436
Views
12
CrossRef citations to date
0
Altmetric
Review

Th17/Treg immunoregulation and implications in treatment of sulfur mustard gas-induced lung diseases

, , , , &
Pages 1173-1188 | Received 02 Jul 2017, Accepted 05 Oct 2017, Published online: 23 Oct 2017

References

  • Mangerich A, Esser C. Chemical warfare in the First World War: reflections 100 years later. Arch Toxicol. 2014 Nov;88(11):1909–1911. DOI:10.1007/s00204-014-1370-z. PubMed PMID: 25245084; eng.
  • Ebadi A, Moradian T, Mollahadi M, et al. Quality of life in Iranian chemical warfare veteran’s. Iran Red Crescent Med J. 2014 May;16(5):e5323. PubMed PMID: 25031863; PubMed Central PMCID: PMCPmc4082523. eng. DOI:10.5812/ircmj.5323
  • Amirjamshidi A, Abbassioun K, Rahmat H. Minimal debridement or simple wound closure as the only surgical treatment in war victims with low-velocity penetrating head injuries. Indications and management protocol based upon more than 8 years follow-up of 99 cases from Iran-Iraq conflict. Surg Neurol. 2003 Aug;60(2):105–110. discussion 110-1. PubMed PMID: 12900110; eng.
  • Najafi A, Ghanei M, Jamalkandi SA. Airway remodeling: systems biology approach, from bench to bedside. Technol Health Care. 2016;24(6):811–819.
  • Bhat TA, Panzica L, Kalathil SG, et al. Immune dysfunction in patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2015;12(Supplement 2):S169–S175.
  • Marzony ET, Nejad-Moghadam A, Ghanei M, et al. Sulfur mustard causes oxidants/antioxidants imbalance through the overexpression of free radical producing-related genes in human mustard lungs. Environ Toxicol Pharmacol. 2016;45:187–192.
  • Tahmasbpour Marzony E, Ghanei M, Panahi Y. Oxidative stress and altered expression of peroxiredoxin genes family (PRDXS) and sulfiredoxin-1 (SRXN1) in human lung tissue following exposure to sulfur mustard. Exp Lung Res. 2016;42(4):217–226.
  • Tahmasbpour E, Ghanei M, Qazvini A, et al. Gene expression profile of oxidative stress and antioxidant defense in lung tissue of patients exposed to sulfur mustard. Mutat Res/Genet Toxicol Environ Mutagen. 2016;800:12–21.
  • Mishra NC, Rir-Sima-Ah J, March T, et al. Sulfur mustard induces immune sensitization in hairless guinea pigs. Int Immunopharmacol. 2010 Feb;10(2):193–199. PubMed PMID: 19887117; PubMed Central PMCID: PMCPmc2815140. eng. DOI:10.1016/j.intimp.2009.10.015
  • Emad A, Emad Y. Increased in CD8 T lymphocytes in the BAL fluid of patients with sulfur mustard gas-induced pulmonary fibrosis. Respir Med. 2007 Apr;101(4):786–792. DOI:10.1016/j.rmed.2006.08.003. PubMed PMID: 16982181; eng.
  • Emad A, Emad Y. Levels of cytokine in bronchoalveolar lavage (BAL) fluid in patients with pulmonary fibrosis due to sulfur mustard gas inhalation. Off J Int Society Interferon Cytokine Res. 2007 Jan;27(1):38–43. DOI:10.1089/jir.2006.0084. PubMed PMID: 17266442; eng.
  • Ghazanfari T, Kariminia A, Yaraee R, et al. Long term impact of sulfur mustard exposure on peripheral blood mononuclear subpopulations–Sardasht-Iran Cohort Study (SICS). Int Immunopharmacol. 2013 Nov;17(3):931–935. PubMed PMID: 23434855; eng. DOI:10.1016/j.intimp.2012.12.023
  • Shahriary A, Mehrani H, Ghanei M, et al. Comparative proteome analysis of peripheral neutrophils from sulfur mustard-exposed and COPD patients. J Immunotoxicol. 2015;12(2):132–139.
  • Wilson MS, Wynn TA. Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol. 2009 Mar;2(2:103–121. PubMed PMID: 19129758; PubMed Central PMCID: PMCPmc2675823. eng. DOI:10.1038/mi.2008.85
  • Ghanei M, Tazelaar HD, Chilosi M, et al. An international collaborative pathologic study of surgical lung biopsies from mustard gas-exposed patients. Respir Med. 2008 Jun;102(6):825–830. PubMed PMID: 18339530; eng. DOI:10.1016/j.rmed.2008.01.016
  • Emad A, Emad Y. CD4/CD8 ratio and cytokine levels of the BAL fluid in patients with bronchiectasis caused by sulfur mustard gas inhalation. J Inflamm (Lond). 2007;4:2. PubMed PMID: 17224076; PubMed Central PMCID: PMCPmc1781448. eng. DOI:10.1186/1476-9255-4-2
  • Hassan ZM, Ebtekar M, Ghanei M, et al. Immunobiological consequences of sulfur mustard contamination. Iran J Allergy, Asthma Immunol. 2006;5(3):101–108.
  • Kheradmand F, Shan M, Xu C, et al. Autoimmunity in chronic obstructive pulmonary disease: clinical and experimental evidence. Expert Rev Clin Immunol. 2012;8(3):285–292.
