2,454
Views
12
CrossRef citations to date
0
Altmetric
Review

New challenges in integrated diagnosis by imaging and osteo-immunology in bone lesions

ORCID Icon, , &
Pages 289-301 | Received 14 Nov 2018, Accepted 18 Dec 2018, Published online: 02 Jan 2019

References

  • Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12:6243s–6249s.
  • Kriege M, Seynaeve C, Meijers-Heijboer H, et al. Distant disease-free interval, site of first relapse and post-relapse survival in BRCA1- and BRCA2-associated compared to sporadic breast cancer patients. Breast Cancer Res Treat. 2008;111:303–311.
  • Hess T, Egerer G, Kasper B, et al. Atypical manifestations of multiple myeloma: radiological appearance. Eur J Radiol. 2006;58:280–285.
  • Takayanagi H. Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol. 2009;5:667–676.
  • Schwarz EM, Ritchlin CT. Clinical development of anti-RANKL therapy. Arthritis Res Ther. 2007;9(Suppl 1):S7.
  • Nolan E, Savas P, Policheni AN, et al. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci Transl Med. 2017;9:eaal4922.
  • Yuan Z, Fromm A, Ahmed KA, et al. Radiotherapy rescue of a nivolumab-refractory immune response in a patient with PD -L1 negative metastatic squamous cell carcinoma of the lung. J Thorac Oncol. 2017;12:135–136.
  • Powles T, O’Donnell PH, Massard C, et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma. JAMA Oncol. 2017;3:e172411.
  • Burugu S, Dancsok AR, Nielsen TO, et al. Emerging targets in cancer immunotherapy. Semin Cancer Biol. 2018;52(Pt 2):39–52.
  • Lee J, Byun H, Madhurakkat Perikamana SK, et al. Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2018:e1801106. doi:10.1002/adhm.201801106. [Epub ahead of print].
  • Ralston SH, Schett G. Osteoimmunology. Calcif Tissue Int. 2018;102:501–502.
  • Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology. 2001;142:5050–5055.
  • Teitelbaum SL. Osteoclasts: what do they do and how do they do it? Am J Pathol. 2007;170:427–435.
  • Takayanagi H. New developments in osteoimmunology. Nat Rev Rheumatol. 2012;8:684–689.
  • Hon H, Rucker EB, Hennighausen L, et al. Bcl-xL is critical for dendritic cell survival in vivo. J Immunol. 2004;173:4425–4432.
  • Yun TJ, Tallquist MD, Aicher A, et al. Osteoprotegerin, a crucial regulator of bone metabolism, also regulates B cell development and function. J Immunol. 2001;166:1482–1491.
  • Milone F, Pivonello C, Cariati F, et al. Assessment and clinical implications of RANK/RANKL/OPG pathway as markers of bone tumour progression in patients with NET harboring bone metastases. Biomarkers. 2013;18:121–125.
  • Trouvin AP, Goeb V. Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: maintaining the balance to prevent bone loss. Clin Interv Aging. 2010;5:345–354.
  • Dougall WC, Glaccum M, Charrier K, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13:2412–2424.
  • Baud’huin M, Duplomb L, Ruiz Velasco C, et al. Key roles of the OPG–RANK–RANKL system in bone oncology. Expert Rev Anticancer Ther. 2007;7:221–232.
  • Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350:1655–1664.
  • Merz M, Komljenovic D, Semmler W, et al. Quantitative contrast-enhanced ultrasound for imaging antiangiogenic treatment response in experimental osteolytic breast cancer bone metastases. Invest Radiol. 2012;47:422–429.
  • Vetter M, Landin J, Szczerba BM, et al. Denosumab treatment is associated with the absence of circulating tumour cells in patients with breast cancer. Breast Cancer Res. 2018;20:141.
  • van der Heijden L, Dijkstra PDS, Blay JY, et al. Giant cell tumour of bone in the denosumab era. Eur J Cancer. 2017;77:75–83.
  • Wang J, Shiozawa Y, Wang J, et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem. 2008;283:4283–4294.
  • Roudier MP, Morrissey C, True LD, et al. Histopathological assessment of prostate cancer bone osteoblastic metastases. J Urol. 2008;180:1154–1160.
  • Park HJ, Kusnadi A, Lee EJ, et al. Tumour-infiltrating regulatory T cells delineated by upregulation of PD-1 and inhibitory receptors. Cell Immunol. 2012;278:76–83.
  • Raimondi G, Shufesky WJ, Tokita D, et al. Regulated compartmentalization of programmed cell death-1 discriminates CD4+CD25+ resting regulatory T cells from activated T cells. J Immunol. 2006;176:2808–2816.
  • Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.
  • Dong H, Strome SE, Salomao DR, et al. Tumour-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800.
  • Sznol M, Chen L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human. Clin Cancer Res. 2013;19:1021–1034.
  • Ghebeh H, Mohammed S, Al-Omair A, et al. The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia. 2006;8:190–198.
