320
Views
2
CrossRef citations to date
0
Altmetric
Review

Interferon activation in primary Sjögren’s syndrome: recent insights and future perspective as novel treatment target

&
Pages 817-829 | Received 13 Jul 2018, Accepted 30 Aug 2018, Published online: 14 Sep 2018

References

  • Gabriel SE, Michaud K. Epidemiological studies in incidence, prevalence, mortality, and comorbidity of the rheumatic diseases. Arthritis Res Ther. 2009;11:1–16.
  • Fox RI, Howell FV, Bone RC, et al. Primary sjogren syndrome: clinical and immunopathologic features. Semin Arthritis Rheum. 1984;14:77–105.
  • Asmussen K, Andersen V, Bendixen G, et al. A new model for classification of disease manifestations in primary Sjögren’s syndrome: evaluation in a retrospective long-term study. J Intern Med. 1996;239:475–482.
  • Virus interference. I.. The interferon. Proc Royal Soc London Ser B Biol Sci. 1957;147:258–267.
  • Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004;202:8–32.
  • Eloranta M-L, Alm GV, Rönnblom L. Disease mechanisms in rheumatology—tools and pathways: plasmacytoid dendritic cells and their role in autoimmune rheumatic diseases. Arthritis Rheum. 2013;65:853–863.
  • Schroder K, Hertzog PJ, Ravasi T, et al. Interferon-γ: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75:163–189.
  • Kotenko SV, Gallagher G, Baurin VV, et al. IFN-[lambda]s mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4:69–77.
  • Sheppard P, Kindsvogel W, Xu W, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R, Nat Immunol. 2003;4:63–68.
  • Oishi A, Miyamoto K, Kashii S, et al. Abducens palsy and Sjögren’s syndrome induced by pegylated interferon therapy. Br J Ophthalmol. 2007;91:843–844.
  • Ojha JBI, Islam N, Cohen DM, et al. Xerostomia and lichenoid reaction in a hepatitis C patient treated with interferon-alpha: a case report. Quintessence Int. 2008;39:343–348.
  • Deshmukh Umesh S, Nandula Seshagiri R, Thimmalapura PR, et al. Activation of innate immune responses through Toll‐like receptor 3 causes a rapid loss of salivary gland function. J Oral Pathol Med. 2009;38:42–47.
  • Nandula SR, Dey P, Corbin Kathryn L, et al. Salivary gland hypofunction induced by activation of innate immunity is dependent on type I interferon signaling. J Oral Pathol Med. 2013;42:66–72.
  • Wildenberg ME, van Helden-Meeuwsen CG, van de Merwe JP, et al. Systemic increase in type I interferon activity in Sjögren’s syndrome: A putative role for plasmacytoid dendritic cells. Eur J Immunol. 2008;38:2024–2033.
  • Gottenberg J-E, Cagnard N, Lucchesi C, et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren’s syndrome. Proc Natl Acad Sci U S A. 2006;103:2770–2775.
  • Hjelmervik TOR, Petersen K, Jonassen I, et al. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren’s syndrome patients from healthy control subjects. Arthritis Rheum. 2005;52:1534–1544.
  • Emamian ES, Leon JM, Lessard CJ, et al. Peripheral blood gene expression profiling in Sjogren’s syndrome. Genes Immun. 2009;10:285–296.
  • Imgenberg-Kreuz J, Sandling JK, Almlöf JC, et al. Genome-wide DNA methylation analysis in multiple tissues in primary Sjögren’s syndrome reveals regulatory effects at interferon-induced genes. Ann Rheum Dis. 2016;75:2029–2036.
  • Brkic Z, Maria NI, van Helden-Meeuwsen CG, et al. Prevalence of interferon type I signature in CD14 monocytes of patients with Sjögren’s syndrome and association with disease activity and BAFF gene expression. Ann Rheum Dis. 2013;72:728–735.
  • Hall JC, Casciola-Rosen L, Berger AE, et al. Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. Proc Natl Acad Sci. 2012;109:17609–17614.
  • Hall JC, Baer AN, Shah AA, et al. Molecular subsetting of interferon pathways in Sjögren’s syndrome. Arthritis Rheumatol. 2015;67:2437–2446.
  • Chiche L, Jourde-Chiche N, Whalen E, et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis rheumatol (Hoboken, N J). 2014;66:1583–1595.
  • Bodewes ILA, Al-Ali S, van Helden-Meeuwsen CG, et al. Systemic interferon type I and type II signatures in primary Sjögren’s syndrome reveal differences in biological disease activity. Rheumatology. 2018;57:921–930.