  • Cosio MG, Majo J, Cosio MG. Inflammation of the airways and lung parenchyma in COPD: role of T cells. Chest J. 2002;121:(5_suppl):160S-165S.
  • Li H, Liu Q, Jiang Y, et al. Disruption of th17/treg balance in the sputum of patients with chronic obstructive pulmonary disease. Am J Med Sci. 2015 May;349(5):392–397. PubMed PMID: 25782336; eng. DOI:10.1097/maj.0000000000000447
  • Galati D, De Martino M, Trotta A, et al. Peripheral depletion of NK cells and imbalance of the Treg/Th17 axis in idiopathic pulmonary fibrosis patients. Cytokine. 2014 Apr;66(2):119–126. PubMed PMID: 24418172. DOI:10.1016/j.cyto.2013.12.003
  • Imani S, Salimian J, Bozorgmehr M, et al. Assessment of Treg/Th17 axis role in immunopathogenesis of chronic injuries of mustard lung disease. J Recept Signal Transduct Res. 2016 Oct;36(5):531–541. PubMed PMID: 26895417; eng. DOI:10.3109/10799893.2016.1141953
  • Imani AS, Salimian J, Fu J, et al. Th17/Treg-related cytokine imbalance in sulfur mustard exposed and stable chronic obstructive pulmonary (COPD) patients: correlation with disease activity. Immunopharmacol Immunotoxicol. 2016;38(4):270–280.
  • Razavi SM, Ghanei M, Salamati P, et al. Long-term effects of mustard gas on respiratory system of Iranian veterans after Iraq-Iran war: a review. Chin J Traumatol = Zhonghua Chuang Shang Za zhi/Chin Med Assoc. 2013;16(3):163–168. PubMed PMID: 23735551; eng.
  • Shahriary A, Seyedzadeh MH, Ahmadi A, et al. The footprint of TGF-β in airway remodeling of the mustard lung. Inhal Toxicol. 2015;27(14):745–753.
  • Nourani MR, Mahmoodzadeh Hosseini H, Azimzadeh Jamalkandi S, et al. Cellular and molecular mechanisms of acute exposure to sulfur mustard: a systematic review. J Recept Signal Transduction. 2017;37(2):200–216.
  • Beheshti J, Mark EJ, Akbaei HMH, et al. Mustard lung secrets: long term clinicopathological study following mustard gas exposure. Pathology-Research Pract. 2006;202(10):739–744.
  • Ghanei M, Harandi AA. Molecular and cellular mechanism of lung injuries due to exposure to sulfur mustard: a review. Inhal Toxicol. 2011 Jun;23(7):363–371. DOI:10.3109/08958378.2011.576278. PubMed PMID: 21639706; PubMed Central PMCID: PMCPMC3128827. eng.
  • Boskabady MH, Amery S, Vahedi N, et al. The effect of vitamin E on tracheal responsiveness and lung inflammation in sulfur mustard exposed guinea pigs. Inhal Toxicol. 2011;23(3):157–165.
  • Hefazi M, Attaran D, Mahmoudi M, et al. Late respiratory complications of mustard gas poisoning in Iranian veterans. Inhal Toxicol. 2005 Oct;17(11):587–592. PubMed PMID: 16033754; eng. DOI:10.1080/08958370591000591
  • Emad A, Rezaian GR. The diversity of the effects of sulfur mustard gas inhalation on respiratory system 10 years after a single, heavy exposure: analysis of 197 cases. Chest. 1997 Sep;112(3):734–738. PubMed PMID: 9315808; eng.
  • Ghanei M, Adibi I, Farhat F, et al. Late respiratory effects of sulfur mustard: how is the early symptoms severity involved? Chron Respir Dis. 2008;5(2):95–100. 10.1177/1479972307087191 PubMed PMID: 18539723; eng.
  • Hesselbacher SE, Ross R, Schabath MB, et al. Cross-sectional analysis of the utility of pulmonary function tests in predicting emphysema in ever-smokers. Int J Environ Res Public Health. 2011;8(5):1324–1340.
  • Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discovery. 2012;11(10):763–776.
  • Bermejo-Martin JF, de Lejarazu RO, Pumarola T, et al. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza. Crit Care. 2009;13(6):R201.
  • Sutton CE, Lalor SJ, Sweeney CM, et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity. 2009;31(2):331–341.
  • Holloway TL, Rani M, Cap AP, et al. The association between the Th-17 immune response and pulmonary complications in a trauma ICU population. Cytokine. 2015 Dec;76(2):328–333. PubMed PMID: 26364992; PubMed Central PMCID: PMCPmc4632975. eng. DOI:10.1016/j.cyto.2015.09.003
  • Singh RP, Hasan S, Sharma S, et al. Th17 cells in inflammation and autoimmunity. Autoimmun Rev. 2014 Dec;13(12):1174–1181. PubMed PMID: 25151974; eng. DOI:10.1016/j.autrev.2014.08.019
  • Han L, Yang J, Wang X, et al. Th17 cells in autoimmune diseases. Front Med. 2015 Mar;9(1):10–19. PubMed PMID: 25652649; eng. DOI:10.1007/s11684-015-0388-9
  • Shan M, Yuan X, Song L-Z, et al. Cigarette smoke induction of osteopontin (SPP1) mediates TH17 inflammation in human and experimental emphysema. Sci Transl Med. 2012;4(117):117ra9–117ra9.