  • Thompson RH, Gillett MD, Cheville JC, et al. Costimulatory molecule B7-H1 in primary and metastatic clear cell renal cell carcinoma. Cancer. 2005;104:2084–2091.
  • Kang MJ, Kim KM, Bae JS, et al. Tumour infiltrating PD1-positive lymphocytes and FoxP3-positive regulatory T cells predict distant metastatic relapse and survival of clear cell renal cell carcinoma. Transl Oncol. 2013;6:282–289.
  • Kazandjian D, Suzman DL, Blumenthal G, et al. FDA approval summary: nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy. Oncologist. 2016;21:634–642.
  • Hwang S, Panicek DM. The evolution of musculoskeletal tumour imaging. Radiol Clin North Am. 2009;47:435–453.
  • Miwa S, Taki J, Yamamoto N, et al. A novel combined radiological method for evaluation of the response to chemotherapy for primary bone sarcoma. J Surg Oncol. 2012;106:273–279.
  • Noebauer-Huhmann IM, Weber MA, Lalam RK, et al. Soft tissue tumours in adults: ESSR-approved guidelines for diagnostic imaging. Semin Musculoskelet Radiol. 2015;19:475–482.
  • Bauerle T, Bartling S, Berger M, et al. Imaging anti-angiogenic treatment response with DCE-VCT, DCE-MRI and DWI in an animal model of breast cancer bone metastasis. Eur J Radiol. 2010;73:280–287.
  • Krasnow AZ, Hellman RS, Timins ME, et al. Diagnostic bone scanning in oncology. Semin Nucl Med. 1997;27:107–141.
  • Bauerle T, Semmler W. Imaging response to systemic therapy for bone metastases. Eur Radiol. 2009;19:2495–2507.
  • Mulkens TH, Bellinck P, Baeyaert M, et al. Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology. 2005;237:213–223.
  • Tombal B, Rezazadeh A, Therasse P, et al. Magnetic resonance imaging of the axial skeleton enables objective measurement of tumour response on prostate cancer bone metastases. Prostate. 2005;65:178–187.
  • Vogel WV, Nestle U, Valli MC. PET/MRI in breast cancer. Clin Transl Imaging. 2017;5:71–78.
  • Pace L, Nicolai E, Luongo A, et al. Comparison of whole‐body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of 18F‐deoxyglucose uptake in lesions and in normal organ tissues. Eur J Radiol. 2014;83:289–296.
  • Cook GJ, Houston S, Rubens R, et al. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol. 1998;16:3375–3379.
  • Hilner BE, Siegel BA, Liu D, et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the national oncologic PET registry. J Clin Oncol. 2008;26:2155–2161.
  • Brenner W, Conrad EU, Eary JF. FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur J Nucl Med Mol Imaging. 2004;31:189–195.
  • Al-Ibraheem A, Buck AK, Benz MR, et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography for the detection of recurrent bone and soft tissue sarcoma. Cancer. 2013;119:1227–1234.
  • Fuglø HM, Jørgensen SM, Loft A, et al. The diagnostic and prognostic value of 18F-FDG PET/CT in the initial assessment of high-grade bone and soft tissue sarcoma. A retrospective study of 89 patients. Eur J Nucl Med Mol Imaging. 2012;39:1416–1424.
  • Kleis M, Daldrup-Link H, Matthay K, et al. Diagnostic value of PET/CT for the staging and restaging of pediatric tumours. Eur J Nucl Med Mol Imaging. 2009;36:23–36.
  • Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging. 2009;36:113–120.
  • Schäfer JF, Gatidis S, Schmidt H, et al. Simultaneous whole‐body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273:220–231.
  • Schmidkonz C, Ellmann S, Ritt P, et al. Hybrid imaging (PET-computed tomography/PET-MR imaging) of bone metastases. PET Clin. 2019;14:121–133.
  • Behzadi AH, Raza SI, Carrino JA, et al. Applications of PET/CT and PET/MR imaging in primary bone malignancies. PET Clin. 2018;13:623–634.
  • Catalano OA, Masch WR, Catana C, et al. An overview of PET/MR, focused on clinical applications. Abdom Radiol. 2017;42:631–644.
  • Shah SN, Huang SS. Hybrid PET/MR imaging: physics and technical considerations. Abdom Imaging. 2015;40:1358–1365.
  • Gary JR, Gnanasegaran G, Chua S. Miscellaneous indications in bone scintigraphy: metabolic bone diseases and malignant bone tumours. Semin Nucl Med. 2010;40:52–61.
  • Coleman R, Body JJ, Aapro M. Bone health in cancer patients: ESMO clinical practice guidelines. Ann Oncol. 2014;25:124–137.
  • Ghosh P. The role of SPECT/CT in skeletal malignancies. Semin Musculoskelet Radiol. 2014;18:175–193.
