997;156(5):1586–1592.
  • Van Eijk M, Van Roomen CP, Renkema GH, et al. Characterization of human phagocyte-derived chitotriosidase, a component of innate immunity. Int Immunol. 2005;17(11):1505–1512.
  • Michelakakis H, Dimitriou E, Labadaridis I. The expanding spectrum of disorders with elevated plasma chitotriosidase activity: an update. J Inherit Metab Dis. 2004;27(5):705–706.
  • Barone R, Simpore J, Malaguarnera L, et al. Plasma chitotriosidase activity in acute Plasmodium falciparum malaria. J Trop Pediatr. 2003;49(1):63–64.
  • Barone R, Simpore J, Malaguarnera L, et al. Plasma chitotriosidase activity in acute Plasmodium falciparum malaria. Clin Chim Acta. 2003;331(1–2):79–85.
  • Tercelj M, Salobir B, Simcic S, et al. Chitotriosidase activity in sarcoidosis and some other pulmonary diseases. Scand J Clin Lab Invest. 2009;69(5):575–578.
  • Bargagli E, Bennett D, Maggiorelli C, et al. Human chitotriosidase: a sensitive biomarker of sarcoidosis. J Clin Immunol. 2013;33(1):264–270.
  • Altarescu G, Rudensky B, Abrahamov A, et al. Plasma chitotriosidase activity in patients with beta-thalassemia. Am J Hematol. 2002;71(1):7–10.
  • Bargagli E, Margollicci M, Nikiforakis N, et al. Chitotriosidase activity in the serum of patients with sarcoidosis and pulmonary tuberculosis. Respir: Int Rev Thorac Dis. 2007;74(5):548–552.
  • Harlander M, Maver A, Tercelj M, et al. Common chitotriosidase duplication gene polymorphism and clinical outcome status in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2015;32(3):194–199.
  • Bargagli E, Mazzi A, Rottoli P. Markers of inflammation in sarcoidosis: blood, urine, BAL, sputum, and exhaled gas. Clin Chest Med. 2008;29(3):445–458, viii.
  • Boot RG, Hollak CE, Verhoek M, et al. Plasma chitotriosidase and CCL18 as surrogate markers for granulomatous macrophages in sarcoidosis. Clin Chim Acta. 2010;411(1–2):31–36.
  • Grosso S, Margollicci MA, Bargagli E, et al. Serum levels of chitotriosidase as a marker of disease activity and clinical stage in sarcoidosis. Scand J Clin Lab Invest. 2004;64(1):57–62.
  • Bargagli E, Rottoli P. Serum chitotriosidase activity in sarcoidosis patients. Rheumatol Int. 2007;27(12):1187.
  • Bargagli E, Margollicci M, Luddi A, et al. Chitotriosidase activity in patients with interstitial lung diseases. Respir Med. 2007;101(10):2176–2181.
  • Wahlstrom J, Katchar K, Wigzell H, et al. Analysis of intracellular cytokines in CD4+ and CD8+ lung and blood T cells in sarcoidosis. Am J Respir Crit Care Med. 2001;163(1):115–121.
  • Baughman RP, Culver DA, Judson MA. A concise review of pulmonary sarcoidosis. Am J Respir Crit Care Med. 2011;183(5):573–581.
  • Bonecchi R, Bianchi G, Bordignon PP, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med. 1998;187(1):129–134.
  • Agostini C, Cassatella M, Zambello R, et al. Involvement of the IP-10 chemokine in sarcoid granulomatous reactions. J Immunol. 1998;161(11):6413–6420.
  • Katchar K, Eklund A, Grunewald J. Expression of Th1 markers by lung accumulated T cells in pulmonary sarcoidosis. J Intern Med. 2003;254(6):564–571.
  • Cox MA, Jenh CH, Gonsiorek W, et al. Human interferon-inducible 10-kDa protein and human interferon-inducible T cell alpha chemoattractant are allotopic ligands for human CXCR3: differential binding to receptor states. Mol Pharmacol. 2001;59(4):707–715.
  • Colvin RA, Campanella GS, Sun J, et al. Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J Biol Chem. 2004;279(29):30219–30227.
  • Cole KE, Strick CA, Paradis TJ, et al. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med. 1998;187(12):2009–2021.
  • Miotto D, Christodoulopoulos P, Olivenstein R, et al. Expression of IFN-gamma-inducible protein; monocyte chemotactic proteins 1, 3, and 4; and eotaxin in TH1- and TH2-mediated lung diseases. J Allergy Clin Immunol. 2001;107(4):664–670.
  • Nishioka Y, Manabe K, Kishi J, et al. CXCL9 and 11 in patients with pulmonary sarcoidosis: a role of alveolar macrophages. Clin Exp Immunol. 2007;149(2):317–326.
  • Piotrowski WJ, Mlynarski W, Fendler W, et al. Chemokine receptor CXCR3 ligands in bronchoalveolar lavage fluid: associations with radiological pattern, clinical course, and prognosis in sarcoidosis. Pol Arch Med Wewn. 2014;124(7–8):395–402.
  • Su R, Nguyen ML, Agarwal MR, et al. Interferon-inducible chemokines reflect severity and progression in sarcoidosis. Respir Res. 2013;14:121.
  • Su R, Li MM, Bhakta NR, et al. Longitudinal analysis of sarcoidosis blood transcriptomic signatures and disease outcomes. Eur Respir J. 2014;44(4):985–993.
