439
Views
26
CrossRef citations to date
0
Altmetric
Review

Monogenic mutations associated with IgA deficiency

, &
Pages 1321-1335 | Received 15 Apr 2016, Accepted 03 Jun 2016, Published online: 21 Jun 2016

References

  • Crabbé PA, Heremans JF. Selective IgA deficiency with steatorrhea. A new syndrome. Am J Med. 1967;42(2):319–326.
  • Yazdani R, Latif A, Tabassomi F, et al. Clinical phenotype classification for selective immunoglobulin A deficiency. Expert Rev Clin Immunol. 2015;11(11):1245–1254.
  • Modell V, Knaus M, Modell F, et al. Global overview of primary immunodeficiencies: a report from Jeffrey Modell Centers worldwide focused on diagnosis, treatment, and discovery. Immunol Res. 2014;60(1):132–144.
  • Modell V, Quinn J, Orange J, et al. Primary immunodeficiencies worldwide: an updated overview from the Jeffrey Modell Centers Global Network. Immunol Res. 2016;64:736–753.
  • Cunningham-Rundles C. Physiology of IgA and IgA deficiency. J Clin Immunol. 2001;21(5):303–309.
  • Aghamohammadi A, Cheraghi T, Gharagozlou M, et al. IgA deficiency: correlation between clinical and immunological phenotypes. J Clin Immunol. 2009;29(1):130–136.
  • Latiff AH, Kerr MA. The clinical significance of immunoglobulin A deficiency. Ann Clin Biochem. 2007;44(Pt(2)):131–139.
  • Zenone T, Souquet PJ, Cunningham-Rundles C, et al. Hodgkin’s disease associated with IgA and IgG subclass deficiency. J Intern Med. 1996;240(2):99–102.
  • Rezaei N, Abolhassani H, Kasraian A, et al. Family study of pediatric patients with primary antibody deficiencies. Iran J Allergy Asthma Immunol. 2013;12(4):377–382.
  • Hammarström L. Primary immunodeficiency diseases: a molecular and genetic approach. New York: Oxford University Press; 2013.
  • Hammarström L, Vorechovsky I, Webster D. Selective IgA deficiency (SIgAD) and common variable immunodeficiency (CVID). Clin Exp Immunol. 2000;120(2):225–231.
  • Cipe FE, Dogu F, Guloglu D, et al. B-cell subsets in patients with transient hypogammaglobulinemia of infancy, partial IgA deficiency, and selective IgM deficiency. J Invest Allergol Clin Immunol. 2013;23(2):94–100.
  • Aghamohammadi A, Abolhassani H, Biglari M, et al. Analysis of switched memory B cells in patients with IgA deficiency. Int Arch Allergy Immunol. 2011;156(4):462–468.
  • Haimila K, Einarsdottir E, De Kauwe A, et al. The shared CTLA4-ICOS risk locus in celiac disease, IgA deficiency and common variable immunodeficiency. Genes Immun. 2009;10(2):151–161.
  • Castigli E, Geha RS. TACI, isotype switching, CVID and IgAD. Immunol Res. 2007;38(1–3):102–111.
  • Nechvatalova J, Pikulova Z, Stikarovska D, et al. B-lymphocyte subpopulations in patients with selective IgA deficiency. J Clin Immunol. 2012;32(3):441–448.
  • Borte S, Pan-Hammarström Q, Liu C, et al. Interleukin-21 restores immunoglobulin production ex vivo in patients with common variable immunodeficiency and selective IgA deficiency. Blood. 2009;114(19):4089–4098.
  • Gardes P, Forveille M, Alyanakian MA, et al. Human MSH6 deficiency is associated with impaired antibody maturation. J Immunology. 2012;188(4):2023–2029.
  • Offer SM, Pan-Hammarstrom Q, Hammarstrom L, et al. Unique DNA repair gene variations and potential associations with the primary antibody deficiency syndromes IgAD and CVID. Plos One. 2010;5(8):e12260.
  • Husain Z, Holodick N, Day C, et al. Increased apoptosis of CD20+ IgA + B cells is the basis for IgA deficiency: the molecular mechanism for correction in vitro by IL-10 and CD40L. J Clin Immunol. 2006;26(2):113–125.
  • Saiga T, Hashimoto K, Kimura N, et al. Trisomy 10p and translocation of 10q to 4p associated with selective dysgenesis of IgA-producing cells in lymphoid tissue. Pathol Int. 2007;57(1):37–42.