  • Quarles van Ufford HM, van Tinteren H, Stroobants SG, et al. Added value of baseline 18F-FDG uptake in serial 18F-FDG PET for evaluation of response of solid extracerebral tumours to systemic cytotoxic neoadjuvant treatment: a meta-analysis. J Nucl Med. 2010;51:1507–1516.
  • Hawkins DS, Schuetze SM, Butrynski JE, et al. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumours. J Clin Oncol. 2005;23:8828–8834.
  • Hawkins DS, Rajendran JG, Eu C, et al. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer. 2002;94:3277–3284.
  • Aoki J, Endo K, Watanabe H, et al. FDG-PET for evaluating musculoskeletal tumours: A review. J Orthop Sci. 2003;8:435–441.
  • Demura Y, Tsuchida T, Ishizaki T, et al. 18F-FDG accumulation with PET for differentiation between benign and malignant lesions in the thorax. J Nucl Med. 2003;44:540–548.
  • Incoronato M, Grimaldi AM, Cavaliere C, et al. Relationship between functional imaging and immunohistochemical markers and prediction of breast cancer subtype: a PET/MRI study. Eur J Nucl Med Mol Imaging. 2018;45:1680–1693.
  • Ohba Y, Nomori H, Mori T, et al. Is diffusion-weighted magnetic resonance imaging superior to positron emission tomography with udeoxyglucose F 18 in imaging non-small cell lung cancer? J Thorac Cardiovasc Surg. 2009;138:439–445.
  • Choi SY, Chang YW, Park HJ, et al. Correlation of diffusion-weighted imaging apparent diffusion coefficient with prognostic factors of breast cancer. Br J Radiol. 2012;85:474–479.
  • Bajpai J, Gamnagatti S, Kumar R, et al. Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis. Pediatr Radiol. 2011;41:441–450.
  • Uhl M, Saueressig U, van Buiren M, et al. Preliminary results of in vivo assessment of tumour necrosis after chemotherapy with diffusion- and perfusion-weighted magnetic resonance imaging. Invest Radiol. 2006;41:618–623.
  • Hayashida Y, Yakushiji T, Awai K, et al. Monitoring therapeutic responses of primary bone tumours by diffusion- weighted image: initial results. Eur Radiol. 2006;16:2637–2643.
  • de Nigris F, Zanella L, Cacciatore F, et al. YY1 overexpression is associated with poor prognosis and metastasis-free survival in patients suffering osteosarcoma. BMC Cancer. 2011;11:472–476.
  • Yu L, Liu S, Guo W, et al. Upregulation of Mad2 facilitates in vivo and in vitro osteosarcoma progression. Oncol Rep. 2012;28:2170–2176.
  • Xu J, Wu S, Shi X. Expression of matrix metalloproteinase regulator, RECK, and its clinical significance in osteosarcoma. J Orthop Res. 2010;28:1621–1625.
  • Wang YH, Han XD, Qiu Y, et al. Increased expression of insulin-like growth factor-1 receptor is correlated with tumour metastasis and prognosis in patients with osteosarcoma. J Surg Oncol. 2012;105:235–243.
  • Singer FR, David RE. Using biochemical markers of bone turnover in clinical practice. Cleve Clin J Med. 2008;75:739–750.
  • Babkina IV, Osipov DA, Solovyov YN, et al. Endostatin, placental growth factor, and fibroblast growth factors-1 and −2 in the sera of patients with primary osteosarcomas. Bull Exp Biol Med. 2009;148:246–249.
  • Baumhoer D, Elsner M, Smida J, et al. CRIP1 expression is correlated with a favorable outcome and less metastases in osteosarcoma patients. Oncotarget. 2011;2:970–975.
  • Bramer J, Abudu A, Tillman R, et al. Pre-and post-chemotherapy alkaline phosphatase levelsas prognostic indicators in adults with localized osteosarcoma. Eur J Cancer. 2005;41:2846–2852.
  • Behjati S, Tarpey PS, Haase K, et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat Commun. 2017;8:15936.
  • Ren Z, Liang S, Yang J, et al. Coexpression of CXCR4 and MMP9 predicts lung metastasis and poor prognosis in resected osteosarcoma. Tumour Biol. 2016;37:5089–5096.
  • Lu Y, Guan GF, Chen J, et al. Aberrant CXCR4 and β-catenin expression in osteosarcoma correlates with patient survival. Oncol Lett. 2015;10:2123–2129.
  • Kushlinskii NE, Gershtein ES, Solov’ev YN, et al. Receptor activator of nuclear transcription factor NF-κB (RANK), its ligand RANKL, and natural inhibitor of RANKL osteoprotegerin (OPG) in the blood serum of patients with primary bone tumors. Bull Exp Biol Med. 2017;163:478–481.
  • de Andrea CE, Reijnders CM, Kroon HM, et al. Secondary peripheral chondrosarcoma evolving from osteochondroma as a result of outgrowth of cells with functional EXT. Oncogene. 2012;31:1095–1104.
  • Lechler P, Renkawitz T, Campean V, et al. The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro. BMC Cancer. 2011;11:120.