  • Silverstein E, Friedland J, Ackerman T. Elevation of granulomatous lymph-node and serum lysozyme in sarcoidosis and correlation with angiotensin-converting enzyme. Am J Clin Pathol. 1977;68(2):219–224.
  • Tomita H, Sato S, Matsuda R, et al. Serum lysozyme levels and clinical features of sarcoidosis. Lung. 1999;177(3):161–167.
  • Gronhagen-Riska C, Selroos O. Angiotensin converting enzyme. IV. Changes in serum activity and in lysozyme concentrations as indicators of the course of untreated sarcoidosis. Scand J Respir Dis. 1979;60(6):337–344.
  • Turton CW, Grundy E, Firth G, et al. Value of measuring serum angiotensin I converting enzyme and serum lysozyme in the management of sarcoidosis. Thorax. 1979;34(1):57–62.
  • Miyoshi S, Hamada H, Kadowaki T, et al. Comparative evaluation of serum markers in pulmonary sarcoidosis. Chest. 2010;137(6):1391–1397.
  • Kohno N, Kyoizumi S, Awaya Y, et al. New serum indicator of interstitial pneumonitis activity. Sialylated carbohydrate antigen KL-6. Chest. 1989;96(1):68–73.
  • Kobayashi J, Kitamura S. Serum KL-6 for the evaluation of active pneumonitis in pulmonary sarcoidosis. Chest. 1996;109(5):1276–1282.
  • Ohnishi H, Yokoyama A, Yasuhara Y, et al. Circulating KL-6 levels in patients with drug induced pneumonitis. Thorax. 2003;58(10):872–875.
  • Ohnishi H, Yokoyama A, Kondo K, et al. Comparative study of KL-6, surfactant protein-A, surfactant protein-D, and monocyte chemoattractant protein-1 as serum markers for interstitial lung diseases. Am J Respir Crit Care Med. 2002;165(3):378–381.
  • Hamada H, Kohno N, Akiyama M, et al. Monitoring of serum KL-6 antigen in a patient with radiation pneumonia. Chest. 1992;101(3):858–860.
  • Janssen R, Sato H, Grutters JC, et al. Study of Clara cell 16, KL-6, and surfactant protein-D in serum as disease markers in pulmonary sarcoidosis. Chest. 2003;124(6):2119–2125.
  • Bell NH, Stern PH, Pantzer E, et al. Evidence that increased circulating 1 alpha, 25-dihydroxyvitamin D is the probable cause for abnormal calcium metabolism in sarcoidosis. J Clin Invest. 1979;64(1):218–225.
  • Adams JS, Sharma OP, Gacad MA, et al. Metabolism of 25-hydroxyvitamin D3 by cultured pulmonary alveolar macrophages in sarcoidosis. J Clin Invest. 1983;72(5):1856–1860.
  • Sharma OP. Renal sarcoidosis and hypercalcemia. Eur Respir J Monogr. 2005;32:220–232.
  • Burke RR, Rybicki BA, Rao DS. Calcium and vitamin D in sarcoidosis: how to assess and manage. Semin Respir Crit Care Med. 2010;31(4):474–484.
  • Baughman RP, Janovcik J, Ray M, et al. Calcium and vitamin D metabolism in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2013;30(2):113–120.
  • Vucinic V, Skodric-Trifunovic V, Ignjatovic S. How to diagnose and manage difficult problems of calcium metabolism in sarcoidosis: an evidence-based review. Curr Opin Pulm Med. 2011;17(5):297–302.
  • Hamada K, Nagai S, Tsutsumi T, et al. Ionized calcium and 1,25-dihydroxyvitamin D concentration in serum of patients with sarcoidosis. Eur Respir J. 1998;11(5):1015–1020.
  • Basile JN, Liel Y, Shary J, et al. Increased calcium intake does not suppress circulating 1,25-dihydroxyvitamin D in normocalcemic patients with sarcoidosis. J Clin Invest. 1993;91(4):1396–1398.
  • Kavathia D, Buckley JD, Rao D, et al. Elevated 1, 25-dihydroxyvitamin D levels are associated with protracted treatment in sarcoidosis. Respir Med. 2010;104(4):564–570.
  • Kalkanis A, Kalkanis D, Drougas D, et al. Correlation of spleen metabolism assessed by 18F-FDG PET with serum interleukin-2 receptor levels and other biomarkers in patients with untreated sarcoidosis. Nucl Med Commun. 2015;37(3):273–277.
  • Fehrenbach H, Zissel G, Goldmann T, et al. Alveolar macrophages are the main source for tumour necrosis factor-alpha in patients with sarcoidosis. Eur Respir J. 2003;21(3):421–428.
  • Ziegenhagen MW, Schrum S, Zissel G, et al. Increased expression of proinflammatory chemokines in bronchoalveolar lavage cells of patients with progressing idiopathic pulmonary fibrosis and sarcoidosis. J Invest Med. 1998;46(5):223–231.
  • Baughman RP, Drent M, Kavuru M, et al. Infliximab therapy in patients with chronic sarcoidosis and pulmonary involvement. Am J Respir Crit Care Med. 2006;174(7):795–802.
  • Judson MA, Baughman RP, Costabel U, et al. Efficacy of infliximab in extrapulmonary sarcoidosis: results from a randomised trial. Eur Respir J. 2008;31(6):1189–1196.
  • Seitzer U, Swider C, Stuber F, et al. Tumour necrosis factor alpha promoter gene polymorphism in sarcoidosis. Cytokine. 1997;9(10):787–790.