  • Nezos A, Gravani F, Tassidou A, et al. Type I and II interferon signatures in Sjogren’s syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjogren’s related lymphomagenesis. J Autoimmun. 2015;63:47–58.
  • El-Sherbiny YM, Psarras A, Yusof MYM, et al. A novel two-score system for interferon status segregates autoimmune diseases and correlates with clinical features. Sci Rep. 2018;8:5793.
  • Md Yusof MY, Psarras A, El-Sherbiny YM, et al. Prediction of autoimmune connective tissue disease in an at-risk cohort: prognostic value of a novel two-score system for interferon status. Ann Rheum Dis. 2018. doi: 10.1136/annrheumdis-2018-213386
  • Apostolou E, Kapsogeorgou EK, Konsta OD, et al. Expression of type III interferons (IFNλs) and their receptor in Sjögren’s syndrome. Clin Exp Immunol. 2016;186:304–312.
  • Båve U, Nordmark G, Lövgren T, et al. Activation of the type I interferon system in primary Sjögren’s syndrome: A possible etiopathogenic mechanism. Arthritis Rheum. 2005;52:1185–1195.
  • Maria NI, Steenwijk EC, Ijpma AS, et al. Contrasting expression pattern of RNA-sensing receptors TLR7, RIG-I and MDA5 in interferon-positive and interferon-negative patients with primary Sjögren’s syndrome. Ann Rheum Dis. 2016;76:721–730.
  • Lövgren T, Eloranta M-L, Kastner B, et al. Induction of interferon-α by immune complexes or liposomes containing systemic lupus erythematosus autoantigen– and Sjögren’s syndrome autoantigen–associated RNA. Arthritis Rheum. 2006;54:1917–1927.
  • Båve U, Alm GV, Rönnblom L. The Combination of Apoptotic U937 Cells and Lupus IgG Is a Potent IFN-α Inducer. J Immunol. 2000;165:3519–3526.
  • Means TK, Latz E, Hayashi F, et al. Human lupus autoantibody–DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest. 2005;115:407–417.
  • Mavragani CP, Sagalovskiy I, Guo Q, et al. Expression of long interspersed nuclear element 1 retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheumatol. 2016;68:2686–2696.
  • Ainola M, Porola P, Takakubo Y, et al. Activation of plasmacytoid dendritic cells by apoptotic particles – mechanism for the loss of immunological tolerance in Sjögren’s syndrome. Clin Exp Immunol. 2018;191:301–310.
  • Zhao K, Du J, Peng Y, et al. LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways. J Autoimmun. 2018;90:105–115.
  • Lee KH, Kronbichler A, Park DD-Y, et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun Rev. 2017;16:1160–1173.
  • Lande R, Ganguly D, Facchinetti V, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-dna–peptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011;3:73ra19–73ra19.
  • Meng H, Yalavarthi S, Kanthi Y, et al. In vivo role of neutrophil extracellular traps in antiphospholipid antibody–mediated venous thrombosis. Arthritis Rheumatol. 2017;69:655–667.
  • Sur Chowdhury C, Giaglis S, Walker UA, et al. Enhanced neutrophil extracellular trap generation in rheumatoid arthritis: analysis of underlying signal transduction pathways and potential diagnostic utility. Arthritis Res Ther. 2014;16:R122.
  • Garcia-Romo GS, Caielli S, Vega B, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011;3:73ra20–73ra20.
  • Tan L, Wu H, Liu Y, et al. Recent advances of exosomes in immune modulation and autoimmune diseases. Autoimmunity. 2016;49:357–365.
  • Lee JY, Park JK, Lee EY, et al. Circulating exosomes from patients with systemic lupus erythematosus induce an proinflammatory immune response. Arthritis Res Ther. 2016;18:264.
  • Salvi V, Gianello V, Busatto S, et al. Exosome-delivered microRNAs promote IFN-α secretion by human plasmacytoid DCs via TLR7. JCI Insight. 2018;3:e98204.
  • Paludan SR, Bowie AG. Immune sensing of DNA. Immunity. 2013;38:870–880.
  • Papinska J, Bagavant H, Gmyrek GB, et al. Activation of Stimulator of Interferon Genes (STING) and Sjögren Syndrome. J Dent Res. 2018;97:893–900.
  • Alunno A, Caneparo V, Carubbi F, et al. Interferon gamma-inducible protein 16 (IFI16) and anti-IFI16 antibodies in primary Sjögren’s syndrome: findings in serum and minor salivary glands. Reumatismo. 2016 ;67:6.