  • Vorechovsky I, Blennow E, Nordenskjold M, et al. A putative susceptibility locus on chromosome 18 is not a major contributor to human selective IgA deficiency: evidence from meiotic mapping of 83 multiple-case families. J Immunology. 1999;163(4):2236–2242.
  • Lewkonia RM, Lin CC, Haslam RH. Selective IgA deficiency with 18q+ and 18q– karyotypic anomalies. J Med Genet. 1980;17(6):453–456.
  • Dostal A, Linnankivi T, Somer M, et al. Mapping susceptibility gene locus for IgA deficiency at del(18)(q22.3-q23); report of familial cryptic chromosome t(18q; 10p) translocations. Int J Immunogenet. 2007;34(3):143–147.
  • Braig DU, Schäffer AA, Glocker E, et al. Linkage of autosomal dominant common variable immunodeficiency to chromosome 5p and evidence for locus heterogeneity. Hum Genet. 2003;112(4):369–378.
  • Schäffer AA, Pfannstiel J, Webster AD, et al. Analysis of families with common variable immunodeficiency (CVID) and IgA deficiency suggests linkage of CVID to chromosome 16q. Hum Genet. 2006;118(6):725–729.
  • Chinen J, Martinez-Gallo M, Gu W, et al. Transmembrane activator and CAML interactor (TACI) haploinsufficiency results in B-cell dysfunction in patients with Smith-Magenis syndrome. J Allergy Clin Immunol. 2011;127(6):1579–1586.
  • Hanley-Lopez J, Estabrooks LL, Stiehm R. Antibody deficiency in Wolf-Hirschhorn syndrome. J Pediatr. 1998;133(1):141–143.
  • Ferreira RC, Pan-Hammarström Q, Graham RR, et al. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet. 2010;42(9):777–780.
  • Li J, Jørgensen SF, Maggadottir SM, et al. Association of CLEC16A with human common variable immunodeficiency disorder and role in murine B cells. Nat Commun. 2015;6:6804.
  • Wang N, Hammarström L. IgA deficiency: what is new? Curr Opin Allergy Clin Immunol. 2012;12(6):602–608.
  • López-Mejías R, Martínez A, Del Pozo N, et al. Interleukin-6 gene variation in Spanish patients with immunoglobulin-A deficiency. Hum Immunol. 2008;69(4–5):301–305.
  • Cataldo F, Lio D, Marino V, et al. Cytokine genotyping (TNF and IL-10) in patients with celiac disease and selective IgA deficiency. Am J Gastroenterol. 2003;98(4):850–856.
  • Farhadi E, Nemati S, Amirzargar AA, et al. AICDA single nucleotide polymorphism in common variable immunodeficiency and selective IgA deficiency. Allergologia Et Immunopathologia. 2014;42(5):422–426.
  • Kato T, Crestani E, Kamae C, et al. RAG1 deficiency may present clinically as selective IgA deficiency. J Clin Immunol. 2015;35(3):280–288.
  • Roberts JL, Lengi A, Brown SM, et al. Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation. Blood. 2004;103(6):2009–2018.
  • Volk T, Pannicke U, Reisli I, et al. DCLRE1C (ARTEMIS) mutations causing phenotypes ranging from atypical severe combined immunodeficiency to mere antibody deficiency. Hum Mol Genet. 2015;24(25):7361–7372.
  • Alkhairy OK, Abolhassani H, Rezaei N, et al. Spectrum of phenotypes associated with mutations in LRBA. J Clin Immunol. 2016;36(1):33–45.
  • Alkhairy OK, Perez-Becker R, Driessen GJ, et al. Novel mutations in TNFRSF7/CD27: clinical, immunologic, and genetic characterization of human CD27 deficiency. J Allergy Clin Immunol. 2015;136(3):703–12e10.
  • Cheraghi T, Aghamohammadi A, Mirminachi B, et al. Prediction of the evolution of common variable immunodeficiency: HLA typing for patients with selective IgA deficiency. J Invest Allergol Clin Immunol. 2014;24(3):198–200.
  • Birrell GW, Kneebone K, Nefedov M, et al. ATM mutations, haplotype analysis, and immunological status of Russian patients with ataxia telangiectasia. Hum Mutat. 2005;25(1):28–37.
  • Huang Y, Yang L, Wang J, et al. Twelve novel Atm mutations identified in Chinese ataxia telangiectasia patients. Neuromolecular Med. 2013;15(3):536–540.
  • Morio T, Takahashi N, Watanabe F, et al. Phenotypic variations between affected siblings with ataxia-telangiectasia: ataxia-telangiectasia in Japan. Int J Hematol. 2009;90(4):455–462.