  • Wijnen PA, Nelemans PJ, Verschakelen JA, et al. The role of tumor necrosis factor alpha G-308A polymorphisms in the course of pulmonary sarcoidosis. Tissue Antigens. 2010;75(3):262–268.
  • Wijnen PA, Cremers JP, Nelemans PJ, et al. Association of the TNF-alpha G-308A polymorphism with TNF-inhibitor response in sarcoidosis. Eur Respir J. 2014;43(6):1730–1739.
  • Chen ES, Song Z, Willett MH, et al. Serum amyloid A regulates granulomatous inflammation in sarcoidosis through toll-like receptor-2. Am J Respir Crit Care Med. 2010;181(4):360–373.
  • Zhang Y, Chen X, Hu Y, et al. Preliminary characterizations of a serum biomarker for sarcoidosis by comparative proteomic approach with tandem-mass spectrometry in ethnic Han Chinese patients. Respir Res. 2013;14:18.
  • Gungor S, Ozseker F, Yalcinsoy M, et al. Conventional markers in determination of activity of sarcoidosis. Int Immunopharmacol. 2015;25(1):174–179.
  • Casanova N, Zhou T, Knox KS, et al. Identifying novel biomarkers in sarcoidosis using genome-based approaches. Clin Chest Med. 2015;36(4):621–630.
  • Isa H, Luthert P, Rose G, et al. Tissue interleukin-17 and interleukin-23 as biomarkers for orbital granulomatosis with polyangiitis. Ophthalmology. 2015;122(10):2140–2142.
  • Ostadkarampour M, Eklund A, Moller D, et al. Higher levels of interleukin IL-17 and antigen-specific IL-17 responses in pulmonary sarcoidosis patients with Lofgren’s syndrome. Clin Exp Immunol. 2014;178(2):342–352.
  • Wu W, Jin M, Wang Y, et al. Overexpression of IL-17RC associated with ocular sarcoidosis. J Transl Med. 2014;12:152.
  • Piotrowski WJ, Kiszalkiewicz J, Pastuszak-Lewandoska D, et al. TGF-beta and SMADs mRNA expression in pulmonary sarcoidosis. Adv Exp Med Biol. 2015;852:59–69.
  • Dubaniewicz A, Typiak M, Wybieralska M, et al. Changed phagocytic activity and pattern of Fcgamma and complement receptors on blood monocytes in sarcoidosis. Hum Immunol. 2012;73(8):788–794.
  • Maertzdorf J, Weiner J 3rd, Mollenkopf HJ, et al. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc Natl Acad Sci U S A. 2012;109(20):7853–7858.
  • Rivera NV, Ronninger M, Shchetynsky K, et al. High-density genetic mapping identifies new susceptibility variants in sarcoidosis phenotypes and shows genomic-driven phenotypic differences. Am J Respir Crit Care Med. 2016;193:1008–1022.
  • Fischer A, Ellinghaus D, Nutsua M, et al. Identification of immune-relevant factors conferring sarcoidosis genetic risk. Am J Respir Crit Care Med. 2015;192(6):727–736.
  • Typiak M, Rebala K, Dudziak M, et al. Polymorphism of FCGR2A, FCGR2C, and FCGR3B genes in the pathogenesis of sarcoidosis. Adv Exp Med Biol. 2016;905:57–68.
  • Typiak MJ, Rebala K, Dudziak M, et al. Polymorphism of FCGR3A gene in sarcoidosis. Hum Immunol. 2014;75(4):283–288.
  • Hofmann S, Franke A, Fischer A, et al. Genome-wide association study identifies ANXA11 as a new susceptibility locus for sarcoidosis. Nat Genet. 2008;40(9):1103–1106.
  • Rossman MD, Thompson B, Frederick M, et al. HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites. Am J Hum Genet. 2003;73(4):720–735.
  • Adrianto I, Lin CP, Hale JJ, et al. Genome-wide association study of African and European Americans implicates multiple shared and ethnic specific loci in sarcoidosis susceptibility. PLoS One. 2012;7(8):e43907.
  • Moller DR, Koth LL, Maier LA, et al. Rationale and design of the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. Sarcoidosis protocol. Ann Am Thorac Soc. 2015;12(10):1561–1571.
  • Ma Y, Gal A, Koss MN. The pathology of pulmonary sarcoidosis: update. Semin Diagn Pathol. 2007;24(3):150–161.
  • Nakatsu M, Hatabu H, Morikawa K, et al. Large coalescent parenchymal nodules in pulmonary sarcoidosis: “sarcoid galaxy” sign. Ajr. 2002;178(6):1389–1393.
  • Warshauer DM, Dumbleton SA, Molina PL, et al. Abdominal CT findings in sarcoidosis: radiologic and clinical correlation. Radiology. 1994;192(1):93–98.
  • Warshauer DM, Molina PL, Hamman SM, et al. Nodular sarcoidosis of the liver and spleen: analysis of 32 cases. Radiology. 1995;195(3):757–762.
  • Farman J, Ramirez G, Brunetti J, et al. Abdominal manifestations of sarcoidosis. CT appearances. Clin Imaging. 1995;19(1):30–33.
  • Tsan MF, Chen WY, Scheffel U, et al. Studies on gallium accumulation in inflammatory lesions: I. Gallium uptake by human polymorphonuclear leukocytes. J Nucl Med. 1978;19(1):36–43.
