213
Views
10
CrossRef citations to date
0
Altmetric
Perspective

C1858T Polymorphism of Protein Tyrosine Phosphatase Non-receptor Type 22 (PTPN22): an eligible target for prevention of type 1 diabetes?

, , , , &
Pages 189-196 | Received 21 May 2016, Accepted 25 Nov 2016, Published online: 08 Dec 2016

References

  • Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes.Nature. 2010;464(7293):1293–1300.
  • Silveira PA, Grey ST. B cells in the spotlight: innocent bystanders or major players in the pathogenesis of type 1 diabetes. Trends Endocrinol Metab. 2006;17(4):128–135.
  • Anon. Effects of age, duration and treatment of insulin-dependent diabetes mellitus on residual beta-cell function: observations during eligibility testing for the Diabetes Control and Complications Trial (DCCT). The DCCT Research Group. J Clin Endocrinol Metab. 1987;65(1):30–36.
  • Schölin A, Björklund L, Borg H, et al. Islet antibodies and remaining beta-cell function 8 years after diagnosis of diabetes in young adults: a prospective follow-up of the nationwide diabetes incidence study in Sweden. J Intern Med. 2004;255(3):384–391.
  • Akerblom HK, Vaarala O, Hyöty H, et al. Environmental factors in the etiology of type 1 diabetes. Am J Med Genet. 2002;115(1):18–29.
  • Hyttinen V, Kaprio J, Kinnunen L, et al. Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes. 2003;52(4):1052–1055.
  • Redondo MJ, Fain PR, Eisenbarth GS. Genetics of type 1A diabetes. Recent Prog Horm Res. 2001;56:69–89.
  • Nerup J, Platz P, Andersen OO, et al. HL-A antigens and diabetes mellitus. Lancet (London, England). 1974;2(7885):864–866.
  • Pociot F, Akolkar B, Concannon P, et al. Genetics of type 1 diabetes: what’s next? Diabetes. 2010;59(7):1561–1571.
  • Polychronakos C, Li Q. Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet. 2011;12(11):781–792.
  • Mehers KL, Gillespie KM. The genetic basis for type 1 diabetes. Br Med Bull. 2008;88(1):115–129.
  • Bell GI, Horita S, Karam JH. A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes melliitus. Diabetes. 1984;33(2):176–183.
  • Nisticò L, Buzzetti R, Pritchard LE, et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian diabetes registry. Hum Mol Genet. 1996;5(7):1075–1080.
  • Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004;36(4):337–338.
  • Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41(6):703–707.
  • Burn GL, Svensson L, Sanchez-Blanco C, et al. Why is PTPN22 a good candidate susceptibility gene for autoimmune disease?FEBS Lett. 2011;585(23):3689–3698.
  • Spalinger MR, Scharl M. The role for protein tyrosine phosphatase non-receptor type 22 in regulating intestinal homeostasis. United european Gastroenterology Journal. 2016;4(3):325–332.
  • Cohen S, Dadi H, Shaoul E, et al. Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood. 1999;93(6):2013–2024.
  • Matthews RJ, Bowne DB, Flores E, et al. Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol Cell Biol. 1992;12(5):2396–2405.
  • Wang S, Dong H, Han J, et al. Identification of a variant form of tyrosine phosphatase LYP. BMC Mol Biol. 2010;11:78.
  • Mustelin T, Vang T, Bottini N. Protein tyrosine phosphatases and the immune response. Nat Rev Immunol. 2005;5(1):43–57.
  • Woodman PG. p97, a protein coping with multiple identities. J Cell Sci. 2003;116(Pt 21):4283–4290.
  • Gjörloff-Wingren A, Saxena M, Williams S, et al. Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur J Immunol. 1999;29(12):3845–3854.
  • Hill RJ, Zozulya S, Lu Y-L, et al. The lymphoid protein tyrosine phosphatase Lyp interacts with the adaptor molecule Grb2 and functions as a negative regulator of T-cell activation. Exp Hematol. 2002;30(3):237–244.
  • Rieck M, Arechiga A, Onengut-Gumuscu S, et al. Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J Immunol. 2007;179(7):4704–4710.
  • Aarnisalo J, Treszl A, Svec P, et al. Reduced CD4+T cell activation in children with type 1 diabetes carrying the PTPN22/Lyp 620Trp variant. J Autoimmun. 2008;31(1):13–21.
  • Lefvert AK, Zhao Y, Ramanujam R, et al. PTPN22 R620W promotes production of anti-AChR autoantibodies and IL-2 in myasthenia gravis. J Neuroimmunol. 2008;197(2):110–113.
