712
Views
58
CrossRef citations to date
0
Altmetric
Review

Clinically-useful serum biomarkers for diagnosis and prognosis of sarcoidosis

ORCID Icon, , , , &
Pages 391-405 | Received 15 Oct 2018, Accepted 08 Jan 2019, Published online: 26 Jan 2019

References

  • Brito-Zerón P, Pérez-Alvarez R, Pallarés L, et al. Sarcoidosis: an update on current pharmacotherapy options and future directions. Expert Opin Pharmacother. 2016;17:2431–2448.
  • Brito-Zerón P, Sellarés J, Bosch X, et al. Epidemiologic patterns of disease expression in sarcoidosis: age, gender and ethnicity-related differences. Clin Exp Rheumatol. 2016;34:380–388.
  • Soto-Gomez N, Peters JI, Nambiar AM. Diagnosis and management of sarcoidosis. Am Fam Physician. 2016;93:840–848.
  • Bargagli E, Mazzi A, Rottoli P. Markers of inflammation in sarcoidosis: blood, urine, BAL, sputum, and exhaled gas. Clin Chest Med. 2008;29:445–58,viii.
  • Chopra A, Kalkanis A, Judson MA. Biomarkers in sarcoidosis. Expert Rev Clin Immunol. 2016;12:1191–1208.
  • Costabel U, Teschler H. Biochemical changes in sarcoidosis. Clin Chest Med. 1997;18:827–842.
  • Cinetto F, Agostini C. Advances in understanding the immunopathology of sarcoidosis and implications on therapy. Expert Rev Clin Immunol. 2016;12:973–988.
  • Lieberman J. Elevation of serum angiotensin-converting-enzyme (ACE) level in sarcoidosis. Am J Med. 1975;59:365–372.
  • Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86:1343–1346.
  • Kruit A, Grutters JC, Gerritsen WBM, et al. ACE I/D-corrected Z-scores to identify normal and elevated ACE activity in sarcoidosis. Respir Med. 2007;101:510–515.
  • Stokes GS, Monaghan JC, Schrader AP, et al. Influence of angiotensin converting enzyme (ACE) genotype on interpretation of diagnostic tests for serum ACE activity. Aust N Z J Med. 1999;29:315–318.
  • Loddenkemper R, Kloppenborg A, Schoenfeld N, et al. Clinical findings in 715 patients with newly detected pulmonary sarcoidosis–results of a cooperative study in former West Germany and Switzerland. WATL study group. Wissenschaftliche Arbeitsgemeinschaft fur die Therapie von Lungenkrankheitan. Sarcoidosis, Vasc Diffus Lung Dis off J WASOG. 1998;15:178–182.
  • Doubkova M, Pospisil Z, Skrickova J, et al. Prognostic markers of sarcoidosis: an analysis of patients from everyday pneumological practice. Clin Respir J. 2015;9:443–449.
  • Thi Hong Nguyen C, Kambe N, Kishimoto I, et al. Serum soluble interleukin-2 receptor level is more sensitive than angiotensin-converting enzyme or lysozyme for diagnosis of sarcoidosis and may be a marker of multiple organ involvement. J Dermatol. 2017;44:789–797.
  • Kawaguchi T, Hanada A, Horie S, et al. Evaluation of characteristic ocular signs and systemic investigations in ocular sarcoidosis patients. Jpn J Ophthalmol. 2007;51:121–126.
  • Thelier N, Assous N, Job-Deslandre C, et al. Osteoarticular involvement in a series of 100 patients with sarcoidosis referred to rheumatology departments. J Rheumatol. 2008;35:1622–1628.
  • Leonhard SE, Fritz D, Eftimov F, et al. Neurosarcoidosis in a tertiary referral center: a cross-sectional cohort study. Medicine (Baltimore). 2016;95:e3277.
  • Khan AH, Ghani F, Khan A, et al. Role of serum angiotensin converting enzyme in sarcoidosis. J Pak Med Assoc. 1998;48:131–133.
  • Gupta SK. Sarcoidosis: a journey through 50 years. Indian J Chest Dis Allied Sci. 2002;44:247–253.