  • Mana J. Magnetic resonance imaging and nuclear imaging in sarcoidosis. Curr Opin Pulm Med. 2002;8(5):457–463.
  • Alberts C, Van Der Schoot JB, Van Daatselaar JJ, et al. 67Ga scintigraphy, serum lysozyme and angiotensin-converting enzyme in pulmonary sarcoidosis. Eur J Respir Dis. 1983;64(1):38–46.
  • Duffy GJ, Thirumurthi K, Casey M, et al. Semi-quantitative gallium-67 lung scanning as a measure of the intensity of alveolitis in pulmonary sarcoidosis. Eur J Nucl Med. 1986;12(4):187–191.
  • Fajman WA, Greenwald LV, Staton G, et al. Assessing the activity of sarcoidosis: quantitative 67Ga-citrate imaging. Ajr. 1984;142(4):683–688.
  • Nunes H, Brillet PY, Valeyre D, et al. Imaging in sarcoidosis. Semin Respir Crit Care Med. 2007;28(1):102–120.
  • Sulavik SB, Palestro CJ, Spencer RP, et al. Extrapulmonary sites of radiogallium accumulation in sarcoidosis. Clin Nucl Med. 1990;15(12):876–878.
  • Sulavik SB, Spencer RP, Palestro CJ, et al. Specificity and sensitivity of distinctive chest radiographic and/or 67Ga images in the noninvasive diagnosis of sarcoidosis. Chest. 1993;103(2):403–409.
  • Israel HL, Albertine KH, Park CH, et al. Whole-body gallium 67 scans. Role in diagnosis of sarcoidosis. Am Rev Respir Dis. 1991;144(5):1182–1186.
  • Lewis PJ, Salama A. Uptake of fluorine-18-fluorodeoxyglucose in sarcoidosis. J Nucl Med. 1994;35(10):1647–1649.
  • Xiu Y, Yu JQ, Cheng E, et al. Sarcoidosis demonstrated by FDG PET imaging with negative findings on gallium scintigraphy. Clin Nucl Med. 2005;30(3):193–195.
  • Teirstein AS, Machac J, Almeida O, et al. Results of 188 whole-body fluorodeoxyglucose positron emission tomography scans in 137 patients with sarcoidosis. Chest. 2007;132(6):1949–1953.
  • Cremers JP, Van Kroonenburgh MJ, Mostard RL, et al. Extent of disease activity assessed by 18F-FDG PET/CT in a Dutch sarcoidosis population. Sarcoidosis Vasc Diffuse Lung Dis. 2014;31(1):37–45.
  • Vansteenkiste JF, Stroobants SG, Dupont PJ, et al. Mediastinal lymph node staging with FDG-PET scan in patients with potentially operable non-small cell lung cancer: a prospective analysis of 50 cases. 1997. Chest. 2009;136(5 Suppl):e30.
  • Dewan NA, Shehan CJ, Reeb SD, et al. Likelihood of malignancy in a solitary pulmonary nodule: comparison of Bayesian analysis and results of FDG-PET scan. Chest. 1997;112(2):416–422.
  • Maturu VN, Agarwal R, Aggarwal AN, et al. Dual-time point whole-body 18F-fluorodeoxyglucose PET/CT imaging in undiagnosed mediastinal lymphadenopathy: a prospective study of 117 patients with sarcoidosis and TB. Chest. 2014;146(6):e216–220.
  • Kaira K, Oriuchi N, Otani Y, et al. Diagnostic usefulness of fluorine-18-alpha-methyltyrosine positron emission tomography in combination with 18F-fluorodeoxyglucose in sarcoidosis patients. Chest. 2007;131(4):1019–1027.
  • Muller NL, Mayo JR, Zwirewich CV. Value of MR imaging in the evaluation of chronic infiltrative lung diseases: comparison with CT. Ajr. 1992;158(6):1205–1209.
  • Scadding JG. Prognosis of intrathoracic sarcoidosis in England. A review of 136 cases after five years’ observation. Br Med J. 1961;2(5261):1165–1172.
  • Keijsers RG, Veltkamp M, Grutters JC. Chest imaging. Clin Chest Med. 2015;36(4):603–619.
  • Judson MA. The clinical features of sarcoidosis: a comprehensive review. Clin Rev Allergy Immunol. 2015;49(1):63–78.
  • Handa T, Nagai S, Miki S, et al. Incidence of pulmonary hypertension and its clinical relevance in patients with sarcoidosis. Chest. 2006;129(5):1246–1252.
  • Pena TA, Soubani AO, Samavati L. Aspergillus lung disease in patients with sarcoidosis: a case series and review of the literature. Lung. 2011;189(2):167–172.
  • Rafferty P, Biggs BA, Crompton GK, et al. What happens to patients with pulmonary aspergilloma? Analysis of 23 cases. Thorax. 1983;38(8):579–583.
  • Reich JM, Brouns MC, O’Connor EA, et al. Mediastinoscopy in patients with presumptive stage I sarcoidosis: a risk/benefit, cost/benefit analysis. Chest. 1998;113(1):147–153.
  • Winterbauer RH, Belic N, Moores KD. Clinical interpretation of bilateral hilar adenopathy. Ann Intern Med. 1973;78(1):65–71.
  • Judson MA. The diagnosis of sarcoidosis. Clin Chest Med. 2008;29(3):415–427, viii.
  • Lynch JP 3rd, Ma YL, Koss MN, et al. Pulmonary sarcoidosis. Semin Respir Crit Care Med. 2007;28(1):53–74.