  • Nakamura K, Du L, Tunuguntla R, et al. Functional characterization and targeted correction of ATM mutations identified in Japanese patients with ataxia-telangiectasia. Hum Mutat. 2012;33(1):198–208.
  • Podralska MJ, Stembalska A, Slezak R, et al. Ten new ATM alterations in Polish patients with ataxia-telangiectasia. Mole Genet Genomic Med. 2014;2(6):504–511.
  • Stray-Pedersen A, Jónsson T, Heiberg A, et al. The impact of an early truncating founder ATM mutation on immunoglobulins, specific antibodies and lymphocyte populations in ataxia-telangiectasia patients and their parents. Clin Exp Immunol. 2004;137(1):179–186.
  • Lahdesmaki A, Arinbjarnarson K, Arvidsson J, et al. Ataxia-telangiectasia surveyed in Sweden. Lakartidningen. 2000;97(40):4461–4465. 7
  • Pan Q, Petit-Frére C, Lähdesmäki A, et al. Alternative end joining during switch recombination in patients with ataxia-telangiectasia. Eur J Immunol. 2002;32(5):1300–1308.
  • Tiepolo L, Maraschio P, Gimelli G, et al. Multibranched chromosomes 1, 9, and 16 in a patient with combined IgA and IgE deficiency. Hum Genet. 1979;51(2):127–137.
  • Wijmenga C, Hansen RS, Gimelli G, et al. Genetic variation in ICF syndrome: evidence for genetic heterogeneity. Hum Mutat. 2000;16(6):509–517.
  • Nitta H, Unoki M, Ichiyanagi K, et al. Three novel ZBTB24 mutations identified in Japanese and Cape Verdean type 2 ICF syndrome patients. J Hum Genet. 2013;58(7):455–460.
  • Bauer M, Kölsch U, Krüger R, et al. Infectious and immunologic phenotype of MECP2 duplication syndrome. J Clin Immunol. 2015;35(2):168–181.
  • Bartsch O, Gebauer K, Lechno S, et al. Four unrelated patients with Lubs X-linked mental retardation syndrome and different Xq28 duplications. Am J Med Genet A. 2010;152A(2):305–312.
  • Mayo S, Monfort S, Roselló M, et al. De novo interstitial triplication of MECP2 in a girl with neurodevelopmental disorder and random X chromosome inactivation. Cytogenet Genome Res. 2011;135(2):93–101.
  • Sharp M, Messiaen LM, Page G, et al. Comprehensive genomic analysis of PKHD1 mutations in ARPKD cohorts. J Med Genet. 2005;42(4):336–349.
  • Kratz CP, Niemeyer CM, Jüttner E, et al. Childhood T-cell non-Hodgkin’s lymphoma, colorectal carcinoma and brain tumor in association with café-au-lait spots caused by a novel homozygous PMS2 mutation. Leukemia. 2008;22(5):1078–1080.
  • Péron S, Metin A, Gardès P, et al. Human PMS2 deficiency is associated with impaired immunoglobulin class switch recombination. J Exp Med. 2008;205(11):2465–2472.
  • Devgan SS, Sanal O, Doil C, et al. Homozygous deficiency of ubiquitin-ligase ring-finger protein RNF168 mimics the radiosensitivity syndrome of ataxia-telangiectasia. Cell Death Differ. 2011;18(9):1500–1506.
  • Hsu P, Ma A, Barnes EH, et al. The immune phenotype of patients with CHARGE syndrome. J Allergy Clin Immunol Pract. 2016;4(1):96–103e2.
  • Bordon V, Gennery AR, Slatter MA, et al. Clinical and immunologic outcome of patients with cartilage hair hypoplasia after hematopoietic stem cell transplantation. Blood. 2010;116(1):27–35.
  • Taskinen M, Ranki A, Pukkala E, et al. Extended follow-up of the Finnish cartilage-hair hypoplasia cohort confirms high incidence of non-Hodgkin lymphoma and basal cell carcinoma. American Journal of Medical Genetics Part A. 2008;146A(18):2370–2375.
  • Cossu F, Vulliamy TJ, Marrone A, et al. A novel DKC1 mutation, severe combined immunodeficiency (T+B-NK- SCID) and bone marrow transplantation in an infant with Hoyeraal-Hreidarsson syndrome. Br J Haematol. 2002;119(3):765–768.
  • Savage SA, Giri N, Baerlocher GM, et al. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet. 2008;82(2):501–509.