  • Baer Alan N, Petri M, Sohn J, et al. Association of antibodies to interferon-inducible protein-16 with markers of more severe disease in primary Sjögren’s syndrome. Arthritis Care Res. 2016;68:254–260.
  • Wahadat MJ, Bodewes ILA, Maria NI, et al. Type I IFN signature in childhood-onset systemic lupus erythematosus: a conspiracy of DNA- and RNA-sensing receptors? Arthritis Res Ther. 2018;20:4.
  • Argyrios NT, Roberto B, Bruce B, et al. Type I interferons (α/β) in immunity and autoimmunity. Annu Rev Immunol. 2005;23:307–335.
  • Kirou KA, Mavragani CP, Crow MK. Activation of type I interferon in systemic lupus erythematosus. Expert Rev Clin Immunol. 2007;3:579–588.
  • Ittah M, Miceli-Richard C, Eric Gottenberg J, et al. B cell-activating factor of the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in salivary gland epithelial cells in primary Sjögren’s syndrome. Arthritis Res Ther. 2006;8:R51.
  • Kiefer K, Oropallo Michael A, Cancro Michael P, et al. Role of type I interferons in the activation of autoreactive B cells. Immunol Cell Biol. 2012;90:498–504.
  • Manoussakis MN, Kapsogeorgou EK. The role of intrinsic epithelial activation in the pathogenesis of Sjögren’s syndrome. J Autoimmun. 2010;35:219–224.
  • Mackay F, Woodcock SA, Lawton P, et al. Mice transgenic for baff develop lymphocytic disorders along with autoimmune manifestations. J Exp Med. 1999;190:1697–1710.
  • Groom J, Kalled SL, Cutler AH, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome. J Clin Invest. 2002;109:59–68.
  • Daridon C, Devauchelle V, Hutin P, et al. Aberrant expression of BAFF by B lymphocytes infiltrating the salivary glands of patients with primary Sjögren’s syndrome. Arthritis Rheum. 2007;56:1134–1144.
  • Lavie F, Miceli‐Richard C, Ittah M, et al. B‐cell activating factor of the tumour necrosis factor family expression in blood monocytes and T cells from patients with primary Sjögren’s syndrome. Scand J Immunol. 2008;67:185–192.
  • Mariette X, Roux S, Zhang J, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren’s syndrome. Ann Rheum Dis. 2003;62:168–171.
  • Lavie F, Miceli‐Richard C, Quillard J, et al. Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with Sjögren’s syndrome. J Pathol. 2004;202:496–502.
  • Jego G, Palucka AK, Blanck J-P, et al. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity. 2003;19:225–234.
  • Jonsson R, Theander E, Sjöström B, et al. Autoantibodies present before symptom onset in primary Sjögren syndrome. JAMA. 2013;310:1854–1855.
  • Theander E, Jonsson R, Sjöström B, et al. Prediction of Sjögren’s syndrome years before diagnosis and identification of patients with early onset and severe disease course by autoantibody profiling. Arthritis Rheumatol. 2015;67:2427–2436.
  • Risselada AP, Looije MF, Kruize AA, et al. The role of ectopic germinal centers in the immunopathology of primary Sjögren’s syndrome: a systematic review. Semin Arthritis Rheum. 2013;42:368–376.
  • Skopouli FN, Dafni U, Ioannidis JPA, et al. Clinical evolution, and morbidity and mortalityof primary Sjögren’s syndrome. Semin Arthritis Rheum. 2000;29:296–304.
  • Ioannidis JPA, Vassiliou VA, Moutsopoulos HM. Long-term risk of mortality and lymphoproliferative disease and predictive classification of primary Sjögren’s syndrome. Arthritis Rheum. 2002;46:741–747.
  • Theander E, Manthorpe R, Jacobsson LTH. Mortality and causes of death in primary Sjögren’s syndrome: A prospective cohort study. Arthritis Rheum. 2004;50:1262–1269.
  • Brito-Zerón P, Ramos-Casals M, Bove A, et al. Predicting adverse outcomes in primary Sjögren’s syndrome: identification of prognostic factors. Rheumatology. 2007;46:1359–1362.
  • Sène D, Ismael S, Forien M, et al. Ectopic germinal centre‐like structures in minor salivary gland biopsy predict lymphoma occurrence in patients with primary Sjögren syndrome. Arthritis Rheumatol. 2018;70:1481–1488.