  • de Jong Y, van Oosterwijk JG, Kruisselbrink AB, et al. Targeting survivin as a potential new treatment for chondrosarcoma of bone. Oncogenesis. 2016;5:e222.
  • Liu JQ, Zhang QH, Wang ZL. Clinicopathological significance of p16, cyclin D1, Rb and MIB-1 levels in skull base chordoma and chondrosarcoma. World J Otorhinolaryngol Head Neck Surg. 2015;1:50–56.
  • Guan H, Zhou Z, Cao Y, et al. VEGF165 promotes the osteolytic bone destruction of Ewing’s sarcoma tumors by upregulating RANKL. Oncol Res. 2009;18:117–125.
  • Sexton CW, White WL. Primary cutaneous Ewing’s family sarcoma. Report of a case with immunostaining for glycoprotein p30/32 mic2. Am J Dermatopathol. 1996;18:601–605.
  • Grünewald TGP, Cidre-Aranaz F, Surdez D, et al. Ewing sarcoma. Nat Rev Dis Primers. 2018;4:5.
  • Douglas D, Hsu J, Hung L, et al. BMI-1 promotes ewing sarcoma tumorigenicity independent of CDKN2A repression. Cancer Res. 2008;68:6507–6515.
  • Kaseta MK, Gomatos IP, Khaldi L, et al. Prognostic value of bax, cytochrome C, and caspase-8 protein expression in primary osteosarcoma. Hybridoma. 2007;26:355–362.
  • Won KY, Park HR, Park YK. Prognostic implication of immunohistochemical Runx2 expression in osteosarcoma. Tumori. 2009;95:311–316.
  • Luo X, Chen J, Song WX, et al. Osteogenic BMPs promote tumor growth of human osteosarcomas that harbour differentiation defects. Lab Invest. 2008;88:1264–1277.
  • Sandhu R, Lal H, Kundu ZS, et al. Serum fluoride and sialic acid levels in osteosarcoma. Biol Trace Elem Res. 2011;144:1–5.
  • Shimizu T, Ishikawa T, Iwai S, et al. Fibroblast growth factor-2 is an important factor that maintains cellular immaturity and contributes to aggressiveness of osteosarcoma. Mol Cancer Res. 2012;10:454–468.
  • Lu BJ, Wang YQ, Wei XJ, et al. Expression of WNT-5a and ROR2 correlates with disease severity in osteosarcoma. Mol Med Rep. 2012;5:1033–1036.
  • Jin S, Shen JN, Peng JQ, et al. Decreased expression of serum gelsolin in patients with osteosarcoma. Chin Med J. 2012;125:262–269.
  • Zambo I, Hermanova M, Adamkova Krakorova D, et al. Nestin expression in high-grade osteosarcomas and its clinical significance. Oncol Rep. 2012;27:1592–1598.
  • Tan P, Zou C, Yong B, et al. Expression and prognostic relevance of PRAME in primary osteosarcoma. Biochem Biophys Res Comm. 2012;419:801–808.
  • Li Y, Flores R, Yu A, et al. Elevated expression of CXC chemochines in pediatric osteosarcoma patients. Cancer. 2011;117:207–217.
  • Sharili AS, Allen S, Smith K, et al. Expression of Snail2 in long bone osteosarcomas correlates with tumour malignancy. Tumor Biol. 2011;32:515–526.
  • Funovics PT, Edelhauser G, Funovics MA, et al. Pre-operative serum C-reactive protein as independent prognostic factor for survival but not infection in patients with high-grade osteosarcoma. Int Orthop. 2011;35:1529–1536.
  • Perbal B, Lazar N, Zambelli D, et al. Prognostic value of CCN3 in osteosarcoma. Hum Pathol. 2009;40:1479–1486.
  • Wang Z, Luo C, Wang H, et al. CEACAM6 is associated with osteosarcoma metastasis and facilitates epithelial–mesenchymal transition in osteosarcoma cells. Onco Targets Ther. 2018;1:3159–3166.
  • Wei H, Zhao MQ, Dong W, et al. Expression of c-kit protein and mutational status of the c-kit gene in osteosarcoma and their clinicopathological significance. J Int Med Res. 2008;36:1008–1014.
  • Levings PP, McGarry SV, Currie PV, et al. Expression of an exogenous human Oct- 4promoter identifies tumor-initiating cells in osteosarcoma. Cancer Res. 2009;69:5648–5655.
  • Wang ZX, Yang JS, Pan X, et al. Functional and biological analysis of Bcl-xL expression in human osteosarcoma. Bone. 2010;47:445–454.
  • Lockwood WW, Stack D, Morris T, et al. Cyclin E1 is amplified and overexpressed in osteosarcoma. J Mol Diagn. 2011;13:289–296.
  • Folio C, Zalacain M, Zandueta C, et al. Cortactin (CTTN) overexpression in osteosarcoma correlates with advanced stage and reduced survival. Cancer Biomark. 2011;10:35–41.