  • Wu DJ, Zhou W, Enouz S, et al. Autoimmunity-associated LYP-W620 does not impair thymic negative selection of autoreactive T cells. Plos One. 2014;9(2):e86677.
  • Vang T, Landskron J, Viken MK, et al. The autoimmune-predisposing variant of lymphoid tyrosine phosphatase favors T helper 1 responses. Hum Immunol. 2013;74(5):574–585.
  • Seldin MF, Shigeta R, Laiho K, et al. Finnish case–control and family studies support PTPN22 R620W polymorphism as a risk factor in rheumatoid arthritis, but suggest only minimal or no effect in juvenile idiopathic arthritis. Genes Immun. 2005;6(8):720–722.
  • Fedetz M, Matesanz F, Caro-Maldonado A, et al. The 1858T PTPN22 gene variant contributes to a genetic risk of type 1 diabetes in a Ukrainian population. Tissue Antigens. 2006;67(5):430–433.
  • Zoledziewska M, Perra C, Orrù V, et al. Further evidence of a primary, causal association of the PTPN22 620W variant with type 1 diabetes. Diabetes. 2008;57(1):229–234.
  • Saccucci P, Del Duca E, Rapini N, et al. Association between PTPN22 C1858T and type 1 diabetes: a replication in continental Italy. Tissue Antigens. 2008;71(3):234–237.
  • Gomez LM, J-M A, Martin J. Genetic influence of PTPN22 R620W polymorphism in tuberculosis. Hum Immunol. 2005;66(12):1242–1247.
  • Maine CJ, Hamilton-Williams EE, Cheung J, et al. PTPN22 alters the development of regulatory T cells in the thymus. J Immunol. 2012;188(11):5267–5275.
  • Burton AR, Vincent E, Arnold PY, et al. On the pathogenicity of autoantigen-specific T-cell receptors. Diabetes. 2008;57(5):1321–1330.
  • Han B, Serra P, Yamanouchi J, et al. Developmental control of CD8 T cell-avidity maturation in autoimmune diabetes. J Clin Invest. 2005;115(7):1879–1887.
  • Serreze DV, Fleming SA, Chapman HD, et al. B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Immunol. 1998;161(8):3912–3918.
  • Greeley SAW, Katsumata M, Yu L, et al. Elimination of maternally transmitted autoantibodies prevents diabetes in nonobese diabetic mice. Nat Med. 2002;8(4):399–402.
  • Hu C, Rodriguez-Pinto D, Du W, et al. Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J Clin Invest. 2007;117(12):3857–3867.
  • Zipris D, Lien E, Nair A, et al. TLR9-signaling pathways are involved in Kilham rat virus-induced autoimmune diabetes in the biobreeding diabetes-resistant rat. J Immunol. 2007;178(2):693–701.
  • Devendra D, Jasinski J, Melanitou E, et al. Interferon-alpha as a mediator of polyinosinic: polycytidylicacid-induced type 1 diabetes. Diabetes. 2005;54(9):2549–2556.
  • Fierabracci A. Peptide immunotherapies in Type 1 diabetes: lessons from animal models. Curr Med Chem. 2011;18(4):577–586.
  • Li M, Song L-J, Qin X-Y. Advances in the cellular immunological pathogenesis of type 1 diabetes. J Cell Mol Med. 2014;18(5):749–758.
  • Yoon JW, Jun HS. Cellular and molecular pathogenic mechanisms of insulin-dependent diabetes mellitus. Ann N Y Acad Sci. 2001;928:200–211.
  • Stadinski B, Kappler J, Eisenbarth GS. Molecular targeting of islet autoantigens. Immunity. 2010;32(4):446–456.
  • Blasetti A, Di Giulio C, Tumini S, et al. Role of the C1858T polymorphism of protein tyrosine phosphatase non-receptor type 22 (PTPN22) in children and adolescents with type 1 diabetes. Pharmacogenomics J. 2016. [Epub ahead of print].
  • Begovich AB, Carlton VEH, Honigberg LA, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet. 2004;75(2):330–337.
  • Viken MK, Amundsen SS, Kvien TK, et al. Association analysis of the 1858C>T polymorphism in the PTPN22 gene in juvenile idiopathic arthritis and other autoimmune diseases. Genes Immun. 2005;6(3):271–273.
  • Lea WW, Lee YH. The association between the PTPN22 C1858T polymorphism and systemic lupus erythematosus: a meta-analysis update. Lupus. 2011;20(1):51–57.
  • Skórka A, Bednarczuk T, Bar-Andziak E, et al. Lymphoid tyrosine phosphatase (PTPN22/LYP) variant and Graves’ disease in a Polish population: association and gene dose-dependent correlation with age of onset. Clin Endocrinol (Oxf). 2005;62(6):679–682.