  • Manoussakis Menelaos N, Dimitriou Ioannis D, Kapsogeorgou Efstathia K, et al. Expression of B7 costimulatory molecules by salivary gland epithelial cells in patients with Sjögren’s syndrome. Arthritis Rheum. 1999;42:229–239.
  • Ogawa N, Ping L, Zhenjun L, et al. Involvement of the interferon‐γ–induced T cell–attracting chemokines, interferon‐γ–inducible 10‐kd protein (CXCL10) and monokine induced by interferon‐γ (CXCL9), in the salivary gland lesions of patients with Sjögren’s syndrome. Arthritis Rheum. 2002;46:2730–2741.
  • Abu-Helu RF, Dimitriou ID, Kapsogeorgou EK, et al. Induction of salivary gland epithelial cell injury in sjogren’s syndrome: in vitro assessment of t cell-derived cytokines and fas protein expression. J Autoimmun. 2001;17:141–153.
  • Kulkarni K, Selesniemi K, Brown TL. Interferon-gamma sensitizes the human salivary gland cell line, HSG, to tumor necrosis factor-alpha induced activation of dual apoptotic pathways. Apoptosis. 2006;11:2205.
  • Nguyen Cuong Q, Hu Min H, Li Y, et al. Salivary gland tissue expression of interleukin‐23 and interleukin‐17 in Sjögren’s syndrome: findings in humans and mice. Arthritis Rheum. 2008;58:734–743.
  • Sakai A, Sugawara Y, Kuroishi T, et al. Identification of IL-18 and th17 cells in salivary glands of patients with Sjögren’s syndrome, and amplification of IL-17-mediated secretion of inflammatory cytokines from salivary gland cells by IL-18. J Immunol. 2008;181:2898–2906.
  • Nguyen CQ, Yin H, Lee BH, et al. Pathogenic effect of interleukin-17A in induction of Sjögren’s syndrome-like disease using adenovirus-mediated gene transfer. Arthritis Res Ther. 2010;12:R220–R.
  • Verstappen GM, Corneth OBJ, Bootsma H, et al. Th17 cells in primary Sjögren’s syndrome: pathogenicity and plasticity. J Autoimmun. 2018;87:16–25.
  • Szabo K, Papp G, Barath S, et al. Follicular helper T cells may play an important role in the severity of primary Sjögren’s syndrome. Clin Immunol. 2013;147:95–104.
  • Gong Y-Z, Nititham J, Taylor K, et al. Differentiation of follicular helper T cells by salivary gland epithelial cells in primary Sjögren’s syndrome. J Autoimmun. 2014;51:57–66.
  • Izumi Y, Ida H, Huang M, et al. Characterization of peripheral natural killer cells in primary Sjögren’s syndrome: impaired NK cell activity and low NK cell number. J Lab Clin Med. 2006;147:242–249.
  • Rusakiewicz S, Nocturne G, Lazure T, et al. NCR3/NKp30 contributes to pathogenesis in primary Sjögren’s syndrome. Sci Transl Med. 2013;5:195ra96–ra96.
  • Christodoulou MI, Kapsogeorgou EK, Moutsopoulos HM. Characteristics of the minor salivary gland infiltrates in Sjögren’s syndrome. J Autoimmun. 2010;34:400–407.
  • van der Vliet HJJ, von Blomberg BME, Nishi N, et al. Circulating Vα24+ Vβ11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin Immunol. 2001;100:144–148.
  • Chen J, Wu M, Wang J, et al. Immunoregulation of NKT cells in systemic lupus erythematosus. J Immunol Res. 2015;2015:8.
  • Christodoulou MI, Kapsogeorgou EK, Moutsopoulos NM, et al. Foxp3+ T-regulatory cells in Sjögren’s syndrome: correlation with the grade of the autoimmune lesion and certain adverse prognostic factors. Am J Pathol. 2008;173:1389–1396.
  • Li X, Li X, Qian L, et al. T regulatory cells are markedly diminished in diseased salivary glands of patients with primary Sjögren’s syndrome. J Rheumatol. 2007;34:2438–2445.
  • Alunno A, Petrillo MG, Nocentini G, et al. Characterization of a new regulatory CD4+ T cell subset in primary Sjögren’s syndrome. Rheumatology. 2013;52:1387–1396.
  • Sarigul M, Yazisiz V, Başsorgun CI, et al. The numbers of Foxp3 + Treg cells are positively correlated with higher grade of infiltration at the salivary glands in primary Sjögren’s syndrome. Lupus. 2009;19:138–145.