  • Ungprasert P, Carmona EM, Crowson CS, et al. Diagnostic utility of angiotensin-converting enzyme in sarcoidosis: a population-based study. Lung. 2016;194:91–95.
  • Mana J, Gomez-Vaquero C, Montero A, et al. Lofgren’s syndrome revisited: a study of 186 patients. Am J Med. 1999;107:240–245.
  • Kahkouee S, Samadi K, Alai A, et al. Serum ACE level in sarcoidosis patients with typical and atypical HRCT manifestation. Pol J Radiol. 2016;81:458–461.
  • Gillman A, Steinfort C. Sarcoidosis in Australia. Intern Med J. 2007;37:356–359.
  • Vorselaars ADM, Chm M, van Zanen P, et al. ACE and sIL-2R correlate with lung function improvement in sarcoidosis during methotrexate therapy. Respir Med. 2015;109:279–285.
  • Niederer RL, Al-Janabi A, Lightman SL, et al. Serum angiotensin converting enzyme (ACE) has a high negative predictive value in the investigation for systemic sarcoidosis. Am J Ophthalmol. 2018;194:82–87.
  • Sejdic A, Graudal N, Baslund B. Clinical and biochemical presentation of sarcoidosis with high and normal serum angiotensin-converting enzyme. Scand J Rheumatol. 2018;1–4. doi: 10.1080/03009742.2017.1420818. [Epub ahead of print]
  • Febvay C, Kodjikian L, Maucort-Boulch D, et al. Clinical features and diagnostic evaluation of 83 biopsy-proven sarcoid uveitis cases. Br J Ophthalmol. 2015;99:1372–1376.
  • Groen-Hakan F, Eurelings L, Ten Berge JC, et al. Diagnostic value of serum-soluble interleukin 2 receptor levels vs angiotensin-converting enzyme in patients with sarcoidosis-associated uveitis. JAMA Ophthalmol. 2017;135:1352–1358.
  • Gundlach E, Hoffmann MM, Prasse A, et al. Interleukin-2 receptor and angiotensin-converting enzyme as markers for ocular sarcoidosis. PLoS One. 2016;11:e0147258.
  • Bons JA, Drent M, Bouwman FG, et al. Potential biomarkers for diagnosis of sarcoidosis using proteomics in serum. Respir Med. 2007;101:1687–1695.
  • Rothkrantz-Kos S, van Dieijen-Visser MP, Pgh M, et al. Potential usefulness of inflammatory markers to monitor respiratory functional impairment in sarcoidosis. Clin Chem. 2003;49:1510–1517.
  • Popevic S, Sumarac Z, Jovanovic D, et al. Verifying sarcoidosis activity: chitotriosidase versus ACE in sarcoidosis - a case-control study. J Med Biochem. 2016;35:390–400.
  • Klech H, Kohn H, Kummer F, et al. Assessment of activity in sarcoidosis. Sensitivity and specificity of 67Gallium scintigraphy, serum ACE levels, chest roentgenography, and blood lymphocyte subpopulations. Chest. 1982;82:732–738.
  • Romer FK. Angiotensin-converting enzyme in sarcoidosis. Acta Med Scand. 1979;206:27–30.
  • Ziegenhagen MW, Rothe ME, Schlaak M, et al. Bronchoalveolar and serological parameters reflecting the severity of sarcoidosis. Eur Respir J. 2003;21:407–413.
  • Lieberman J, Nosal A, Schlessner A, et al. Serum angiotensin-converting enzyme for diagnosis and therapeutic evaluation of sarcoidosis. Am Rev Respir Dis. 1979;120:329–335.
  • Gronhagen-Riska C, Selroos O. Angiotensin converting enzyme. IV. Changes in serum activity and in lysozyme concentrations as indicators of the course of untreated sarcoidosis. Scand J Respir Dis. 1979;60:337–344.
  • Hsieh C-W, Chen D-Y, Lan J-L. Late-onset and rare far-advanced pulmonary involvement in patients with sarcoidosis in Taiwan. J Formos Med Assoc. 2006;105:269–276.