  • Velaga MR, Wilson V, Jennings CE, et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab. 2004;89(11):5862–5865.
  • Criswell LA, Pfeiffer KA, Lum RF, et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet. 2005;76(4):561–571.
  • Qu H, Tessier M-C, Hudson TJ, et al. Confirmation of the association of the R620W polymorphism in the protein tyrosine phosphatase PTPN22 with type 1 diabetes in a family based study. J Med Genet. 2005;42(3):266–270.
  • Chelala C, Duchatelet S, Joffret M-L, et al. PTPN22 R620W functional variant in type 1 diabetes and autoimmunity related traits. Diabetes. 2007;56(2):522–526.
  • Smyth DJ, Cooper JD, Howson JMM, et al. PTPN22 Trp620 explains the association of chromosome 1p13 with type 1 diabetes and shows a statistical interaction with HLA class II genotypes. Diabetes. 2008;57(6):1730–1737.
  • Xuan C, Lun L-M, Zhao J-X, et al. PTPN22 gene polymorphism (C1858T) is associated with susceptibility to type 1 diabetes: a meta-analysis of 19,495 cases and 25,341 controls. Ann Hum Genet. 2013;77(3):191–203.
  • Kawasaki E, Awata T, Ikegami H, et al. Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase gene (PTPN22): association between a promoter polymorphism and type 1 diabetes in Asian populations. Am J Med Genet A. 2006;140(6):586–593.
  • Tang S, Peng W, Wang C, et al. Association of the PTPN22 gene (+1858C/T, −1123G/C) polymorphisms with type 1 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2012;97(3):446–452.
  • Giza S, Goulas A, Gbandi E, et al. The role of PTPN22 C1858T gene polymorphism in diabetes mellitus type 1: first evaluation in Greek children and adolescents. Biomed Res Int. 2013;2013:721604.
  • Zheng J, Ibrahim S, Petersen F, et al. Meta-analysis reveals an association of PTPN22 C1858T with autoimmune diseases, which depends on the localization of the affected tissue. Genes Immun. 2012;13(8):641–652.
  • Lee YH, Song GG. Meta-analysis of the family-based association between the PTPN22 C1858T polymorphism and type 1 diabetes. Mol Biol Rep. 2013;40(1):211–215.
  • Vang T, A V M, Arimura Y, et al. Protein tyrosine phosphatases in autoimmunity. Annu Rev Immunol. 2008;26:29–55.
  • Andersen MLM, Rasmussen MA, Pörksen S, et al. Complex multi-block analysis identifies new immunologic and genetic disease progression patterns associated with the residual β-cell function 1 year after diagnosis of type 1 diabetes. Plos One. 2013;8(6):e64632.
  • Santiago JL, Martínez A, De la calle H, et al. Susceptibility to type 1 diabetes conferred by the PTPN22 C1858T polymorphism in the Spanish population. BMC Med Genet. 2007;8:54.
  • Nielsen C, Hansen D, Husby S, et al. Sex-specific association of the human PTPN22 1858T-allele with type 1 diabetes. Int J Immunogenet. 2007;34(6):469–473.
  • Mainardi-Novo DTO, Santos AS, Fukui RT, et al. The PTPN22 1858T allele but not variants in the proximal promoter region of IL-21 gene is associated with the susceptibility to type 1 diabetes and the presence of autoantibodies in a Brazilian cohort. Clin Exp Immunol. 2013;172(1):16–22.
  • Petrone A, Suraci C, Capizzi M, et al. The protein tyrosine phosphatase nonreceptor 22 (PTPN22) is associated with high GAD antibody titer in latent autoimmune diabetes in adults: non insulin requiring autoimmune diabetes (NIRAD) Study 3. Diabetes Care. 2008;31(3):534–538.
  • Hermann R, Lipponen K, Kiviniemi M, et al. Lymphoid tyrosine phosphatase (LYP/PTPN22) Arg620Trp variant regulates insulin autoimmunity and progression to type 1 diabetes. Diabetologia. 2006;49(6):1198–1208.
  • Kumar N, Kaur G, Kanga U, et al. Association of PTPN22+1858C/T polymorphism with type 1 diabetes in the North Indian population. Int J Immunogenet. 2014;41(4):318–323.
  • Butty V, Campbell C, Mathis D, et al. DPT-1 study group. impact of diabetes susceptibility loci on progression from pre-diabetes to diabetes in at-risk individuals of the diabetes prevention trial-type 1 (DPT-1). Diabetes. 2008;57(9):2348–2359.