  • Nishimura K, Itoh H, Kitaichi M, et al. Pulmonary sarcoidosis: correlation of CT and histopathologic findings. Radiology. 1993;189(1):105–109.
  • Brauner MW, Lenoir S, Grenier P, et al. Pulmonary sarcoidosis: CT assessment of lesion reversibility. Radiology. 1992;182(2):349–354.
  • Mostard RL, Voo S, Van Kroonenburgh MJ, et al. Inflammatory activity assessment by F18 FDG-PET/CT in persistent symptomatic sarcoidosis. Respir Med. 2011;105(12):1917–1924.
  • Keijsers RG, Verzijlbergen EJ, Van Den Bosch JM, et al. 18F-FDG PET as a predictor of pulmonary function in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2011;28(2):123–129.
  • Vorselaars AD, Crommelin HA, Deneer VH, et al. Effectiveness of infliximab in refractory FDG PET-positive sarcoidosis. Eur Respir J. 2015;46(1):175–185.
  • Keijsers RG, Grutters JC, Van Velzen-Blad H, et al. (18)F-FDG PET patterns and BAL cell profiles in pulmonary sarcoidosis. Eur J Nucl Med Mol Imaging. 2010;37(6):1181–1188.
  • Ambrosini V, Zompatori M, Fasano L, et al. (18)F-FDG PET/CT for the assessment of disease extension and activity in patients with sarcoidosis: results of a preliminary prospective study. Clin Nucl Med. 2013;38(4):e171–177.
  • Baughman RP, Drent M, Culver DA, et al. Endpoints for clinical trials of sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2012;29(2):90–98.
  • Sansores RH, Ramirez-Venegas A, Perez-Padilla R, et al. Correlation between pulmonary fibrosis and the lung pressure-volume curve. Lung. 1996;174(5):315–323.
  • Polychronopoulos VS, Prakash UB. Airway involvement in sarcoidosis. Chest. 2009;136(5):1371–1380.
  • Shorr AF, Torrington KG, Hnatiuk OW. Endobronchial biopsy for sarcoidosis: a prospective study. Chest. 2001;120(1):109–114.
  • Shorr AF, Torrington KG, Hnatiuk OW. Endobronchial involvement and airway hyperreactivity in patients with sarcoidosis. Chest. 2001;120(3):881–886.
  • Miller A, Teirstein AS, Jackler I, et al. Airway function in chronic pulmonary sarcoidosis with fibrosis. Am Rev Respir Dis. 1974;109(2):179–189.
  • Marcias S, Ledda MA, Perra R, et al. Aspecific bronchial hyperreactivity in pulmonary sarcoidosis. Sarcoidosis. 1994;11(2):118–122.
  • Bechtel JJ, Starr T 3rd, Dantzker DR, et al. Airway hyperreactivity in patients with sarcoidosis. Am Rev Respir Dis. 1981;124(6):759–761.
  • Judson MA, Strange C. Bullous sarcoidosis: a report of three cases. Chest. 1998;114(5):1474–1478.
  • Chambellan A, Turbie P, Nunes H, et al. Endoluminal stenosis of proximal bronchi in sarcoidosis: bronchoscopy, function, and evolution. Chest. 2005;127(2):472–481.
  • Hunninghake GW, Gilbert S, Pueringer R, et al. Outcome of the treatment for sarcoidosis. Am J Respir Crit Care Med. 1994;149(4 Pt 1):893–898.
  • Judson MA, Boan AD, Lackland DT. The clinical course of sarcoidosis: presentation, diagnosis, and treatment in a large white and black cohort in the United States. Sarcoidosis Vasc Diffuse Lung Dis. 2012;29(2):119–127.
  • Cox CE, Donohue JF, Brown CD, et al. The Sarcoidosis Health Questionnaire: a new measure of health-related quality of life. Am J Respir Crit Care Med. 2003;168(3):323–329.
  • Cox CE, Donohue JF, Brown CD, et al. Health-related quality of life of persons with sarcoidosis. Chest. 2004;125(3):997–1004.
  • Yeager H, Rossman MD, Baughman RP, et al. Pulmonary and psychosocial findings at enrollment in the ACCESS study. Sarcoidosis Vasc Diffuse Lung Dis. 2005;22(2):147–153.
  • Lopes AJ, De Menezes SL, Dias CM, et al. Comparison between cardiopulmonary exercise testing parameters and computed tomography findings in patients with thoracic sarcoidosis. Lung. 2011;189(5):425–431.
  • Drent M, Marcellis R, Lenssen A, et al. Association between physical functions and quality of life in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2014;31(2):117–128.
  • Punjabi NM, Shade D, Patel AM, et al. Measurement variability in single-breath diffusing capacity of the lung. Chest. 2003;123(4):1082–1089.
  • Bourbonnais JM, Samavati L. Clinical predictors of pulmonary hypertension in sarcoidosis. Eur Respir J. 2008;32(2):296–302.
  • NIH conference. Pulmonary sarcoidosis: a disease characterized and perpetuated by activated lung T-lymphocytes. Ann Intern Med. 1981;94(1):73–94.
  • Costabel U, Guzman J, Albera C, et al. Bronchoalveolar lavage in sarcoidosis. In: Baughman RP, editor. Lung biology in health and disease; sarcoidosis. Vol. 210. New York: Informa; 2006. p. 399–414.
  • Nagai S, Izumi T. Bronchoalveolar lavage. Still useful in diagnosing sarcoidosis? Clin Chest Med. 1997;18(4):787–797.