  • Turton CW, Grundy E, Firth G, et al. Value of measuring serum angiotensin I converting enzyme and serum lysozyme in the management of sarcoidosis. Thorax. 1979;34:57–62.
  • Baughman RP, Ploysongsang Y, Roberts RD, et al. Effects of sarcoid and steroids on angiotensin-converting enzyme. Am Rev Respir Dis. 1983;128:631–633.
  • Baltzan M, Mehta S, Kirkham TH, et al. Randomized trial of prolonged chloroquine therapy in advanced pulmonary sarcoidosis. Am J Respir Crit Care Med. 1999;160:192–197.
  • Vorselaars ADM, Crommelin HA, Deneer VHM, et al. Effectiveness of infliximab in refractory FDG PET-positive sarcoidosis. Eur Respir J. 2015;46:175–185.
  • Schimmelpennink MC, Vorselaars ADM, Beek FTV, et al. Efficacy and safety of infliximab biosimilar Inflectra((R)) in severe sarcoidosis. Respir Med. 2018;138:S7–S13.
  • Beaumont D, Herry JY, Sapene M, et al. Gallium-67 in the evaluation of sarcoidosis: correlations with serum angiotensin-converting enzyme and bronchoalveolar lavage. Thorax. 1982;37:11–18.
  • Selroos O, Gronhagen-Riska C. Angiotensin converting enzyme. III. Changes in serum level as an indicator of disease activity in untreated sarcoidosis. Scand J Respir Dis. 1979;60:328–336.
  • Rust M, Bergmann L, Kuhn T, et al. Prognostic value of chest radiograph, serum-angiotensin-converting enzyme and T helper cell count in blood and in bronchoalveolar lavage of patients with pulmonary sarcoidosis. Respiration. 1985;48:231–236.
  • Su R, Nguyen M-LT, Agarwal MR, et al. Interferon-inducible chemokines reflect severity and progression in sarcoidosis. Respir Res. 2013;14:121.
  • Miyoshi S, Hamada H, Kadowaki T, et al. Comparative evaluation of serum markers in pulmonary sarcoidosis. Chest. 2010;137:1391–1397.
  • Keijsers RG, Verzijlbergen FJ, Oyen WJ, et al. 18F-FDG PET, genotype-corrected ACE and sIL-2R in newly diagnosed sarcoidosis. Eur J Nucl Med Mol Imaging. 2009;36:1131–1137.
  • Gungor S, Ozseker F, Yalcinsoy M, et al. Conventional markers in determination of activity of sarcoidosis. Int Immunopharmacol. 2015;25:174–179.
  • Prasse A, Katic C, Germann M, et al. Phenotyping sarcoidosis from a pulmonary perspective. Am J Respir Crit Care Med. 2008;177:330–336.
  • van Eijk M, van Roomen CPAA, Renkema GH, et al. Characterization of human phagocyte-derived chitotriosidase, a component of innate immunity. Int Immunol. 2005;17:1505–1512.
  • Vellodi A, Foo Y, Cole TJ. Evaluation of three biochemical markers in the monitoring of Gaucher disease. J Inherit Metab Dis. 2005;28:585–592.
  • Michelakakis H, Dimitriou E, Labadaridis I. The expanding spectrum of disorders with elevated plasma chitotriosidase activity: an update. J Inherit Metab Dis. 2004;27:705–706.
  • Artieda M, Cenarro A, Ganan A, et al. Serum chitotriosidase activity is increased in subjects with atherosclerosis disease. Arterioscler Thromb Vasc Biol. 2003;23:1645–1652.
  • Altarescu G, Rudensky B, Abrahamov A, et al. Plasma chitotriosidase activity in patients with beta-thalassemia. Am J Hematol. 2002;71:7–10.
  • Wajner A, Michelin K, Burin MG, et al. Biochemical characterization of chitotriosidase enzyme: comparison between normal individuals and patients with Gaucher and with Niemann-Pick diseases. Clin Biochem. 2004;37:893–897.
  • Grosso S, Margollicci MA, Bargagli E, et al. Serum levels of chitotriosidase as a marker of disease activity and clinical stage in sarcoidosis. Scand J Clin Lab Invest. 2004;64:57–62.