  • Shan M, Cheng H-F, Song L-Z, et al. Lung myeloid dendritic cells coordinately induce TH1 and TH17 responses in human emphysema. Sci Transl Med. 2009;1(4):4ra10–4ra10.
  • Naghavian R, Ghaedi K, Kiani-Esfahani A, et al. miR-141 and miR-200a, Revelation of New Possible Players in Modulation of Th17/Treg Differentiation and Pathogenesis of Multiple Sclerosis. PloS One. 2015;10(5):e0124555. PubMed PMID: 25938517; PubMed Central PMCID: PMCPmc4418573. eng. DOI:10.1371/journal.pone.0124555
  • Eliseeva DD, Zavalishin IA, Karaulov AV, et al. Vestnik Rossiiskoi akademii meditsinskikh nauk/Rossiiskaia akademiia meditsinskikh nauk [The role of regulatory T cells in the development of autoimmune process in multiple sclerosis]. 2012;(3): 68–74. PubMed PMID: 22712278; Russian. DOI:10.15690/vramn.v67i3.188
  • Samson M, Audia S, Janikashvili N, et al. Brief report: inhibition of interleukin-6 function corrects Th17/Treg cell imbalance in patients with rheumatoid arthritis. Arthritis Rheum. 2012 Aug;64(8):2499–2503. PubMed PMID: 22488116; eng. DOI:10.1002/art.34477
  • Wang W, Shao S, Jiao Z, et al. The Th17/Treg imbalance and cytokine environment in peripheral blood of patients with rheumatoid arthritis. Rheumatol Int. 2012 Apr;32(4):887–893. PubMed PMID: 21221592; eng. DOI:10.1007/s00296-010-1710-0
  • Zhang L, Yang XQ, Cheng J, et al. Increased Th17 cells are accompanied by FoxP3(+) Treg cell accumulation and correlated with psoriasis disease severity. Clin Immunol (Orlando, Fla). 2010 Apr;135(1):108–117. PubMed PMID: 20006553; eng. DOI:10.1016/j.clim.2009.11.008
  • Chaudhry A, Rudra D, Treuting P, et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science. 2009 Nov 13;326(5955):986–991. PubMed PMID: 19797626; PubMed Central PMCID: PMCPmc4408196. eng. DOI:10.1126/science.1172702
  • Ferraro A, Socci C, Stabilini A, et al. Expansion of Th17 cells and functional defects in T regulatory cells are key features of the pancreatic lymph nodes in patients with type 1 diabetes. Diabetes. 2011 Nov;60(11):2903–2913. PubMed PMID: 21896932; PubMed Central PMCID: PMCPmc3198077. eng. DOI:10.2337/db11-0090
  • Yang J, Chu Y, Yang X, et al. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum. 2009 May;60(5):1472–1483. PubMed PMID: 19404966; eng. DOI:10.1002/art.24499
  • Wong CK, Lit LC, Tam LS, et al. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin Immunol (Orlando, Fla). 2008 Jun;127(3):385–393. PubMed PMID: 18373953; eng. DOI:10.1016/j.clim.2008.01.019
  • Feng Y, van der Veeken J, Shugay M, et al. A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature. 2015 Dec 3;528(7580):132–136. PubMed PMID: 26605529; PubMed Central PMCID: PMCPmc4862833. eng. DOI:10.1038/nature16141
  • Smigiel KS, Srivastava S, Stolley JM, et al. Regulatory T-cell homeostasis: steady-state maintenance and modulation during inflammation. Immunol Rev. 2014 May;259(1):40–59. PubMed PMID: 24712458; PubMed Central PMCID: PMCPmc4083836. eng. DOI:10.1111/imr.12170
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–1061.
  • Gavin MA, Rasmussen JP, Fontenot JD, et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature. 2007;445(7129):771.
  • Le Bras S, Geha RS. IPEX and the role of Foxp3 in the development and function of human Tregs. J Clin Investig. 2006;116(6):1473.
  • Kimura A, Kishimoto T. IL‐6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40(7):1830–1835.
  • Askenasy N, Kaminitz A, Yarkoni S. Mechanisms of T regulatory cell function. Autoimmun Rev. 2008;7(5):370–375.
  • Abdulahad WH, Boots AM, Kallenberg CG. FoxP3+ CD4+ T cells in systemic autoimmune diseases: the delicate balance between true regulatory T cells and effector Th-17 cells. Rheumatology (Oxford). 2011 Apr;50(4):646–656. DOI:10.1093/rheumatology/keq328. PubMed PMID: 21030463; eng.
  • Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol. 2008 May;8(5):337–348. DOI:10.1038/nri2295. PubMed PMID: 18408735; eng.
  • Sakaida H. IgG rheumatoid factor in rheumatoid arthritis with interstitial lung disease. Ryumachi[Rheumatism]. 1995;35(4):671–677.
  • Panahi Y, Jadidi-Niaragh F, Azimzadeh Jamalkandi S, et al. Immunology of chronic obstructive pulmonary disease and sulfur mustard induced airway injuries: implications for Immunotherapeutic Interventions. Curr Pharm Des. 2016;22(20):2975–2996.