  • Picard C, Al-Herz W, Bousfiha A, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol. 2015;35(8):696–726.
  • Mitsuiki N, Yang X, Bartol SJ, et al. Mutations in Bruton’s tyrosine kinase impair IgA responses. Int J Hematol. 2015;101(3):305–313.
  • Graziani S, Di Matteo G, Benini L, et al. Identification of a Btk mutation in a dysgammaglobulinemic patient with reduced B cells: XLA diagnosis or not? Clin Immunol. 2008;128(3):322–328.
  • Maekawa K, Yamada M, Okura Y, et al. X-linked agammaglobulinemia in a 10-year-old boy with a novel non-invariant splice-site mutation in Btk gene. Blood Cells Mol Dis. 2010;44(4):300–304.
  • Ohta Y, Haire RN, Litman RT, et al. Genomic organization and structure of Bruton agammaglobulinemia tyrosine kinase: localization of mutations associated with varied clinical presentations and course in X chromosome-linked agammaglobulinemia. Proc Natl Acad Sci USA. 1994;91( 19):9062–9066.
  • Deau MC, Heurtier L, Frange P, et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest. 2014;124(9):3923–3928.
  • Wang HY, Ma CA, Zhao Y, et al. Antibody deficiency associated with an inherited autosomal dominant mutation in TWEAK. Proc Natl Acad Sci USA. 2013;110( 13):5127–5132.
  • Ostergaard JR, Sunde L, Okkels H. Neurofibromatosis von Recklinghausen type I phenotype and early onset of cancers in siblings compound heterozygous for mutations in MSH6. Am J Med Genet A. 2005;139A(2):96–105. discussion 96
  • Scott RH, Mansour S, Pritchard-Jones K, et al. Medulloblastoma, acute myelocytic leukemia and colonic carcinomas in a child with biallelic MSH6 mutations. Nat Clin Pract Oncol. 2007;4(2):130–134.
  • Dong X, Hoeltzle MV, Hagan JB, et al. Phenotypic and clinical heterogeneity associated with monoallelic TNFRSF13B-A181E mutations in common variable immunodeficiency. Hum Immunol. 2010;71(5):505–511.
  • López-Mejías R, Del Pozo N, Fernández-Arquero M, et al. Role of polymorphisms in the TNFRSF13B (TACI) gene in Spanish patients with immunoglobulin A deficiency. Tissue Antigens. 2009;74(1):42–45.
  • Salzer U, Chapel HM, Webster AD, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet. 2005;37(8):820–828.
  • Pan-Hammarström Q, Salzer U, Du L, et al. Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency. Nat Genet. 2007;39(4):429–430.
  • Castigli E, Wilson S, Garibyan L, et al. Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency. Nat Genet. 2007;39(4):430–431.
  • Castigli E, Wilson SA, Garibyan L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37(8):829–834.
  • Lucena JM, Burillo Sanz S, Nunez-Roldan A, et al. Incidence of the C104R TACI mutation in patients with primary antibody deficiency. J Invest Allergol Clin Immunol. 2015;25(5):378–379.
  • Freiberger T, Ravčuková B, Grodecká L, et al. Sequence variants of the TNFRSF13B gene in Czech CVID and IgAD patients in the context of other populations. Hum Immunol. 2012;73(11):1147–1154.
  • Whiteside D, McLeod R, Graham G, et al. A homozygous germ-line mutation in the human MSH2 gene predisposes to hematological malignancy and multiple cafe-au-lait spots. Cancer Res. 2002;62(2):359–362.
  • Brohl AS, Stinson JR, Su HC, et al. Germline CARD11 mutation in a patient with severe congenital B cell lymphocytosis. J Clin Immunol. 2015;35(1):32–46.
  • Buchbinder D, Stinson JR, Nugent DJ, et al. Mild B-cell lymphocytosis in patients with a CARD11 C49Y mutation. J Allergy Clin Immunol. 2015;136(3):819–821.e1.
  • Garibyan L, Lobito AA, Siegel RM, et al. Dominant-negative effect of the heterozygous C104R TACI mutation in common variable immunodeficiency (CVID). J Clin Invest. 2007;117(6):1550–1557.
  • Lee JJ, Jabara HH, Garibyan L, et al. The C104R mutant impairs the function of transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) through haploinsufficiency. J Allergy Clin Immunol. 2010;126(6):1234–41e2.
  • Salzer U, Bacchelli C, Buckridge S, et al. Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes. Blood. 2009;113(9):1967–1976.