  • Bargagli E, Bennett D, Maggiorelli C, et al. Human chitotriosidase: a sensitive biomarker of sarcoidosis. J Clin Immunol. 2013;33:264–270.
  • Boot RG, Hollak CEM, Verhoek M, et al. Plasma chitotriosidase and CCL18 as surrogate markers for granulomatous macrophages in sarcoidosis. Clin Chim Acta. 2010;411:31–36.
  • Bargagli E, Margollicci M, Nikiforakis N, et al. Chitotriosidase activity in the serum of patients with sarcoidosis and pulmonary tuberculosis. Respiration. 2007;74:548–552.
  • Tercelj M, Salobir B, Simcic S, et al. Chitotriosidase activity in sarcoidosis and some other pulmonary diseases. Scand J Clin Lab Invest. 2009;69:575–578.
  • Saketkoo LA, Baughman RP. Biologic therapies in the treatment of sarcoidosis. Expert Rev Clin Immunol. 2016;12:817–825.
  • Harlander M, Salobir B, Zupancic M, et al. Serial chitotriosidase measurements in sarcoidosis–two to five year follow-up study. Respir Med. 2014;108:775–782.
  • Selroos OB. Biochemical markers in sarcoidosis. Crit Rev Clin Lab Sci. 1986;24:185–216.
  • Sahin O, Ziaei A, Karaismailoglu E, et al. The serum angiotensin converting enzyme and lysozyme levels in patients with ocular involvement of autoimmune and infectious diseases. BMC Ophthalmol. 2016;16:19.
  • Baba Y, Kubo T, Kitaoka H, et al. Usefulness of high-sensitive cardiac troponin T for evaluating the activity of cardiac sarcoidosis. Int Heart J. 2012;53:287–292.
  • Birnbaum AD, Oh FS, Chakrabarti A, et al. Clinical features and diagnostic evaluation of biopsy-proven ocular sarcoidosis. Arch Ophthalmol. 2011;129:409–413. (Chicago, Ill. 1960).
  • Romer FK, Ahlbom G, Jensen JU. Relationship between angiotensin-converting enzyme and lysozyme in sarcoidosis. Eur J Respir Dis. 1982;63:330–336.
  • Blaschke E, Eklund A, Persson U. Relationship between serum neopterin and lymphocytic alveolitis in sarcoidosis. Sarcoidosis. 1988;5:25–30.
  • Mostard RLM, Voo S, van Kroonenburgh MJPG, et al. Inflammatory activity assessment by F18 FDG-PET/CT in persistent symptomatic sarcoidosis. Respir Med. 2011;105:1917–1924.
  • Timmermans WMC, van Laar JAM, van Hagen PM, et al. Immunopathogenesis of granulomas in chronic autoinflammatory diseases. Clin Transl Immunol. 2016;5:e118.
  • Antoniou KM, Tzouvelekis A, Alexandrakis MG, et al. Different angiogenic activity in pulmonary sarcoidosis and idiopathic pulmonary fibrosis. Chest. 2006;130:982–988.
  • Nureki S, Miyazaki E, Ando M, et al. Circulating levels of both Th1 and Th2 chemokines are elevated in patients with sarcoidosis. Respir Med. 2008;102:239–247.
  • Takeuchi M, Oh-I K, Suzuki J, et al. Elevated serum levels of CXCL9/monokine induced by interferon-gamma and CXCL10/interferon-gamma-inducible protein-10 in ocular sarcoidosis. Invest Ophthalmol Vis Sci. 2006;47:1063–1068.
  • Geyer AI, Kraus T, Roberts M, et al. Plasma level of interferon gamma induced protein 10 is a marker of sarcoidosis disease activity. Cytokine. 2013;64:152–157.
  • Hermans C, Petrek M, Kolek V, et al. Serum Clara cell protein (CC16), a marker of the integrity of the air-blood barrier in sarcoidosis. Eur Respir J. 2001;18:507–514.
  • Janssen R, Sato H, Grutters JC, et al. Study of Clara cell 16, KL-6, and surfactant protein-D in serum as disease markers in pulmonary sarcoidosis. Chest. 2003;124:2119–2125.