  • Ricketts K, Santai C, France J, et al. Inflammatory cytokine response in sulfur mustard‐exposed mouse skin. J Appl Toxicol. 2000;20:S1.
  • Medeiros AI, Serezani CH, Lee SP, et al. Efferocytosis impairs pulmonary macrophage and lung antibacterial function via PGE2/EP2 signaling. J Exp Med. 2009;206(1):61–68.
  • Khazdair MR, Boskabady MH, Ghorani V. Respiratory effects of sulfur mustard exposure, similarities and differences with asthma and COPD. Inhal Toxicol. 2015;27(14):731–744.
  • Gholamnezhad Z, Boskabady MH, Amery S, et al. The effect of vitamin E on lung pathology in sulfur mustard-exposed guinea pigs. Toxicol Ind Health. 2016;32(12):1971–1977.
  • Ghotbi L, Hassan Z. The immunostatus of natural killer cells in people exposed to sulfur mustard. Int Immunopharmacol. 2002;2(7):981–985.
  • Ghasemi H, Ghazanfari T, Yaraee R, et al. Evaluation of relationship between the serum levels of inflammatory mediators and ocular injuries induced by sulfur mustard: ardasht-Iran Cohort Study. Int Immunopharmacol. 2009 Dec;9(13–14):1494–1498. PubMed PMID: 19733692; eng. DOI:10.1016/j.intimp.2009.08.021
  • Emad A, Emad Y. Increased granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) levels in BAL fluid from patients with sulfur mustard gas-induced pulmonary fibrosis. Off J Int Soc Aerosols Med. 2007 Fall;20(3):352–360. DOI:10.1089/jam.2007.0590. PubMed PMID: 17894541; eng.
  • Anderson DR, Byers SL, Vesely KR. Treatment of sulfur mustard (HD)‐induced lung injury†. J Appl Toxicol. 2000;20(S1):S129–S132.
  • Mishra NC, Rir-Sima-Ah J, Grotendorst GR, et al. Inhalation of sulfur mustard causes long-term T cell-dependent inflammation: possible role of Th17 cells in chronic lung pathology. Int Immunopharmacol. 2012 May;13(1):101–108. PubMed PMID: 22465472; PubMed Central PMCID: PMCPmc3340497. eng. DOI:10.1016/j.intimp.2012.03.010
  • Mei YZ, Zhang XR, Jiang N, et al. The injury progression of T lymphocytes in a mouse model with subcutaneous injection of a high dose of sulfur mustard. Milit Med Res. 2014;1:28. PubMed PMID: 25722879; PubMed Central PMCID: PMCPmc4341234. eng. DOI:10.1186/s40779-014-0028-8
  • Mohammadhoseiniakbari H, Ghanei M, Eajazi A, et al. Delayed effects of sulfur mustard poisoning on CD4+ and CD8+ lymphocytes in Iranian veterans 25 years after exposure. Med Sci Moni: Int Med J Exp Clin Res. 2008 Nov;14(11):Cr580–3. PubMed PMID: 18971875; eng.
  • Coutelier JP, Lison D, Simon O, et al. Effect of sulfur mustard on murine lymphocytes. Toxicol Lett. 1991 Oct;58(2):143–148. PubMed PMID: 1949073; eng.
  • Shaker Z, Hassan ZM, Sohrabpoor H, et al. The immunostatus of T helper and T cytotoxic cells in the patients ten years after exposure to sulfur mustard. Immunopharmacol Immunotoxicol. 2003 Aug;25(3):423–430. PubMed PMID: 19180804; eng.
  • Moin A, Khamesipour A, Hassan ZM, et al. Pro-inflammatory cytokines among individuals with skin findings long-term after sulfur mustard exposure: Sardasht-Iran Cohort Study. Int Immunopharmacol. 2013 Nov;17(3):986–990. PubMed PMID: 23370294; eng. DOI:10.1016/j.intimp.2012.12.022
  • Yaraee R, Hassan ZM, Pourfarzam S, et al. Fibrinogen and inflammatory cytokines in spontaneous sputum of sulfur-mustard-exposed civilians–Sardasht-Iran Cohort Study. Int Immunopharmacol. 2013 Nov;17(3):968–973. PubMed PMID: 23375935; eng. DOI:10.1016/j.intimp.2012.12.024
  • Abbaszadeh M, Aidenloo NS, Nematollahi MK, et al. Investigating the association between angiogenic cytokines and corneal neovascularization in sulfur mustard intoxicated subjects 26 years after exposure. Toxicol Int. 2014 Sep-Dec;21(3):300–306. PubMed PMID: 25948970; PubMed Central PMCID: PMCPmc4413414. eng. DOI:10.4103/0971-6580.155375
  • Askari N, Vaez-Mahdavi MR, Moaiedmohseni S, et al. Association of chemokines and prolactin with cherry angioma in a sulfur mustard exposed population–Sardasht-Iran cohort study. Int Immunopharmacol. 2013 Nov;17(3):991–995. PubMed PMID: 23370299; eng. DOI:10.1016/j.intimp.2012.12.016
  • Ghasemi H, Ghazanfari T, Yaraee R, et al. Evaluation of the tear and serum levels of IL-8 in sulfur mustard intoxicated patients 20 years after exposure. Cutan Ocul Toxicol. 2012 Jun;31(2):132–137. PubMed PMID: 21967620; eng. DOI:10.3109/15569527.2011.618940
  • Sakaguchi S, Ono M, Setoguchi R, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self‐tolerance and autoimmune disease. Immunol Rev. 2006;212(1):8–27.