  • Gottenberg J-E, Lavie F, Abbed K, et al. CD4 CD25high regulatory T cells are not impaired in patients with primary Sjögren’s syndrome. J Autoimmun. 2005;24:235–242.
  • Legány N, Berta L, Kovács L, et al. The role of B7 family costimulatory molecules and indoleamine 2,3-dioxygenase in primary Sjögren’s syndrome and systemic sclerosis. Immunol Res. 2017;65:622–629.
  • Furuzawa-Carballeda J, Hernández-Molina G, Lima G, et al. Peripheral regulatory cells immunophenotyping in primary Sjögren’s syndrome: a cross-sectional study. Arthritis Res Ther. 2013;15:R68.
  • Maria NI, van Helden-Meeuwsen CG, Brkic Z, et al. Increased tregs associated with elevated indoleamine-2,3-dioxygenase activity and an imbalanced kynurenine pathway in IFNpositive primary Sjögren’s syndrome. Arthritis Rheumatol. 2016;68:1688–1699.
  • Mellor AL, Lemos H, Huang L. Indoleamine 2,3-dioxygenase and tolerance: where are we now?. Front Immunol. 2017;8:1360.
  • Maria NI, van Helden-Meeuwsen CG, Brkic Z, et al. Association of increased treg cell levels with elevated indoleamine 2,3-dioxygenase activity and an imbalanced kynurenine pathway in interferon-positive primary Sjögren’s syndrome. Arthritis Rheumatol. 2016;68:1688–1699.
  • Pertovaara M, Raitala A, Uusitalo H, et al. Mechanisms dependent on tryptophan catabolism regulate immune responses in primary Sjögren’s syndrome. Clin Exp Immunol. 2005;142:155–161.
  • Grohmann U, Orabona C, Fallarino F, et al. CTLA-4–ig regulates tryptophan catabolism in vivo. Nat Immunol. 2002;3:1097.
  • Downie‐Doyle S, Bayat N, Rischmueller M, et al. Influence of CTLA4 haplotypes on susceptibility and some extraglandular manifestations in primary Sjögren’s syndrome. Arthritis Rheum. 2006;54:2434–2440.
  • Zhu J-M, Li B-K, Chen G-M, et al. CTLA-4-1722T/C polymorphism and systemic lupus erythematosus susceptibility: a meta-analysis involving ten separate studies. Immunol Invest. 2013;42:91–105.
  • Romo-Tena J, Gómez-Martín D, Alcocer-Varela J. CTLA-4 and autoimmunity: new insights into the dual regulator of tolerance. Autoimmun Rev. 2013;12:1171–1176.
  • Gottenberg J-E, Loiseau P, Azarian M, et al. CTLA-4+49A/G and CT60 gene polymorphisms in primary Sjögren syndrome. Arthritis Res Ther. 2007;9:R24.
  • Terawaki S, Chikuma S, Shibayama S, et al. IFN-α directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J Immunol. 2011;186:2772–2779.
  • Green DS, Young HA, Valencia JC. Current prospects of type II interferon γ signaling and autoimmunity. J Biol Chem. 2017;292:13925–13933.
  • Zhou J, Jin J-O, Du J, et al. Blockade of PD-L1 accelerates the development of Sjögren’s syndrome in non-obese diabetic mice (HUM3P.256). J Immunol. 2015;194(121):16.
  • Zhou J, Jin J-O, Kawai T, et al. Endogenous programmed death ligand-1 restrains the development and onset of Sjӧgren’s syndrome in non-obese diabetic mice. Sci Rep. 2016;6:39105.
  • Shi H, Ye J, Teng J, et al. Elevated serum autoantibodies against co-inhibitory PD-1 facilitate T cell proliferation and correlate with disease activity in new-onset systemic lupus erythematosus patients. Arthritis Res Ther. 2017;19:52.
  • Danlos F-X, Voisin A-L, Dyevre V, et al. Safety and efficacy of anti-programmed death 1 antibodies in patients with cancer and pre-existing autoimmune or inflammatory disease. Eur J Cancer. 2018;91:21–29.
  • Calabrese C, Kirchner E, Kontzias A, et al. Rheumatic immune-related adverse events of checkpoint therapy for cancer: case series of a new nosological entity. RMD Open. 2017;3:e000412.
  • Kalunian KC, Merrill JT, Maciuca R, et al. II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis. 2016;75:196–202.
  • McBride Jacqueline M, Jiang J, Abbas Alexander R, et al. Safety and pharmacodynamics of rontalizumab in patients with systemic lupus erythematosus: results of a phase I, placebo-controlled, double-blind, dose-escalation study. Arthritis Rheum. 2012;64:3666–3676.