  • Chen P, Wang SJ, Wang HB, et al. The distribution of IGF2 and IMP3 in osteosarcoma and its relationship with angiogenesis. J Mol Histol. 2012;43:63–70.
  • Hallor KH, Staaf J, Bovée JV, et al. Genomic profiling of hondrosarcoma: chromosomal patterns in central and peripheral tumors. Clin Cancer Res. 2009;15:2685–2694.
  • Szuhai K, Cleton-Jansen AM, Hongedoorn PCW, et al. Molecular pathology and its diagnostic use in bone tumors. Can Genet. 2012;205:193–204.
  • Hogendoorn PC, Athanasou N, Bielack S, et al. Esmo/Eurobonet Working Group, Athanasou N, et al. Bone sarcomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(Suppl. 5):204–213.
  • Rozeman LB, Hameetman L, Cleton-Jansen AM, et al. Absence of IHH and retention of PTHrP signalling in enchondromas and central chondrosarcomas. J Pathol. 2005;205:4.476–482.
  • Liang X, Wang D, Wang Y, et al. Expression of aurora kinase A and B in chondrosarcoma and its relationship with the prognosis. Diagn Pathol. 2012;7:84.
  • Amary MF, Bacsi K, Maggiani F, et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol. 2011;224:334–343.
  • Rozeman LB, Inge H, De Bruijn B, et al. Dedifferentiated peripheral chondrosarcomas: regulation of EXTdownstream molecules and differentiation-related genes. Mod Pathol. 2009;22:1489–1498.
  • Tsai CH, Yang DY, Lin CY, et al. Sphingosine-1-phosphate suppresses chondrosarcoma metastasis by upregulation of tissue inhibitor of metalloproteinase 3 through suppressing miR-101 expression. Mol Oncol. 2017;11:1380–1398.
  • Aviel-Ronen S, Zadok O, Vituri A, et al. α-methylacyl-CoA racemase (AMACR) expression in chordomas differentiates them from chondrosarcomas. Sci Rep. 2016;6:21277.
  • Okugawa Y, Toiyama Y, Hur K, et al. Metastasis-associated long non-coding RNA drives gastric cancer development and promotes peritoneal metastasis. Carcinogenesis. 2014;35:2731–2739.
  • Feng H, Wang J, Xu J, et al. The expression of SIRT1 regulates the metastatic plasticity of chondrosarcoma cells by inducing epithelial-mesenchymal transition. Sci Rep. 2017;7:41203.
  • Yang WH, Chen JC, Hsu KH, et al. Leptin increases VEGF expression and enhances angiogenesis in human chondrosarcoma cells. Biochim Biophys Acta. 2014;1840:3483–3493.
  • Zenmyo M, Tanimoto A, Sakakima H, et al. Gadd45b expression in chondrosarcoma: a pilot study for diagnostic and biological implications in histological grading. Diagn Pathol. 2010;5:69.
  • Zhang P, Li J, Song Y, et al. MiR-129–5p inhibits proliferation and invasion of chondrosarcoma cells by regulating SOX4/Wnt/β-catenin signaling pathway. Cell Physiol Biochem. 2017;42:242–253.
  • Liu GT, Huang YL, Tzeng HE, et al. CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells. Cancer Lett. 2015;357:476–487.
  • Sheng W, Zhang ZC, Shi DY, et al. Epigenetic silencing of SFRP5 promotes the metastasis and invasion of chondrosarcoma by expression inhibition and Wnt signaling pathway activation. Chem Biol Interact. 2018;296:1–8.
  • Jamil N, Howie S, Salter DM. Therapeutic molecular targets in human chondrosarcoma. Int J Exp Pathol. 2010;91:387–393.
  • Meijer D, Gelderblom H, Karperien M, et al. Expression of aromatase and estrogen receptor alpha in chondrosarcoma, but no beneficial effect of inhibiting estrogen signaling both in vitro and in vivo. Clin Sarcoma Res. 2011;1:5.
  • Cintra F, Etchebehere M, Gonçalves JCB, et al. Analysis of angiogenic factors and cyclooxygenase-2 expression in cartilaginous tumors - clinical and histological correlation. Clinics. 2011;66:1591–1596.
  • Nakagawa SA, Lopes A, Lopes de Carvalho A, et al. Nitric oxide synthases, cyclooxygenase-2, nitrotyrosine, and angiogenesis in chondrosarcoma and their relation to prognosis. J Bone Joint Surg Am. 2010;92:1738–1746.
  • Ariizumi T, Ogose A, Kawashima H, et al. Expression of podoplanin in human bone and bone tumors: new marker of osteogenic and chondrogenic bone tumors. Pathol Int. 2010;60:193–202.
  • Papachristou DJ, Gkretsia V, Raoa UNM, et al. Expression of integrinlinked kinase and its binding partners inchondrosarcoma: association with prognostic significance. Eur J Cancer. 2008;44:2518–2525.