  • Lee SH, Goswami S, Grudo A, et al. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med. 2007 May;13(5):567–569. PubMed PMID: 17450149. DOI:10.1038/nm1583
  • Wang H, Peng W, Weng Y, et al. Imbalance of Th17/Treg cells in mice with chronic cigarette smoke exposure. Int Immunopharmacol. 2012;14(4):504–512.
  • Mishra NC, Grotendorst GR, Langley RJ, et al. Inhalation of sulfur mustard causes long-term T cell-dependent inflammation: possible role of Th17 cells in chronic lung pathology. Int Immunopharmacol. 2012;13(1):101–108.
  • Wang H, Ying H, Wang S, et al. Imbalance of peripheral blood Th17 and Treg responses in patients with chronic obstructive pulmonary disease. Clin Respir J. 2015;9(3):330–341.
  • Bhavani S, Tsai C-L, Perusich S, et al. Clinical and immunological factors in emphysema progression. Five-year prospective longitudinal exacerbation study of chronic obstructive pulmonary disease (LES-COPD). Am J Respir Crit Care Med. 2015;192(10):1171–1178.
  • Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–1132.
  • Vargas-Rojas MI, Ramírez-Venegas A, Limón-Camacho L, et al. Increase of Th17 cells in peripheral blood of patients with chronic obstructive pulmonary disease. Respir Med. 2011;105(11):1648–1654.
  • Harrison OJ, Foley J, Bolognese BJ, et al. Airway infiltration of CD4+ CCR6+ Th17 type cells associated with chronic cigarette smoke induced airspace enlargement. Immunol Lett. 2008;121(1):13–21.
  • Solleiro-Villavicencio H, Quintana-Carrillo R, Falfán-Valencia R, et al. Chronic obstructive pulmonary disease induced by exposure to biomass smoke is associated with a Th2 cytokine production profile. Clin Immunol. 2015;161(2):150–155.
  • Xu W-H, Hu X-L, Liu X-F, et al. Peripheral Tc17 and Tc17/Interferon-γ cells are increased and associated with lung function in patients with chronic obstructive pulmonary disease. Chin Med J. 2016;129(8):909.
  • Montalbano AM, Riccobono L, Siena L, et al. Cigarette smoke affects IL-17A, IL-17F and IL-17 receptor expression in the lung tissue: ex vivo and in vitro studies. Cytokine. 2015;76(2):391–402.
  • Barcelo B, Pons J, Ferrer J, et al. Phenotypic characterisation of T-lymphocytes in COPD: abnormal CD4+ CD25+ regulatory T-lymphocyte response to tobacco smoking. Eur Respir J. 2008;31(3):555–562.
  • Zhou H, Hua W, Jin Y, et al. Tc17 cells are associated with cigarette smoke‐induced lung inflammation and emphysema. Respirology. 2015;20(3):426–433.
  • Profita M, Albano GD, Riccobono L, et al. Increased levels of Th17 cells are associated with non-neuronal acetylcholine in COPD patients. Immunobiology. 2014;219(5):392–401.
  • Li X-N, Pan X, Qiu D. Imbalances of Th17 and Treg cells and their respective cytokines in COPD patients by disease stage. Int J Clin Exp Med. 2014;7(12):5324.
  • Chang Y, Al-Alwan L, Alshakfa S, et al. Upregulation of IL-17A/F from human lung tissue explants with cigarette smoke exposure: implications for COPD. Respir Res. 2014;15(1):1.
  • Cao Y, Rathmell JC, Macintyre AN. Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells. PloS One. 2014;9(8):e104104. 10.1371/journal.pone.0104104 PubMed PMID: 25090630; PubMed Central PMCID: PMCPmc4121309. eng.
  • Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5(11):844–852.
  • MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. Annu Rev Immunol. 2013;31:259.
  • Gerriets VA, Kishton RJ, Nichols AG, et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Invest. 2015;125(1):194–207.
  • Michalek RD, Gerriets VA, Jacobs SR, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186(6):3299–3303.
  • Dang EV, Barbi J, Yang H-Y, et al. Control of T H 17/Treg balance by hypoxia-inducible factor 1. Cell. 2011;146(5):772–784.
  • Shi LZ, Wang R, Huang G, et al. HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 2011;208(7):1367–1376.
  • Wang H, Flach H, Onizawa M, et al. Negative regulation of Hif1a expression and TH17 differentiation by hypoxia regulated miR-210. Nat Immunol. 2014;15(4):393.
  • Barbi J, Pardoll D, Pan F. Metabolic control of the Treg/Th17 axis. Immunol Rev. 2013;252(1):52–77.
  • Pearce EL. Metabolism in T cell activation and differentiation. Curr Opin Immunol. 2010;22(3):314–320.
  • Sutendra G, Michelakis ED. Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Front Oncol. 2013;3:38.
  • Gerriets VA, Rathmell JC. Metabolic pathways in T cell fate and function. Trends Immunol. 2012;33(4):168–173.