  • Petri M, Wallace DJ, Spindler A, et al. Sifalimumab, a human anti–interferon-α monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum. 2013;65:1011–1021.
  • Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75:1906–1916.
  • Ducreux J, Houssiau FA, Vandepapelière P, et al. Interferon α kinoid induces neutralizing anti-interferon α antibodies that decrease the expression of interferon-induced and B cell activation associated transcripts: analysis of extended follow-up data from the interferon α kinoid phase I/II study. Rheumatology. 2016;55:1901–1905.
  • Furie R, Khamashta M, Merrill JT, et al. Anifrolumab, an anti–interferon‐α receptor monoclonal antibody, in moderate‐to‐severe systemic lupus erythematosus. Arthritis Rheumatol (Hoboken, N j). 2017;69:376–386.
  • Riggs JM, Hanna RN, Rajan B, et al. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci Med. 2018;5:e000261.
  • Boedigheimer MJ, Martin DA, Amoura Z, et al. Safety, pharmacokinetics and pharmacodynamics of AMG 811, an anti-interferon-γ monoclonal antibody, in SLE subjects without or with lupus nephritis. Lupus Sci Med. 2017;4:e000226.
  • Simon S, Galina L, Yakov S, et al. Comparative Clinical Trial of Antibodies to Interferon-Gamma (IFN-¦Ã) and Tumor Necrosis Factor-Alpha (TNF-¦Á) in the treatment of rheumatoid arthritis. J Immune Therapies Vaccines Antimicrob. 2015;4:8.
  • Valérie DP, Yvon P, Johanne M, et al. Improvement of Sjögren’s syndrome after two infusions of rituximab (anti‐CD20). Arthritis Care Res. 2007;57:310–317.
  • Pijpe J, Imhoff G, Spijkervet FKL, et al. Rituximab treatment in patients with primary Sjögren’s syndrome: an open‐label phase II study. Arthritis Rheum. 2005;52:2740–2750.
  • Mekinian A, Ravaud P, Hatron PY, et al. Efficacy of rituximab in primary Sjögren’s syndrome with peripheral nervous system involvement: results from the AIR registry. Ann Rheum Dis. 2012;71:84–87.
  • Dass S, Bowman SJ, Vital EM, et al. Reduction of fatigue in Sjögren syndrome with rituximab: results of a randomised, double-blind, placebo-controlled pilot study. Ann Rheum Dis. 2008;67:1541–1544.
  • Meijer JM, Meiners PM, Vissink A, et al. Effectiveness of rituximab treatment in primary Sjögren’s syndrome: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2010;62:960–968.
  • Devauchelle-Pensec V, Mariette X, Jousse-Joulin S, et al. Treatment of primary sjögren syndrome with rituximab: A randomized trial. Ann Intern Med. 2014;160:233–242.
  • Simon JB, Colin CE, John LOD, et al. Randomized controlled trial of rituximab and cost‐effectiveness analysis in treating fatigue and oral dryness in primary Sjögren’s syndrome. Arthritis Rheumatol. 2017;69:1440–1450.
  • Raterman HG, Vosslamber S, de Ridder S, et al. The interferon type I signature towards prediction of non-response to rituximab in rheumatoid arthritis patients. Arthritis Res Ther. 2012;14:R95–R.
  • Thurlings Rogier M, Boumans M, Tekstra J, et al. Relationship between the type I interferon signature and the response to rituximab in rheumatoid arthritis patients. Arthritis Rheum. 2010;62:3607–3614.
  • Vosslamber S, Raterman HG, van der Pouw Kraan TCTM, et al. Pharmacological induction of interferon type I activity following treatment with rituximab determines clinical response in rheumatoid arthritis. Ann Rheum Dis. 2011;70:1153–1159.
  • Giltiay NV, Shu GL, Shock A, et al. Targeting CD22 with the monoclonal antibody epratuzumab modulates human B-cell maturation and cytokine production in response to Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) signaling. Arthritis Res Ther. 2017;19:91.
  • Steinfeld SD, Tant L, Burmester GR, et al. Epratuzumab (humanised anti-CD22 antibody) in primary Sjögren’s syndrome: an open-label phase I/II study. Arthritis Res Ther. 2006;8:R129.
  • Gottenberg JE, Dörner T, Bootsma H, et al. Efficacy of epratuzumab, an anti‐CD22 monoclonal igg antibody, in systemic lupus erythematosus patients with associated sjögren’s syndrome: post hoc analyses from the EMBODY trials. Arthritis Rheumatol (Hoboken, N j). 2018;70:763–773.