  • Yang SN, Chen HT, Tsou HK, et al. Leptin enhances cell migration in human chondrosarcoma cells through OBRl leptin receptor. Carcinogenesis. 2009;30:566–574.
  • Lee HP, Lin CY, Shih JS, et al. Adiponectin promotes VEGF-A-dependent angiogenesis in human chondrosarcoma through PI3K, Akt, mTOR, and HIF-α pathway. Oncotarget. 2015;6:5479.
  • Lai X, Chen S. Identification of novel biomarker candidates for immunohistochemical diagnosis to distinguish low-grade chondrosarcoma from enchondroma. Proteomics. 2015;15:2358–2368.
  • Karamchandani JR, Nielsen TO, van de Rijn M, et al. Sox10 and S100 in the diagnosis of soft-tissue neoplasms. Appl Immunohistochem Mol Morphol. 2012;20:445–450.
  • Hancock JD, Lessnick SL. A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle. 2008;15:250–256.
  • Bachmaier R, Aryee DN, Jug G, et al. O-GlcNAcylation is involved in the transcriptional activity of EWS-FLI1 in Ewing’s sarcoma. Oncogene. 2009;28:1280–1284.
  • Aryee DN, Niedan S, Kauer M, et al. Hypoxia modulates EWS-FLI1 transcriptional signature and enhances the malignant properties of ewing’s sarcoma cells in vitro. Cancer Res. 2010;70:4015–4023.
  • Cooper A, van Doorninck J, Ji L, et al. Ewing tumors that do not overexpress BMI-1 are a distinct molecular subclass with variant biology: a report from the children’s oncology group. Clin Cancer Res. 2011;17:56–66.
  • Bennani-Baiti IM, Cooper A, Lawlor ER, et al. Intercohort gene expression co-analysis reveals chemokine receptors as prognostic indicators in Ewing’s. Clin Cancer Res. 2010;16:3769–3778.
  • Mackintosh C, Ordóñez JL, García-Domínguez DJ, et al. 1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma. Oncogene. 2012;31:1287–1298.
  • Huang G, Zhou Z, Wang H, et al. CAPER-a alternative splicing regulates the expression of vascular endothelial growth factor in Ewing sarcoma cells. Cancer. 2012;118:2106–2116.
  • Leeming DJ, Koizumi M, Byrjalsen I, et al. The relative use of eight collagenous and noncollagenous markers for diagnosis of skeletal metastases in breast, prostate, or lung cancer patients. Cancer Epidemiol Biomarkers Prev. 2006;15:32–38.
  • Costa L, Demers LM, Gouveia-Oliveira A, et al. Prospective evaluation of the peptide-bound collagen type I cross-links N-telopeptide and C-telopeptide in predicting bone metastases status. J Clin Oncol. 2002;20:850–856.
  • Goranova-Marinova V, Goranov S, Pavlov P, et al. Serum levels of OPG, RANKL and RANKL/OPG ratio in newly-diagnosed patients with multiple myeloma. Clin Correlations Haematol. 2007;97:1000–1001.
  • Terpos E, Kleber M, Engelhardt M, et al. European Myeloma Network guidelines for the management of multiple myeloma-related complications. Haematologica. 2015;100:1254–1266.
  • Lipton A, Steger GG, Figueroa J, et al. Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J Clin Oncol. 2007;25:4431–4437.
  • Hannon RA, Clack G, Rimmer M, et al. Effects of the Src kinase inhibitor saracatinib (AZD0530) on bone turnover in healthy men: a randomized, double-blind, placebo-controlled, multiple-ascending-dose phase I trial. J Bone Miner Res. 2010;25:463–471.
  • Ribi S, Baumhoer D, Lee K, et al. TP53 intron 1 hotspot rearrangements are specific to sporadic osteosarcoma and can cause Li-Fraumeni syndrome. Oncotarget. 2015;6:7727–7740.
  • Martin JW, Chilton-MacNeill S, Koti M, et al. Digital expression profiling identifies RUNX2, CDC5L, MDM2, RECQL4, and CDK4 as potential predictive biomarkers for neo-adjuvant chemotherapy response in paediatric osteosarcoma. PLoS One. 2014;9:e95843.
  • Zuffa E, Mancini M, Brusa G, et al. P53 oncosuppressor influences selection of genomic imbalances in response to ionizing radiations in human osteosarcoma cell line SAOS-2. Int J Radiat Biol. 2008;84:591–601.
  • Baldini N, Scotlandi K, Barbanti-Br`odano G, et al. Expression of P-glycoprotein in high-grade osteosarcomas in relation to clinical outcome. N Engl J Med. 1995;333(21):1380–1385.
  • Laverdiere C, Hoang BH, Yang R, et al. Messenger RNA expression levels of CXCR4 correlate with metastatic behavior and outcome in patients with osteosarcoma. Clin Cancer Res. 2005;11:2561–2567.
  • Dass CR, Nadesapillai AP, Robin D, et al. Downregulation of uPAR conWrms link in growth and metastasis of osteosarcoma. Clin Exp Metastasis. 2005;22:643–652.