  • Winterbauer RH, Lammert J, Selland M, et al. Bronchoalveolar lavage cell populations in the diagnosis of sarcoidosis. Chest. 1993;104(2):352–361.
  • Costabel U, Bross KJ, Matthys H. Pulmonary sarcoidosis: assessment of disease activity by lung lymphocyte subpopulations. Klin Wochenschr. 1983;61(7):349–356.
  • Milman N, Kristensen MS, Bentsen K, et al. Hyaluronan and procollagen type III aminoterminal peptide in serum and bronchoalveolar lavage fluid in patients with pulmonary sarcoidosis. Sarcoidosis. 1995;12(1):38–41.
  • O’Connor C, Odlum C, Van Breda A, et al. Collagenase and fibronectin in bronchoalveolar lavage fluid in patients with sarcoidosis. Thorax. 1988;43(5):393–400.
  • Bjermer L, Eklund A, Blaschke E. Bronchoalveolar lavage fibronectin in patients with sarcoidosis: correlation to hyaluronan and disease activity. Eur Respir J. 1991;4(8):965–971.
  • Bjermer L, Rosenhall L, Angstrom T, et al. Predictive value of bronchoalveolar lavage cell analysis in sarcoidosis. Thorax. 1988;43(4):284–288.
  • Costabel U, Bross KJ, Guzman J, et al. Predictive value of bronchoalveolar T cell subsets for the course of pulmonary sarcoidosis. Ann N Y Acad Sci. 1986;465:418–426.
  • Baughman RP, Shipley R, Eisentrout CE. Predictive value of gallium scan, angiotensin-converting enzyme level, and bronchoalveolar lavage in two-year follow-up of pulmonary sarcoidosis. Lung. 1987;165(6):371–377.
  • Laviolette M, La Forge J, Tennina S, et al. Prognostic value of bronchoalveolar lavage lymphocyte count in recently diagnosed pulmonary sarcoidosis. Chest. 1991;100(2):380–384.
  • Ward K, O’Connor C, Odlum C, et al. Prognostic value of bronchoalveolar lavage in sarcoidosis: the critical influence of disease presentation. Thorax. 1989;44(1):6–12.
  • Drent M, Jacobs JA, De Vries J, et al. Does the cellular bronchoalveolar lavage fluid profile reflect the severity of sarcoidosis? Eur Respir J. 1999;13(6):1338–1344.
  • Lin YH, Haslam PL, Turner-Warwick M. Chronic pulmonary sarcoidosis: relationship between lung lavage cell counts, chest radiograph, and results of standard lung function tests. Thorax. 1985;40(7):501–507.
  • Ziegenhagen MW, Rothe ME, Zissel G, et al. Exaggerated TNFalpha release of alveolar macrophages in corticosteroid resistant sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2002;19(3):185–190.
  • Judson MA, Baughman RP, Costabel U, et al. The potential additional benefit of infliximab in patients with chronic pulmonary sarcoidosis already receiving corticosteroids: a retrospective analysis from a randomized clinical trial. Respir Med. 2014;108(1):189–194.
  • Silverman KJ, Hutchins GM, Bulkley BH. Cardiac sarcoid: a clinicopathological study of 84 unselected patients with systemic sarcoidosis. Circulation. 1978;58:1204–1211.
  • Iwai K, Takemura T, Kitaichi M, et al. Pathological studies on sarcoidosis autopsy. II. Early change, mode of progression and death pattern. Acta Pathol Jpn. 1993;43(7–8):377–385.
  • Iwai K, Sekiguti M, Hosoda Y, et al. Racial difference in cardiac sarcoidosis incidence observed at autopsy. Sarcoidosis. 1994;11(1):26–31.
  • Hamzeh N, Steckman DA, Sauer WH, et al. Pathophysiology and clinical management of cardiac sarcoidosis. Nat Rev Cardiol. 2015;12(5):278–288.
  • Birnie DH, Sauer WH, Bogun F, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014;11(7):1305–1324.
  • Mehta D, Lubitz SA, Frankel Z, et al. Cardiac involvement in patients with sarcoidosis: diagnostic and prognostic value of outpatient testing. Chest. 2008;133(6):1426–1435.
  • Rubinstein I, Fisman EZ, Rosenblum Y, et al. Left-ventricular exercise echocardiographic abnormalities in patients with sarcoidosis without ischemic heart disease. Isr J Med Sci. 1986;22(12):865–872.
  • Kul S, Guvenc TS, Uyarel H. Speckle tracking echocardiography in cardiac sarcoidosis. Int J Cardiol. 2014;176(3):1329–1330.
  • Kim JS, Judson MA, Donnino R, et al. Cardiac sarcoidosis. Am Heart J. 2009;157(1):9–21.
  • Hamzeh NY, Wamboldt FS, Weinberger HD. Management of cardiac sarcoidosis in the United States: a Delphi study. Chest. 2012;141(1):154–162.
  • Ardehali H, Howard DL, Hariri A, et al. A positive endomyocardial biopsy result for sarcoid is associated with poor prognosis in patients with initially unexplained cardiomyopathy. Am Heart J. 2005;150(3):459–463.
  • Tadamura E, Yamamuro M, Kubo S, et al. Effectiveness of delayed enhanced MRI for identification of cardiac sarcoidosis: comparison with radionuclide imaging. Ajr. 2005;185(1):110–115.