  • Mariette X, Seror R, Quartuccio L, et al. Efficacy and safety of belimumab in primary Sjögren’s syndrome: results of the BELISS open-label phase II study. Ann Rheum Dis. 2015;74:526–531.
  • De Vita S, Quartuccio L, Seror R, et al. Efficacy and safety of belimumab given for 12 months in primary Sjögren’s syndrome: the BELISS open-label phase II study. Rheumatology. 2015;54:2249–2256.
  • Seror R, Nocturne G, Lazure T, et al. Low numbers of blood and salivary natural killer cells are associated with a better response to belimumab in primary Sjögren’s syndrome: results of the BELISS study. Arthritis Res Ther. 2015;17:241.
  • Quartuccio L, Mavragani CP, Nezos A, et al. THU0298 type I interferon predicts biological effect of belimumab on rheumatoid factor positive B-cells in Sjögren’s syndrome: results from the beliss trial. Ann Rheum Dis. 2016;75:294–295.
  • Lai Kwan Lam Q, King Hung Ko O, Zheng B-J, et al. Local BAFF gene silencing suppresses Th17-cell generation and ameliorates autoimmune arthritis. Proc Natl Acad Sci. 2008;105:14993–14998.
  • Dörner T, Posch M, Wagner F, et al. THU0313 double-blind, randomized study of VAY736 single dose treatment in patients with Primary Sjögren’s Syndrome (PSS). Ann Rheum Dis. 2016;75:300–301.
  • Verstappen Gwenny M, Meiners Petra M, Corneth Odilia BJ, et al. Attenuation of follicular helper T cell-dependent B cell hyperactivity by abatacept treatment in primary Sjögren’s syndrome. Arthritis Rheumatol. 2017;69:1850–1861.
  • Adler S, Körner M, Förger F, et al. Evaluation of histologic, serologic, and clinical changes in response to abatacept treatment of primary SJögren’s syndrome: a pilot study. Arthritis Care Res. 2013;65:1862–1868.
  • Meiners PM, Vissink A, Kroese FGM, et al. Abatacept treatment reduces disease activity in early primary Sjögren’s syndrome (open-label proof of concept ASAP study). Ann Rheum Dis. 2014;73:1393–1396.
  • van der Heijden EHM, Kruize AA, Radstake TRDJ, et al. Optimizing conventional DMARD therapy for Sjögren’s syndrome. Autoimmun Rev. 2018;17:480–492.
  • Kužnik A, Benčina M, Švajger U, et al. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol. 2011;186:4794–4804.
  • Wallace DJ, Gudsoorkar VS, Weisman MH, et al. New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nat Rev Rheumatol. 2012;8:522.
  • Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, et al. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2010;69:20–28.
  • Suarez-Almazor ME, Belseck E, Shea B, et al. Antimalarials for treating rheumatoid arthritis. Cochrane Database Syst Rev. 2000;4:CD000959.
  • I Fox R, Dixon R, Guarrasi V, et al. Treatment of primary Sjogren’s syndrome with hydroxychloroqnine: A retrospective, open-label study Lupus. 1996;5:S31–36.
  • Tishler M, Yaron I, Shirazi I, et al. Hydroxychloroquine treatment for primary Sjögren’s syndrome: its effect on salivary and serum inflammatory markers. Ann Rheum Dis. 1999;58:253–256.
  • Mumcu G, Biçakçigil M, Yilmaz N, et al. Salivary and Serum B-cell Activating Factor (BAFF) levels after hydroxychloroquine treatment in primary Sjogren’s syndrome. Oral Health Prev Dent. 2013;11:229–234.
  • Kruize AA, Hené RJ, Kallenberg CG, et al. Hydroxychloroquine treatment for primary Sjögren’s syndrome: a two year double blind crossover trial. Ann Rheum Dis. 1993;52:360–364.
  • Çankaya H, Alpöz E, Karabulut G, et al. Effects of hydroxychloroquine on salivary flow rates and oral complaints of Sjögren patients: a prospective sample study. Oral Surg Oral Medi Oral Pathol Oral Radiol Endodontol. 2010;110:62–67.
  • Gottenberg J, Ravaud P, Puéchal X, et al. Effects of hydroxychloroquine on symptomatic improvement in primary sjögren syndrome: the joquer randomized clinical trial. JAMA. 2014;312:249–258.