  • Törn C, Hadley D, Lee H-S, et al. Role of type 1 diabetes-associated SNPs on risk of autoantibody positivity in the TEDDY study. Diabetes. 2015;64(5):1818–1829.
  • Maziarz M, Janer M, Roach JC, et al. The association between the PTPN22 1858C>T variant and type 1 diabetes depends on HLA risk and GAD65 autoantibodies. Genes Immun. 2010;11(5):406–415.
  • Petrone A, Spoletini M, Zampetti S, et al. The PTPN22 1858T gene variant in type 1 diabetes is associated with reduced residual -cell function and worse metabolic control. Diabetes Care. 2008;31(6):1214–1218.
  • Nielsen LB, Pörksen S, Andersen MLM, et al. The PTPN22 C1858T gene variant is associated with proinsulin in new-onset type 1 diabetes. BMC Med Genet. 2011;12:41.
  • Zheng P, Kissler S. PTPN22 silencing in the NOD model indicates the type 1 diabetes-associated allele is not a loss-of-function variant. Diabetes. 2013;62(3):896–904.
  • Schölin A, Berne C, Schvarcz E, et al. Factors predicting clinical remission in adult patients with type 1 diabetes. J Intern Med. 1999;245(2):155–162.
  • Xie Y, Liu Y, Gong G, et al. Discovery of a novel submicromolar inhibitor of the lymphoid specific tyrosine phosphatase. Bioorg Med Chem Lett. 2008;18(9):2840–2844.
  • He Y, Liu S, Menon A, et al. A potent and selective small-molecule inhibitor for the lymphoid-specific tyrosine phosphatase (LYP), a target associated with autoimmune diseases. J Med Chem. 2013;56(12):4990–5008.
  • Yu X, Sun J-P, He Y, et al. Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases. Proc Natl Acad Sci U S A. 2007;104(50):19767–19772.
  • Vang T, Xie Y, Liu WH, et al. Inhibition of lymphoid tyrosine phosphatase by benzofuran salicylic acids. J Med Chem. 2011;54(2):562–571.
  • Vang T, Liu WH, Delacroix L, et al. LYP inhibits T-cell activation when dissociated from CSK. Nat Chem Biol. 2012;8(5):437–446.
  • Stanford SM, Krishnamurthy D, Falk MD, et al. Discovery of a novel series of inhibitors of lymphoid tyrosine phosphatase with activity in human T cells. J Med Chem. 2011;54(6):1640–1654.
  • Hou X, Li K, Yu X, et al. Protein flexibility in docking-based virtual screening: discovery of novel lymphoid-specific tyrosine phosphatase inhibitors using multiple crystal structures.J Chem Inf Model. 2015;55(9):1973–1983.
  • Coppieters KT, Harrison LC, Von Herrath MG. Trials in type 1 diabetes: Antigen-specific therapies. Clin Immunol. 2013;149(3):345–355.
  • Ferretti C, La Cava A. Adaptive immune regulation in autoimmune diabetes. Autoimmun Rev. 2016;15(3):236–241.
  • Krischer JP, Lynch KF, Schatz DA, et al. The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia. 2015;58(5):980–987.
  • Lempainen J, Laine A-P, Hammais A, et al. Non-HLA gene effects on the disease process of type 1 diabetes: from HLA susceptibility to overt disease. J Autoimmun. 2015;61:45–53.
  • Ilonen J, Hammais A, Laine A-P, et al. Patterns of β-cell autoantibody appearance and genetic associations during the first years of life. Diabetes. 2013;62(10):3636–3640.
  • Wherrett DK, Daneman D. Prevention of type 1 diabetes. Endocrinol Metab Clin North Am. 2009;38(4):777–790.
  • Charkaluk M-L, Czernichow P, Lévy-Marchal C. Incidence data of childhood-onset type I diabetes in France during 1988-1997: the case for a shift toward younger age at onset. Pediatr Res. 2002;52(6):859–862.
  • Cotellessa M, Barbieri P, Mazzella M, et al. High incidence of childhood type 1 diabetes in Liguria, Italy, from 1989 to 1998. Diabetes Care. 2003;26(6):1786–1789.
  • Dabelea D, Bell RA, D’Agostino RB, et al. Incidence of diabetes in youth in the United States. Jama. 2007;297(24):2716–2724.
  • Harjutsalo V, Sjöberg L, Tuomilehto J. Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. Lancet (London, England). 2008;371(9626):1777–1782.
  • Ehehalt S, Blumenstock G, Willasch AM, et al. Continuous rise in incidence of childhood Type 1 diabetes in Germany. Diabet Med. 2008;25(6):755–757.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.