  • Judson MA, Baughman RP, Teirstein AS, et al. Defining organ involvement in sarcoidosis: the ACCESS proposed instrument. ACCESS Research Group. A case control etiologic study of sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 1999;16(1):75–86.
  • Judson MA, Costabel U, Drent M, et al. The WASOG sarcoidosis organ assessment instrument: an update of a previous clinical tool. Sarcoidosis Vasc Diffuse Lung Dis. 2014;31(1):19–27.
  • Hiraga H, Yuwai K, Hiroe M. Guideline for diagnosis of cardiac sarcoidosis: study report on diffuse pulmonary diseases from the Japanese Ministry of Health and Welfare [Japanese]. Tokyo: Japanese Ministry of Health and Welfare; 1993. p. 23–24.
  • Ichinose A, Otani H, Oikawa M, et al. MRI of cardiac sarcoidosis: basal and subepicardial localization of myocardial lesions and their effect on left ventricular function. Ajr. 2008;191(3):862–869.
  • Ordovas KG, Higgins CB. Delayed contrast enhancement on MR images of myocardium: past, present, future. Radiology. 2011;261(2):358–374.
  • Vignaux O, Dhote R, Duboc D, et al. Clinical significance of myocardial magnetic resonance abnormalities in patients with sarcoidosis: a 1-year follow-up study. Chest. 2002;122(6):1895–1901.
  • Crouser ED, Ono C, Tran T, et al. Improved detection of cardiac sarcoidosis using magnetic resonance with myocardial T2 mapping. Am J Respir Crit Care Med. 2014;189(1):109–112.
  • Smedema JP, Snoep G, Van Kroonenburgh MP, et al. Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol. 2005;45(10):1683–1690.
  • Yoshida A, Ishibashi-Ueda H, Yamada N, et al. Direct comparison of the diagnostic capability of cardiac magnetic resonance and endomyocardial biopsy in patients with heart failure. Eur J Heart Fail. 2013;15(2):166–175.
  • Youssef G, Leung E, Mylonas I, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53(2):241–248.
  • Langah R, Spicer K, Gebregziabher M, et al. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol. 2009;16(5):801–810.
  • De Groot M, Meeuwis AP, Kok PJ, et al. Influence of blood glucose level, age and fasting period on non-pathological FDG uptake in heart and gut. Eur J Nucl Med Mol Imaging. 2005;32(1):98–101.
  • Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63(4):329–336.
  • Tung R, Bauer B, Schelbert H, et al. Incidence of abnormal positron emission tomography in patients with unexplained cardiomyopathy and ventricular arrhythmias: the potential role of occult inflammation in arrhythmogenesis. Heart Rhythm. 2015;12(12):2488–2498.
  • Forman MB, Sandler MP, Sacks GA, et al. Radionuclide imaging in myocardial sarcoidosis. Demonstration of myocardial uptake of technetium pyrophosphate99m and gallium. Chest. 1983;83(3):578–580.
  • Umetani K, Ishihara T, Yamamoto K, et al. Successfully treated complete atrioventricular block with corticosteroid in a patient with cardiac sarcoidosis: usefulness of gallium-67 and thallium-201 scintigraphy. Intern Med. 2000;39(3):245–248.
  • Take Y, Morita H. Fragmented QRS: what is the meaning? Indian Pacing Electrophysiol J. 2012;12(5):213–225.
  • Schuller JL, Olson MD, Zipse MM, et al. Electrocardiographic characteristics in patients with pulmonary sarcoidosis indicating cardiac involvement. J Cardiovasc Electrophysiol. 2011;22(11):1243–1248.
  • Schuller JL, Lowery CM, Zipse M, et al. Diagnostic utility of signal-averaged electrocardiography for detection of cardiac sarcoidosis. Ann Noninvasive Electrocardiol. 2011;16(1):70–76.
  • Matsumoto S, Hirayama Y, Saitoh H, et al. Noninvasive diagnosis of cardiac sarcoidosis using microvolt T-wave alternans. Int Heart J. 2009;50(6):731–739.
  • Matoh F, Satoh H, Shiraki K, et al. The usefulness of delayed enhancement magnetic resonance imaging for diagnosis and evaluation of cardiac function in patients with cardiac sarcoidosis. J Cardiol. 2008;51(3):179–188.
  • Watanabe E, Kimura F, Nakajima T, et al. Late gadolinium enhancement in cardiac sarcoidosis: characteristic magnetic resonance findings and relationship with left ventricular function. J Thorac Imaging. 2013;28(1):60–66.
  • Ise T, Hasegawa T, Morita Y, et al. Extensive late gadolinium enhancement on cardiovascular magnetic resonance predicts adverse outcomes and lack of improvement in LV function after steroid therapy in cardiac sarcoidosis. Heart. 2014;100(15):1165–1172.
  • Greulich S, Deluigi CC, Gloekler S, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging. 2013;6(4):501–511.
  • Crawford T, Mueller G, Sarsam S, et al. Magnetic resonance imaging for identifying patients with cardiac sarcoidosis and preserved or mildly reduced left ventricular function at risk of ventricular arrhythmias. Circ Arrhythm Electrophysiol. 2014;7(6):1109–1115.
  • Yazaki Y, Isobe M, Hiroe M, et al. Prognostic determinants of long-term survival in Japanese patients with cardiac sarcoidosis treated with prednisone. Am J Cardiol. 2001;88(9):1006–1010.
  • Miyazawa K, Yoshikawa T, Takamisawa I, et al. Presence of ventricular aneurysm predicts poor clinical outcomes in patients with cardiac sarcoidosis. Int J Cardiol. 2014;177(2):720–722.