  • Alkhairy OK, Rezaei N, Graham RR, et al. RAC2 loss-of-function mutation in 2 siblings with characteristics of common variable immunodeficiency. J Allergy Clin Immunol. 2015;135(5):1380–1385.
  • Patiroglu T, Gungor HE, Lazaroski S, et al. Chronic granulomatous disease with markedly elevated IgE levels mimicking hyperimmunoglobulin E syndrome. Acta Microbiol Immunol Hung. 2013;60(2):155–162.
  • Shamsian BS, Mansouri D, Pourpak Z, et al. Autosomal recessive chronic granulomatous disease, IgA deficiency and refractory autoimmune thrombocytopenia responding to Anti-CD20 monoclonal antibody. Iran J Allergy Asthma Immunol. 2008;7(3):181–184.
  • Hagiwara S, Watanabe A. A case of shwachman-diamond syndrome distinguished from celiac disease. Pediatr Rep. 2012;4(3):e30.
  • Nishida N, Yang X, Takasaki I, et al. Dysgammaglobulinemia associated with Glu349del, a hypomorphic XIAP mutation. J Invest Allergol Clin Immunol. 2015;25(3):205–213.
  • Van Eyck L, De Somer L, Pombal D, et al. Brief report: IFIH1 mutation causes systemic lupus erythematosus with selective IgA deficiency. Arthritis Rheumatol. 2015;67(6):1592–1597.
  • Schejbel L, Rasmussen EM, Kemp HB, et al. Combined IL-12 receptor and IgA deficiency in an adult man intestinally infested by an unknown, non-cultivable mycobacterium. Scand J Immunol. 2011;74(6):548–553.
  • Takaya J, Fujii Y, Higashino H, et al. A case of WHIM syndrome associated with diabetes and hypothyroidism. Pediatr Diab. 2009;10(7):484–486.
  • Tarzi MD, Jenner M, Hattotuwa K, et al. Sporadic case of warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis syndrome. J Allergy Clin Immunol. 2005;116(5):1101–1105.
  • Chen XJ, Yang WY, Wang SC, et al. [WHIM syndrome: a case report and literature review]. Zhonghua er ke za zhi. Chinese J Pediatr. 2013;51(3):178–182.
  • Frans G, Moens L, Schaballie H, et al. Gain-of-function mutations in signal transducer and activator of transcription 1 (STAT1): chronic mucocutaneous candidiasis accompanied by enamel defects and delayed dental shedding. J Allergy Clin Immunol. 2014;134(5):1209–1213.e6.
  • Romberg N, Morbach H, Lawrence MG, et al. Gain-of-function STAT1 mutations are associated with PD-L1 overexpression and a defect in B-cell survival. J Allergy Clin Immunol. 2013;131(6):1691–1693.
  • Soltész B, Tóth B, Shabashova N, et al. New and recurrent gain-of-function STAT1 mutations in patients with chronic mucocutaneous candidiasis from Eastern and Central Europe. J Med Genet. 2013;50(9):567–578.
  • Sörman A, Zhang L, Ding Z, et al. How antibodies use complement to regulate antibody responses. Mol Immunol. 2014;61(2):79–88.
  • Santos-Valente E, Reisli I, Artac H, et al. A novel mutation in the complement component 3 gene in a patient with selective IgA deficiency. J Clin Immunol. 2013;33(1):127–133.
  • Fang M, Abolhassani H, Lim CK, et al. Next generation sequencing data analysis in primary immunodeficiency disorders – future directions. J Clin Immunol. 2016;36:68–75.
  • Frankowiack M, Kovanen RM, Repasky GA, et al. The higher frequency of IgA deficiency among Swedish twins is not explained by HLA haplotypes. Genes Immun. 2015;16(3):199–205.
  • Van Ginkel FW, Wahl SM, Kearney JF, et al. Partial IgA-deficiency with increased Th2-type cytokines in TGF-beta 1 knockout mice. J Immunology. 1999;163(4):1951–1957.
  • Kang HS, Chin RK, Wang Y, et al. Signaling via LTbetaR on the lamina propria stromal cells of the gut is required for IgA production. Nat Immunol. 2002;3(6):576–582.
  • Castigli E, Scott S, Dedeoglu F, et al. Impaired IgA class switching in APRIL-deficient mice. Proc Natl Acad Sci USA. 2004;101( 11):3903–3908.
  • Maruya M, Kawamoto S, Kato LM, et al. Impaired selection of IgA and intestinal dysbiosis associated with PD-1-deficiency. Gut Microbes. 2013;4(2):165–171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.