  • Osaka E, Suzuki T, Osaka S, et al. Survivin as a prognostic factor for osteosarcoma patients. Acta Histochem Cytochem. 2006;39:95–100.
  • Wunder JS, Gokgoz N, Parkes R, et al. TP53 mutations and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol. 2005;23:1483–1490.
  • Overholtzer M, Rao PH, Favis R, et al. The presence of p53 mutations in human osteosarcomas correlates with high levels of genomic instability. Proc Natl Acad Sci USA. 2003;100:11547–11552.
  • de Nigris F, Rossiello R, Schiano C, et al. Deletion of Yin Yang 1 protein in osteosarcoma cells on cell invasion and CXCR4/angiogenesis and metastasis. Cancer Res. 2008;68:1797–1808.
  • de Nigris F, Mancini FP, Schiano C, et al. Osteosarcoma cells induce endothelial cell proliferation during neo-angiogenesis. J Cell Physiol. 2013;228:846–852.
  • Abbondanza C, de Nigris F, De Rosa C, et al. Silencing of YY1 downregulates RIZ1 promoter in human osteosarcoma. Oncol Res. 2008;17:33–41.
  • de Nigris F, Botti C, de Chiara A, et al. Expression of transcription factor Yin Yang 1 in human osteosarcomas. Eur J Cancer. 2006;42:2420–2424.
  • Joerger M, Huober J. Diagnostic and prognostic use of bone turnover markers. Recent Results Cancer Res. 2012;192:197–223.
  • de Nigris F, Schiano C, Infante T, et al. CXCR4 inhibitors: tumour vasculature and therapeutic challenges. Recent Pat Anticancer Drug Discov. 2012;7:251–264.
  • Xiang J, Hurchla MA, Fontana F, et al. CXCR4 protein epitope mimetic antagonist POL5551 disrupts metastasis and enhances chemotherapy effect in triple-negative breast cancer. Mol Cancer Ther. 2015;14:2473–2485.
  • Bellanger A, Donini CF, Vendrell JA, et al. The critical role of the ZNF217 oncogene in promoting breast cancer metastasis to the bone. J Pathol. 2017;242:73–89.
  • Savci-Heijink CD, Halfwerk H, Hooijer GKJ, et al. Retrospective analysis of metastatic behavior of breast cancer subtypes. BC Res Treat. 2015;150:547–557.
  • Westbrook JA, Cairns DA, Peng J, et al. CAPG and GIPC1: BC biomarkers for bone metastasis development and treatment. J Natl Cancer Inst. 2016;108:djv360.
  • Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;44:682–689.
  • Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Bio. 2008;10:201–210.
  • Hassan MQ, Maeda Y, Taipaleenmaki H, et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. Biol Chem. 2012;287:42084–42092.
  • Liu J, Li D, Dang L, et al. Osteoclastic miR-214 targets TRAF3 to contribute to osteolytic bone metastasis of breast cancer. Nature. 2017;7:40487.
  • Tavazoie SF, Alarcón C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451:147–152.
  • Dolloff NG, Shulby SS, Nelson AV, et al. Bone-metastatic potential of human prostate cancer cells correlates with Akt/PKB activation by α platelet-derived growth factor receptor. Oncogene. 2005;24:6848–6854.
  • Russell MR, Jamieson WL, Dolloff NG, et al. The α-receptor for plateletderived growth factor as a target for antibody-mediated inhibition of skeletal metastases from prostate cancer cells. Oncogene. 2009;28:412–421.
  • Liu Q, Russell MR, Shahriari K, et al. Interleukin-1β promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features. Cancer Res. 2013;73:3297–3305.
  • Chen Q, Zhong T. The association of CXCR4 expression with clinic-pathological significance and potential drug target in prostate cancer: a meta-analysis and literature review. Drug Des Dev Ther. 2015;9:5115–5122.
  • Gururajan M, Josson S, Chu GC, et al. miR-154 and miR-379 in the DLK1-DIO3 microRNA mega-cluster regulate epithelial to mesenchymal transition and bone metastasis of prostate cancer. Clin Cancer Res. 2014;20:6559–6569.
  • Peng X, Guo W, Liu T, et al. Identification of miRs-143 and −145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One. 2011;6:e20341.
  • Saini S, Majid S, Yamamura S, et al. Regulatory role of mir-203 in prostate cancer progression and metastasis. Clin Cancer Res. 2011;17:5287–5298.
  • Zhang K, Zhang M, Zhu J, et al. Screening of gene mutations associated with bone metastasis in non small cell lung cancer. J Can Res Ther. 2016;12:186–190.
  • Seetharamu N, Budman DR, Sullivan KM. Immune checkpoint inhibitors in lung cancer: past, present and future. Future Oncol. 2016;12:1151–1163.
  • Papotti M, Kalebic T, Volante M, et al. Bone sialoprotein is predictive of bone metastases in resectable non small cell lung cancer: a retrospective case-control study. J Clin Oncol. 2006;24:4818–4824.