  • Kandolin R, Lehtonen J, Airaksinen J, et al. Cardiac sarcoidosis: epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation. 2015;131(7):624–632.
  • Nozaki K, Scott TF, Sohn M, et al. Isolated neurosarcoidosis: case series in 2 sarcoidosis centers. Neurologist. 2012;18(6):373–377.
  • Zajicek JP, Scolding NJ, Foster O, et al. Central nervous system sarcoidosis–diagnosis and management. Qjm. 1999;92(2):103–117.
  • Agbogu BN, Stern BJ, Sewell C, et al. Therapeutic considerations in patients with refractory neurosarcoidosis. Arch Neurol. 1995;52(9):875–879.
  • Westhout FD, Linskey ME. Obstructive hydrocephalus and progressive psychosis: rare presentations of neurosarcoidosis. Surg Neurol. 2008;69(3):288–292; discussion 292.
  • Pickuth D, Heywang-Kobrunner SH. Neurosarcoidosis: evaluation with MRI. J Neuroradiol. 2000;27(3):185–188.
  • Spencer TS, Campellone JV, Maldonado I, et al. Clinical and magnetic resonance imaging manifestations of neurosarcoidosis. Semin Arthritis Rheum. 2005;34(4):649–661.
  • Dumas JL, Valeyre D, Chapelon-Abric C, et al. Central nervous system sarcoidosis: follow-up at MR imaging during steroid therapy. Radiology. 2000;214(2):411–420.
  • Smith JK, Matheus MG, Castillo M. Imaging manifestations of neurosarcoidosis. Ajr. 2004;182(2):289–295.
  • Shah R, Roberson GH, Cure JK. Correlation of MR imaging findings and clinical manifestations in neurosarcoidosis. Ajnr. 2009;30(5):953–961.
  • Sherman JL, Stern BJ. Sarcoidosis of the CNS: comparison of unenhanced and enhanced MR images. Ajr. 1990;155(6):1293–1301.
  • Huang JF, Aksamit AJ, Staff NPMRI. PET imaging discordance in neurosarcoidosis. Neurology. 2012;79(10):1070.
  • Dubey N, Miletich RS, Wasay M, et al. Role of fluorodeoxyglucose positron emission tomography in the diagnosis of neurosarcoidosis. J Neurol Sci. 2002;205(1):77–81.
  • Kim SK, Im HJ, Kim W, et al. F-18 fluorodeoxyglucose and F-18 fluorothymidine positron emission tomography/computed tomography imaging in a case of neurosarcoidosis. Clin Nucl Med. 2010;35(2):67–70.
  • Sakushima K, Yabe I, Shiga T, et al. FDG-PET SUV can distinguish between spinal sarcoidosis and myelopathy with canal stenosis. J Neurol. 2011;258(2):227–230.
  • Nozaki K, Judson MA. Neurosarcoidosis: clinical manifestations, diagnosis and treatment. Presse Med. 2012;41(6 Pt 2):e331–348.
  • Stern BJ, Krumholz A, Johns C, et al. Sarcoidosis and its neurological manifestations. Arch Neurol. 1985;42(9):909–917.
  • Pawate S, Moses H, Sriram S. Presentations and outcomes of neurosarcoidosis: a study of 54 cases. Qjm. 2009;102(7):449–460.
  • Newman LS, Orton R, Kreiss K. Serum angiotensin converting enzyme activity in chronic beryllium disease. Am Rev Respir Dis 1992;146(1):39–42.
  • Huuskonen MS, Jarvisalo J, Koskinen H, et al. Serum angiotensin-converting enzyme and lysosomal enzymes in tobacco workers. Chest. 1986;89(2):224–228.
  • Maddrey WC. Sarcoidosis and primary biliary cirrhosis. Associated disorders? N Engl J Med. 1983;308(10):588–590.
  • Lieberman J, Sastre A. Serum angiotensin-converting enzyme: elevations in diabetes mellitus. Ann Intern Med. 1980;93(6):825–826.
  • Yotsumoto H, Imai Y, Kuzuya N, Uchimura H, Matsuzaki F. Increased levels of serum angiotensin-converting enzyme activity in hyperthyroidism. Ann Intern Med. 1982;96(3):326–328.
  • Silverstein E, Brunswick J, Rao TK, Friedland J. Increased serum angiotensin-converting enzyme in chronic renal disease. Nephron. 1984;37(3):206–210.
  • Ryder KW, Epinette WW, Jay SJ, Ransburg RC, Glick MR. Serum angiotensin converting enzyme activity in patients with psoriasis. Clin Chimica Acta; Int J Clin Chem. 1985;153(2):143–146.
  • Ena P, Madeddu P, Rappelli A, Cerimele D. Serum angiotensin-converting enzyme activity in psoriasis. Dermatologica. 1987;174(3):110–113.
  • Matsuki K, Sakata T. Angiotensin-converting enzyme in diseases of the liver. Am J Med. 1982;73(4):549–551.
  • Beyazit Y, Purnak T, Suvak B, et al. Increased ACE in extrahepatic cholangiocarcinoma as a clue for activated RAS in biliary neoplasms. Clin Res hepatol gastroenterol. 2011;35(10):644–649.
  • Luisetti M, Martinetti M, Cuccia M, et al. Familial elevation of serum angiotensin converting enzyme activity. Eur Respir J. 1990;3(4):441–446.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.