  • Boskabady M, Boskabady MH, Zabihi NA, et al. The effect of chemical warfare on respiratory symptoms, pulmonary function tests and their reversibility 23–25 years after exposure. Toxicol Ind Health. 2015;31(1):79–84.
  • Poursaleh Z, Harandi AA, Vahedi E, et al. Treatment for sulfur mustard lung injuries; new therapeutic approaches from acute to chronic phase. DARU J Pharm Sci. 2012;20(1):1.
  • Weinberger B, Malaviya R, Sunil VR, et al. Mustard vesicant-induced lung injury: advances in therapy. Toxicol Appl Pharmacol. 2016;305:1–11.
  • Ghanei M, Khalili ARH, Arab MJ, et al. Diagnostic and therapeutic value of short‐term corticosteroid therapy in exacerbation of mustard gas‐induced chronic bronchitis. Basic Clin Pharmacol Toxicol. 2005;97(5):302–305.
  • Weinberger B, Laskin JD, Sunil VR, et al. Sulfur mustard-induced pulmonary injury: therapeutic approaches to mitigating toxicity. Pulm Pharmacol Ther. 2011;24(1):92–99.
  • Gao X, Ray R, Xiao Y, et al. Macrolide antibiotics improve chemotactic and phagocytic capacity as well as reduce inflammation in sulfur mustard-exposed monocytes. Pulm Pharmacol Ther. 2010;23(2):97–106.
  • Gao X, Anderson DR, Brown AW, et al. Pathological studies on the protective effect of a macrolide antibiotic, roxithromycin, against sulfur mustard inhalation toxicity in a rat model. Toxicol Pathol. 2011;39(7):1056–1064.
  • Boskabady MH, Attaran D, Shaffei MN. Airway responses to salbutamol after exposure to chemical warfare. Respirology. 2008;13(2):288–293.
  • Wang P, Zhang Y, Chen J, et al. Analysis of different fates of DNA adducts in adipocytes post-sulfur mustard exposure in vitro and in vivo using a simultaneous UPLC-MS/MS quantification method. Chem Res Toxicol. 2015;28(6):1224–1233.
  • Anderson FMCDR, Byers CABSL, Smith WJ. Biochemical alterations in rat lung lavage fluid following acute sulfur mustard inhalation: II. Increases in proteolytic activity. Inhal Toxicol. 1997;9(1):53–61.
  • Ghanei M, Abolmaali K, Aslani J. Efficacy of concomitant administration of clarithromycin and acetylcysteine in bronchiolitis obliterans in seventeen sulfur mustard—exposed patients: an open-label study. Curr Ther Res. 2004;65(6):495–504.
  • Shohrati M, Aslani J, Eshraghi M, et al. Therapeutics effect of N-acetyl cysteine on mustard gas exposed patients: evaluating clinical aspect in patients with impaired pulmonary function test. Respir Med. 2008;102(3):443–448.
  • Ghanei M, Shohrati M, Harandi AA, et al. Inhaled corticosteroids and long-acting β2-agonists in treatment of patients with chronic bronchiolitis following exposure to sulfur mustard. Inhal Toxicol. 2007;19(10):889–894.
  • Panahi Y, Ghanei M, Aslani J, et al. The therapeutic effect of gamma interferon in chronic bronchiolitis due to mustard gas. Iran J Allergy, Asthma Immunol. 2005;4(2):83–90.
  • Ghanei M, Saburi A. Lower airway complications of sulfur mustard exposure. In: Balali-Mood M, Abdollahi M, editors. Basic and clinical toxicology of mustard compounds. Cham: Springer International Publishing; 2015. p. 171–212.
  • Alcorn JF, Crowe CR, Kolls JK. TH17 cells in asthma and COPD. Annu Rev Physiol. 2010;72:495–516.
  • Tan Z, Jiang R, Wang X, et al. RORγt+ IL-17+ neutrophils play a critical role in hepatic ischemia–reperfusion injury. J Mol Cell Biol. 2013. mjs065
  • Papp KA, Leonardi C, Menter A, et al. Brodalumab, an anti–interleukin-17–receptor antibody for psoriasis. New Engl J Med. 2012;366(13):1181–1189.
  • Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti–IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med. 2013;188(11):1294–1302.
  • Sandborn WJ, Feagan BG, Fedorak RN, et al. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology. 2008;135(4):1130–1141.
  • Kleinschnitz C, Niemczyk G, Rehberg-Weber K, et al. Interferon Beta-1a (AVONEX®) as a treatment option for untreated patients with multiple sclerosis (AXIOM): a prospective, observational study. Int J Mol Sci. 2015;16(7):15271–15286.
  • Baeten D, Baraliakos X, Braun J, et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382(9906):1705–1713.
  • Leonardi C, Matheson R, Zachariae C, et al. Anti–interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. New Engl J Med. 2012;366(13):1190–1199.
  • Papp K, Thaçi D, Reich K, et al. Tildrakizumab (MK20103222), an anti‐interleukin‐23p19 monoclonal antibody, improves psoriasis in a phase IIb randomized placebo‐controlled trial. Br J Dermatol. 2015;173(4):930–939.
  • Sofen H, Smith S, Matheson RT, et al. Guselkumab (an IL-23–specific mAb) demonstrates clinical and molecular response in patients with moderate-to-severe psoriasis. J Allergy Clin Immunol. 2014;133(4):1032–1040.