  • Yoon CH, Lee HJ, Lee EY, et al. Effect of hydroxychloroquine treatment on dry eyes in subjects with primary Sjögren’s syndrome: a double-blind randomized control study. J Korean Med Sci. 2016;31:1127–1135.
  • Demarchi J, Papasidero S, Medina MA, et al. Primary Sjögren’s syndrome: extraglandular manifestations and hydroxychloroquine therapy. Clin Rheumatol. 2017;36:2455–2460.
  • Bombardieri M, Baldini C, Alevizos I, et al. Highlights of the 14th International Symposium in Sjögren's Syndrome. Clin Exp Rheumatol. 2018 May-Jun;36 Suppl 112(3):3–13.
  • Muskardin TLW, Niewold TB. Type I interferon in rheumatic diseases. Nat Rev Rheumatol. 2018;14:214.
  • Liew SH, Nichols KK, Klamerus KJ, et al. Tofacitinib (CP-690,550), a janus kinase inhibitor for dry eye disease: results from a phase 1/2 Trial. Ophthalmology. 2012;119:1328–1335.
  • Lee J, Lee J, Kwok S-K, et al. Janus kinase 1 inhibition suppresses interferon-induced B cell activating factor production in human salivary gland: potential therapeutic strategy for primary Sjögren’s syndrome. Arthritis Rheumatol.
  • Hasan M, Dobbs N, Khan S, et al. Cutting edge: inhibiting TBK1 by compound II ameliorates autoimmune disease in mice. J Immunol. 2015;195:4573–4577.
  • Bodewes ILA, Huijser E, van Helden-Meeuwsen CG, et al. TBK1: A key regulator and potential treatment target for interferon positive Sjögren’s syndrome, systemic lupus erythematosus and systemic sclerosis. J Autoimmun. 2018;91:97–102.
  • Hasan M, Yan N. Therapeutic potential of targeting TBK1 in autoimmune diseases and interferonopathies. Pharmacol Res. 2016;111:336–342.
  • Reilly SM, Chiang S-H, Decker SJ, et al. An inhibitor of the protein kinases TBK1 and IKK-ɛ improves obesity-related metabolic dysfunctions in mice. Nat Med. 2013;19:313.
  • Yu T, Yang Y, Yin DQ, et al. TBK1 inhibitors: a review of patent literature (2011 – 2014). Expert Opin Ther Pat. 2015;25:1385–1396.
  • Frémond M-L, Uggenti C, Van Eyck L, et al. Brief Report: blockade of TANK-Binding Kinase 1/IKKɛ Inhibits Mutant Stimulator of Interferon Genes (STING)–mediated inflammatory responses in human peripheral blood mononuclear cells. Arthritis Rheumatol. 2017;69:1495–1501.
  • Sharma S, Campbell AM, Chan J, et al. Suppression of systemic autoimmunity by the innate immune adaptor STING. Proc Natl Acad Sci. 2015;112:E710–E7.
  • Sharma S, Campbell AM, Chan J, et al. II-13 Suppression of systemic autoimmunity by the innate immune adaptor sting. Lupus Sci Med. 2016;3:A21–A2.
  • Wu Y-W, Tang W, Zuo JP. Toll-like receptors: potential targets for lupus treatment. Acta Pharmacol Sin. 2015;36:1395–1407.
  • Guiducci C, Ghirelli C, Marloie-Provost M-A, et al. PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation. J Exp Med. 2008;205:315–322.
  • Bodewes ILA, Al-Ali S, van Helden-Meeuwsen CG, et al. Systemic interferon type I and type II signatures in primary Sjögren’s syndrome reveal differences in biological disease activity. Rheumatology. 2018;91:97–102.
  • Fisher BA, Jonsson R, Daniels T, et al. Standardisation of labial salivary gland histopathology in clinical trials in primary Sjögren’s syndrome. Ann Rheum Dis. 2017;76:1161–1168.
  • De Vita LQ S, Salvin S, Picco L, et al. Sequential therapy with belimumab followed by rituximab in Sjögren’s syndrome associated with B-cell lymphoproliferation and overexpession of BAFF: evidence for long-term efficacy. Clin Exp Rheumatol Online. 2014;32:490–494.
  • Kraaij T, Huizinga TWJ, Rabelink TJ, et al. Belimumab after rituximab as maintenance therapy in lupus nephritis. Rheumatology. 2014;53:2122–2124.
  • Kraaij T, Kamerling SWA, de Rooij ENM, et al. The NET-effect of combining rituximab with belimumab in severe systemic lupus erythematosus. J Autoimmun. 2018;91:45–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.