  • Tanaka H, Miyazaki N, Oashi K, et al. IL-18 might reflect disease activity in mild and moderate asthma exacerbation. J Allergy Clin Immunol. 2001;107:331–336.
  • Kieszko R, Krawczyk P, Jankowska O, et al. The clinical significance of interleukin 18 assessment in sarcoidosis patients. Respir Med. 2007;101:722–728.
  • Shigehara K, Shijubo N, Ohmichi M, et al. Increased levels of interleukin-18 in patients with pulmonary sarcoidosis. Am J Respir Crit Care Med. 2000;162:1979–1982.
  • Hata M, Sugisaki K, Miyazaki E, et al. Circulating IL-12 p40 is increased in the patients with sarcoidosis, correlation with clinical markers. Intern Med. 2007;46:1387–1393.
  • Shigehara K, Shijubo N, Ohmichi M, et al. Increased circulating interleukin-12 (IL-12) p40 in pulmonary sarcoidosis. Clin Exp Immunol. 2003;132:152–157.
  • Boots AW, Drent M, Swennen ELR, et al. Antioxidant status associated with inflammation in sarcoidosis: a potential role for antioxidants. Respir Med. 2009;103:364–372.
  • Semenzato G, Cipriani A, Trentin L, et al. High serum levels of soluble interleukin-2 receptors in sarcoidosis. Sarcoidosis. 1987;4:25–27.
  • Loffler C, Loffler U, Tuleweit A, et al. Renal sarcoidosis: epidemiological and follow-up data in a cohort of 27 patients. Sarcoidosis, Vasc Diffus Lung Dis off J WASOG. 2015;31:306–315.
  • Umeda Y, Demura Y, Morikawa M, et al. Prognostic value of dual-time-point 18F-fluorodeoxyglucose positron emission tomography in patients with pulmonary sarcoidosis. Respirology. 2011;16:713–720.
  • Grutters JC, Fellrath J-M, Mulder L, et al. Serum soluble interleukin-2 receptor measurement in patients with sarcoidosis: a clinical evaluation. Chest. 2003;124:186–195.
  • Kalkanis A, Kalkanis D, Drougas D, et al. Correlation of spleen metabolism assessed by 18F-FDG PET with serum interleukin-2 receptor levels and other biomarkers in patients with untreated sarcoidosis. Nucl Med Commun. 2016;37:273–277.
  • Kiko T, Yoshihisa A, Kanno Y, et al. A multiple biomarker approach in patients with cardiac sarcoidosis. Int Heart J. 2018.
  • Keicho N, Kitamura K, Takaku F, et al. Serum concentration of soluble interleukin-2 receptor as a sensitive parameter of disease activity in sarcoidosis. Chest. 1990;98:1125–1129.
  • Lawrence EC, Brousseau KP, Berger MB, et al. Elevated concentrations of soluble interleukin-2 receptors in serum samples and bronchoalveolar lavage fluids in active sarcoidosis. Am Rev Respir Dis. 1988;137:759–764.
  • Ziegenhagen MW, Benner UK, Zissel G, et al. Sarcoidosis: TNF-alpha release from alveolar macrophages and serum level of sIL-2R are prognostic markers. Am J Respir Crit Care Med. 1997;156:1586–1592.
  • Paone G, Leone A, Batzella S, et al. Use of discriminant analysis in assessing pulmonary function worsening in patients with sarcoidosis by a panel of inflammatory biomarkers. Inflamm Res. 2013;62:325–332.
  • Raphael I, Nalawade S, Eagar TN, et al. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 2015;74:5–17.
  • Chen ES. Reassessing Th1 versus Th17.1 in sarcoidosis: new tricks for old dogma. Eur Respir J. 2018;51.
  • Ramstein J, Broos CE, Simpson LJ, et al. IFN-gamma-producing T-helper 17.1 cells are increased in sarcoidosis and are more prevalent than T-helper type 1 cells. Am J Respir Crit Care Med. 2016;193:1281–1291.
  • Semenzato G, Pezzutto A, Pizzolo G, et al. Immunohistological study in sarcoidosis: evaluation at different sites of disease activity. Clin Immunol Immunopathol. 1984;30:29–40.