  • Köck K, Pan W, Gow J, et al. Preclinical development of AMG 139, a human antibody specifically targeting IL‐23. Br J Pharmacol. 2015;172(1):159–172.
  • Vanheusden K, Detalle L, Hemeryck A, et al. editors. Pre-clinical proof-of-concept of alx-0761, a nanobody® neutralizing both il-17a and f in a cynomolgus monkey collagen induced arthritis model. Arthritis and Rheumatism. Hoboken (NJ): Wiley-Blackwell; 2013.
  • Genovese MC, Durez P, Richards HB, et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis. 2013;72(6):863–869.
  • Patel DD, Lee DM, Kolbinger F, et al. Effect of IL-17A blockade with secukinumab in autoimmune diseases. Ann Rheum Dis. 2013 Apr; 72 Suppl 2:ii116-23. DOI:10.1136/annrheumdis-2012-202371
  • Pot C, Apetoh L, Awasthi A, et al. Induction of regulatory Tr1 cells and inhibition of T(H)17 cells by IL-27. Semin Immunol. 2011;23(6):438–445.
  • Solt LA, Kumar N, Nuhant P, et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature. 2011;472(7344):491–494.
  • Xu T, Wang X, Zhong B, et al. Ursolic acid suppresses interleukin-17 (IL-17) production by selectively antagonizing the function of RORγt protein. J Biol Chem. 2011;286(26):22707–22710.
  • Haylock-Jacobs S, Comerford I, Bunting M, et al. PI3Kδ drives the pathogenesis of experimental autoimmune encephalomyelitis by inhibiting effector T cell apoptosis and promoting Th17 differentiation. J Autoimmun. 2011;36(3–4):278–287.
  • Ho AW, Shen F, Conti HR, et al. IL-17RC is required for immune signaling via an extended SEF/IL-17R signaling domain in the cytoplasmic tail. J Immunol. 2010;185(2):1063–1070.
  • Aggarwal S, Gurney AL. IL-17: prototype member of an emerging cytokine family. J Leukoc Biol. 2002;71(1):1–8.
  • Wright JF, Guo Y, Quazi A, et al. Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J Biol Chem. 2007;282(18):13447–13455.
  • Ahmed G, Goss S, Jiang P, et al. FRI0156 pharmacokinetics of ABT-122, a dual TNF-and IL-17A-targeted DVD-IG™, after single dosing in healthy volunteers and multiple dosing in subjects with rheumatoid arthritis. Ann Rheum Dis. 2015;74(Suppl 2):479–479.
  • Ruzek M, Conlon D, Mansikka H, et al. editors. ABT-122, a Novel Dual Variable Domain (DVD)-Ig (TM), Targeting TNF and IL-17, inhibits peripheral blood mononuclear cell production of GM-CSF and decreases lymphocyte expression of CXCR4 in healthy subjects. Arthritis & rheumatology. Hoboken (NJ): Wiley-Blackwell; 2014.
  • Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol. 2009;129(6):1339–1350.
  • Gandhi M, Alwawi E, Gordon KB editors. Anti-p40 antibodies ustekinumab and briakinumab: blockade of interleukin-12 and interleukin-23 in the treatment of psoriasis. In: Seminars in cutaneous medicine and surgery. Frontline Medical Communications; 2010.
  • Xu X, Ye L, Araki K, et al. editors. mTOR, linking metabolism and immunity. Semin Immunol. 2012;24(6):429–435.
  • Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–732.
  • Lee K, Zhang H, Qian DZ, et al. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc Natl Acad Sci. 2009;106(42):17910–17915.
  • Kryczek I, Wu K, Zhao E, et al. IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol. 2011;186(7):4388–4395.
  • Fujita-Sato S, Ito S, Isobe T, et al. Structural basis of digoxin that antagonizes RORγt receptor activity and suppresses Th17 cell differentiation and interleukin (IL)-17 production. J Biol Chem. 2011;286(36):31409–31417.
  • Huh JR, Leung MW, Huang P, et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing ROR [ggr] t activity. Nature. 2011;472(7344):486–490.
  • Zhang H, Qian DZ, Tan YS, et al. Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. Proc Natl Acad Sci. 2008;105(50):19579–19586.
  • Yeo E-J, Chun Y-S, Cho Y-S, et al. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst. 2003;95(7):516–525.
  • Mabjeesh NJ, Escuin D, LaVallee TM, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell. 2003;3(4):363–375.
  • Giaccia A, Siim BG, Johnson RS. HIF-1 as a target for drug development. Nat Rev Drug Discovery. 2003;2(10):803.
  • Hudson CC, Liu M, Chiang GG, et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002;22(20):7004–7014.
  • Blancher C, Moore JW, Robertson N, et al. Effects of RAS and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1α, HIF-2α, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Res. 2001;61(19):7349–7355.
  • Mabjeesh NJ, Post DE, Willard MT, et al. Geldanamycin induces degradation of hypoxia-inducible factor 1α protein via the proteosome pathway in prostate cancer cells. Cancer Res. 2002;62(9):2478–2482.
  • Rapisarda A, Uranchimeg B, Scudiero DA, et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res. 2002;62(15):4316–4324.
  • Berra E, Pagès G, Pouysségur J. MAP kinases and hypoxia in the control of VEGF expression. Cancer Metastasis Rev. 2000;19(1):139–145.