  • Hiraki A, Ueoka H, Bessho A, et al. Parathyroid hormone-related protein measured at the time of first visit is an indicator of bone metastases and survival in lung carcinoma patients with hypercalcemia. Cancer. 2002;95:1706–1713.
  • Lara PN Jr, Ely B, Quinn DI, et al. Serum biomarkers of bone metabolism in castration-resistant prostate cancer patients with skeletal metastases: results from SWOG 0421. J Natl Cancer Inst. 2014;106:1–9.
  • Kong QQ, Sun TW, Dou QY, et al. Beta-CTX and ICTP act as indicators of skeletal metastasis status in male patients with non-small cell lung cancer. Int J Biol Markers. 2007;22:214–220.
  • Kuo PL, Liao SH, Hung JY, et al. MicroRNA-33a functions as a bone metastasis suppressor in lung cancer by targeting parathyroid hormone related protein. Biochim Biophys Acta. 2013;1830:3756–3766.
  • Zhou Z, Chen ZW, Yang XH, et al. Establishment of a biomarker model for predicting bone metastasis in resected stage III non small cell lung cancer. J Exp Clin Cancer Res. 2012;31:1–6.
  • Johnson LA, Banerji S, Lawrance W, et al. Dendritic cells enter lymph vessels by hyaluronan-mediated docking to the endothelial receptor LYVE-1. Nat Immunol. 2017;18:762–770.
  • Schoppmann SF, Birner P, Studer P, et al. Lymphatic microvessel density and lymphovascular invasion assessed by anti-podoplanin immunostaining in human breast cancer. Anticancer Res. 2001;21:2351–2355.
  • Koltowska K, Banerji S, Lawrance W, et al. Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature. Development. 2013;140:1857–1870.
  • Chow MT, Luster AD. Chemokines in cancer. Cancer Immunol Res. 2014;2:1125–1131.
  • Diamond P, Labrinidis A, Martin SK, et al. Targeted disruption of the CXCL12/CXCR4 axis inhibits osteolysis in a murine model of myeloma-associated bone loss. J Bone Miner Res. 2009;24:1150–1161.
  • Zeng H, Wei W, Xu X. Chemokine (C-X-C motif) receptor 4 RNA interference inhibits bone metastasis in breast cancer. Oncol Lett. 2014;8:77–81.
  • Hardaway AL, Herroon MK, Rajagurubandara E, et al. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clin Exp Metastasis. 2015;32:353–368.
  • Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000;12:121–127.
  • Ottaviani G, Jaffe N. The etiology of osteosarcoma. Cancer Treat Res. 2009;152:15–32.
  • Houzé P, Bellik B, Extra JM, et al. Urinary carboxyterminal telopeptide of collagen I as a potential marker of bone metastases chemotherapy monitoring in breast cancer. Clin Chim Acta. 1999;281:77–88.
  • Burak Z, Ersoy O, Moretti JL, et al. The role of 99mTc-MIBI scintigraphy in the assessment of MDR1 overexpression in patients with musculoskeletal sarcomas: comparison with therapy response. Eur J Nucl Med. 2001;28:1341–1350.
  • Parghane RV, Singh B, Sharma A, et al. Role of 99mTc-methylene diphosphonate SPECT/CT in the detection of sacroiliitis in patients with spondyloarthropathy: comparison with clinical markers and MRI. J Nucl Med Technol. 2017;45:280–284.
  • Salaun PY, Gastinne T, Bodet-Milin C, et al. Analysis of 18F-FDG PET diffuse bone marrow uptake and splenic uptake in staging of Hodgkin’s lymphoma: a reflection of disease infiltration or just inflammation? Eur J Nucl Med Mol Imaging. 2009;36:1813–1821.
  • Hoshi M, Takada J, Oebisu N, et al. Overexpression of hexokinase-2 in giant cell tumour of bone is associated with false positive in bone tumour on FDG-PET/CT. Arch Orthop Trauma Surg. 2012;132:1561–1568.
  • Lee JW, Choi JS, Lyu J, et al. Prognostic significance of 18F-fluorodeoxyglucose uptake of bone marrow measured on positron emission tomography in patients with small cell lung cancer. Lung Cancer. 2018;118:41–47.
  • Lee JW, Jeon S, Mun ST, et al. Prognostic value of fluorine-18 fluorodeoxyglucose uptake of bone marrow on positron emission tomography/computed tomography for prediction of disease progression in cervical cancer. Int J Gynecol Cancer. 2017;27:776–783.
  • Perez-Lopez R, Nava Rodrigues D, Figueiredo I, et al. Multiparametric magnetic resonance imaging of prostate cancer bone disease: correlation with bone biopsy histological and molecular features. Invest Radiol. 2018;53:96–102.
  • Estorch M, Carrio I. Future challenges of multimodality imaging. Recent Results Cancer Res. 2013;187:403–415.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.