  • Saussine A, Tazi A, Feuillet S, et al. Active chronic sarcoidosis is characterized by increased transitional blood B cells, increased IL-10-producing regulatory B cells and high BAFF levels. PLoS One. 2012;7:e43588.
  • Kamphuis LS, Zelm MCV, Lam KH, et al. Perigranuloma localization and abnormal maturation of B cells: emerging key players in sarcoidosis? Am J Respir Crit Care Med. 2013;187:406–416.
  • Selroos O, Koivunen E. Prognostic significance of lymphopenia in sarcoidosis. Acta Med Scand. 1979;206:259–262.
  • Jones NP, Tsierkezou L, Patton N. Lymphopenia as a predictor of sarcoidosis in patients with uveitis. Br J Ophthalmol. 2016;100:1393–1396.
  • Lower EE, Smith JT, Martelo OJ, et al. The anemia of sarcoidosis. Sarcoidosis. 1988;5:51–55.
  • Sweiss NJ, Salloum R, Gandhi S, et al. Significant CD4, CD8, and CD19 lymphopenia in peripheral blood of sarcoidosis patients correlates with severe disease manifestations. PLoS One. 2010;5:e9088.
  • Valeyre D, Casassus P, Battesti JP. Clinical value of the blood lymphocyte count in thoracic sarcoidosis in adults. Apropos of 123 cases. Rev Pneumol Clin. 1984;40:13–19.
  • Morell F, Levy G, Orriols R, et al. Delayed cutaneous hypersensitivity tests and lymphopenia as activity markers in sarcoidosis. Chest. 2002;121:1239–1244.
  • Cohen-Aubart F, Galanaud D, Grabli D, et al. Spinal cord sarcoidosis: clinical and laboratory profile and outcome of 31 patients in a case-control study. Medicine (Baltimore). 2010;89:133–140.
  • Crouser ED, Lozanski G, Fox CC, et al. The CD4+ lymphopenic sarcoidosis phenotype is highly responsive to anti-tumor necrosis factor-{alpha} therapy. Chest. 2010;137:1432–1435.
  • Belhomme N, Jouneau S, Bouzille G, et al. Role of serum immunoglobulins for predicting sarcoidosis outcome: a cohort study. PLoS One. 2018;13:e0193122.
  • Parrish RW, Williams JD, Davies BH. Serum beta-2-microglobulin and angiotensin-converting enzyme activity in sarcoidosis. Thorax. 1982;37:936–940.
  • Selroos O, Klockars M. Relation between clinical stage of sarcoidosis and serum values of angiotensin converting enzyme and beta2-microglobulin. Sarcoidosis. 1987;4:13–17.
  • Ando M, Goto A, Takeno Y, et al. Significant elevation of the levels of B-cell activating factor (BAFF) in patients with sarcoidosis. Clin Rheumatol. 2018.
  • Ueda-Hayakawa I, Tanimura H, Osawa M, et al. Elevated serum BAFF levels in patients with sarcoidosis: association with disease activity. Rheumatology (Oxford). 2013;52:1658–1666.
  • McDonnell MJ, Saleem MI, Wall D, et al. Predictive value of C-reactive protein and clinically relevant baseline variables in sarcoidosis. Sarcoidosis, Vasc Diffus Lung Dis off J WASOG. 2016;33:331–340.
  • Drent M, Wirnsberger RM, Vries de J, et al. Association of fatigue with an acute phase response in sarcoidosis. Eur Respir J. 1999;13:718–722.
  • Sweiss NJ, Barnathan ES, Lo K, et al. C-reactive protein predicts response to infliximab in patients with chronic sarcoidosis. Sarcoidosis, Vasc Diffus Lung Dis off J. 2010;27:49–56. WASOG/World Assoc. Sarcoidosis Other Granulomatous Disord.
  • Ivanisevic J, Kotur-Stevuljevic J, Stefanovic A, et al. Dyslipidemia and oxidative stress in sarcoidosis patients. Clin Biochem. 2012;45:677–682.