  • Fritzsching E, Kunz P, Maurer B, et al. Regulatory T cells and tolerance induction. Clin Transplant. 2009;23(s21):10–14.
  • Ohkura N, Hamaguchi M, Sakaguchi S. FOXP3+ regulatory T cells: control of FOXP3 expression by pharmacological agents. Trends Pharmacol Sci. 2011;32(3):158–166.
  • Sakaguchi S, Miyara M, Costantino CM, et al. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490–500.
  • Gao W, Lu Y, El Essawy B, et al. Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen‐specific regulatory T cells. Am J Transplantation. 2007;7(7):1722–1732.
  • Noris M, Casiraghi F, Todeschini M, et al. Regulatory T cells and T cell depletion: role of immunosuppressive drugs. J Am Soc Nephrol. 2007;18(3):1007–1018.
  • Mao R, Xiao W, Liu H, et al. Systematic evaluation of 640 FDA drugs for their effect on CD4+ Foxp3+ regulatory T cells using a novel cell-based high throughput screening assay. Biochem Pharmacol. 2013;85(10):1513–1524.
  • Wee Y-M, Choi MY, Kang C-H, et al. The synergistic effect of Tautomycetin on Cyclosporine A-mediated immunosuppression in a rodent islet allograft model. Mol Med. 2010;16(7–8):298–306.
  • König M, Rharbaoui F, Aigner S, et al. Tregalizumab–a monoclonal antibody to target regulatory T cells. Front Immunol. 2016;7.
  • Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–238.
  • Volpe E, Servant N, Zollinger R, et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nat Immunol. 2008;9(6):650–657.
  • Pesce B, Soto L, Sabugo F, et al. Effect of interleukin‐6 receptor blockade on the balance between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clin Exp Immunol. 2013;171(3):237–242.
  • Byng-Maddick R, Ehrenstein MR. The impact of biological therapy on regulatory T cells in rheumatoid arthritis. Rheumatology. 2015;54(5):768–775.
  • Vogel I, Kasran A, Cremer J, et al. CD28/CTLA‐4/B7 costimulatory pathway blockade affects regulatory T‐cell function in autoimmunity. Eur J Immunol. 2015;45(6):1832–1841.
  • Grohmann U, Puccetti P. The coevolution of IDO1 and AhR in the emergence of regulatory T-cells in mammals. Front Immunol. 2015;6.
  • Helling B, König M, Dälken B, et al. A specific CD4 epitope bound by tregalizumab mediates activation of regulatory T cells by a unique signaling pathway. Immunol Cell Biol. 2015;93(4):396–405.
  • Rudnev A, Ragavan S, Trollmo C, et al. Selective activation of naturally occurring regulatory T cells (Tregs) by the monoclonal antibody (mAb) BT-061. Markers of clinical activity and early phase II results in patients with rheumatoid arthritis (RA). Arthritis Rheum. 2010;62(Suppl 10):1125.
  • Uherek C, Engling A, Daelken B, et al. The novel regulatory T cell (Treg) agonistic monoclonal antibody (mAb) tregalizumab (BT‑061): further characterization of mechanism of action, epitope binding, and clinical effects in patients with rheumatoid arthritis. IBC Life Sci. 2011.
  • Bhavani S, Yuan X, You R, et al. Loss of peripheral tolerance in emphysema. Phenotypes, exacerbations, and disease progression. Ann Am Thorac Soc. 2015;12(Supplement 2):S164–S168.
  • Schuijs MJ, Willart MA, Hammad H, et al. Cytokine targets in airway inflammation. Curr Opin Pharmacol. 2013;13(3):351–361.
  • Nembrini C, Marsland BJ, Kopf M. IL-17–producing T cells in lung immunity and inflammation. J Allergy Clin Immunol. 2009;123(5):986–994.
  • Chen Y, Thai P, Zhao Y-H, et al. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem. 2003;278(19):17036–17043.
  • Balali‐Mood M, Hefazi M. Comparison of early and late toxic effects of sulfur mustard in Iranian veterans. Basic Clin Pharmacol Toxicol. 2006;99(4):273–282.
  • Imani S, Panahi Y, Salimian J, et al. Epigenetic: a missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study. Iran J Basic Med Sci. 2015;18(8):723.
  • Kleinewietfeld M, Hafler DA editors. The plasticity of human Treg and Th17 cells and its role in autoimmunity. In: Seminars in immunology. Elsevier; 2013.
  • Xu C, Hesselbacher S, Tsai C-L, et al. Autoreactive T cells in human smokers is predictive of clinical outcome. Front Immunol. 2012;3:267.
  • Chames P, Van Regenmortel M, Weiss E, et al. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157(2):220–233.
  • Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments. Nat Biotechnol. 2009;27(4):331–337.
  • Martin F. Antibodies as leading tools to unlock the therapeutic potential in human disease. Immunol Rev. 2016;270(1):5–7.
  • Peri D. Next generation anti-CD20 monoclonal antibodies and their mechanisms of action against B-cell lymphomas. Iowa City (IA): Graduate College, The University of Iowa; 2012.
  • Zargar M, Araghizadeh H, Soroush MR, et al. Iranian casualties during the eight years of Iraq-Iran conflict. Rev Saude Publica. 2007;41(6):1065–1066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.