  • Chen ES, Song Z, Willett MH, et al. Serum amyloid A regulates granulomatous inflammation in sarcoidosis through Toll-like receptor-2. Am J Respir Crit Care Med. 2010;181:360–373.
  • Zhang Y, Chen X, Hu Y, et al. Preliminary characterizations of a serum biomarker for sarcoidosis by comparative proteomic approach with tandem-mass spectrometry in ethnic Han Chinese patients. Respir Res. 2013;14:18.
  • Bargagli E, Magi B, Olivieri C, et al. Analysis of serum amyloid A in sarcoidosis patients. Respir Med. 2011;105:775–780.
  • Salazar A, Mana J, Fiol C, et al. Influence of serum amyloid A on the decrease of high density lipoprotein-cholesterol in active sarcoidosis. Atherosclerosis. 2000;152:497–502.
  • Kobayashi J, Kitamura S. Serum KL-6 for the evaluation of active pneumonitis in pulmonary sarcoidosis. Chest. 1996;109:1276–1282.
  • Ohnishi H, Yokoyama A, Kondo K, et al. Comparative study of KL-6, surfactant protein-A, surfactant protein-D, and monocyte chemoattractant protein-1 as serum markers for interstitial lung diseases. Am J Respir Crit Care Med. 2002;165:378–381.
  • Hamada H, Kohno N, Akiyama M, et al. Monitoring of serum KL-6 antigen in a patient with radiation pneumonia. Chest. 1992;101:858–860.
  • Honda K, Okada F, Ando Y, et al. Comparison of pulmonary thin section CT findings and serum KL-6 levels in patients with sarcoidosis. Br J Radiol. 2011;84:229–235.
  • Kitaichi N, Kotake S, Shibuya H, et al. Increase of KL-6 in sera of uveitis patients with sarcoidosis. Graefes Arch Clin Exp Ophthalmol. 2003;241:879–883.
  • Kitaichi N, Ariga T, Kase S, et al. Usefulness of quantifying serum KL-6 levels in the follow-up of uveitic patients with sarcoidosis. Graefes Arch Clin Exp Ophthalmol. 2006;244:433–437.
  • Kitaichi N, Kitamura M, Namba K, et al. Elevation of surfactant protein D, a pulmonary disease biomarker, in the sera of uveitis patients with sarcoidosis. Jpn J Ophthalmol. 2010;54:81–84.
  • Kim DS, Paik SH, Lim CM, et al. Value of ICAM-1 expression and soluble ICAM-1 level as a marker of activity in sarcoidosis. Chest. 1999;115:1059–1065.
  • Berlin M, Lundahl J, Skold CM, et al. The lymphocytic alveolitis in sarcoidosis is associated with increased amounts of soluble and cell-bound adhesion molecules in bronchoalveolar lavage fluid and serum. J Intern Med. 1998;244:333–340.
  • Ziora D, Jastrzebski D, Adamek M, et al. Circulating concentration of markers of angiogenic activity in patients with sarcoidosis and idiopathic pulmonary fibrosis. BMC Pulm Med. 2015;15:113.
  • Ashitani J-I, Matsumoto N, Nakazato M. Elevated alpha-defensin levels in plasma of patients with pulmonary sarcoidosis. Respirology. 2007;12:339–345.
  • Korucu E, Pur Ozyigit L, Ortakoylu MG, et al. Cathelicidin as a link between sarcoidosis and tuberculosis. Sarcoidosis, Vasc Diffus Lung Dis off J WASOG. 2015;32:222–227.
  • Svendsen CB, Hummelshoj T, Munthe-Fog L, et al. Ficolins and mannose-binding lectin in Danish patients with sarcoidosis. Respir Med. 2008;102:1237–1242.
  • Kato S, Inui N, Hozumi H, et al. Neutrophil gelatinase-associated lipocalin in patients with sarcoidosis. Respir Med. 2018;138:S20–S23.
  • Tanimura H, Mizuno K, Okamoto H. Serum levels of soluble CD163 as a specific marker of macrophage/monocyte activity in sarcoidosis patients. Sarcoidosis, Vasc Diffus Lung Dis off J WASOG. 2015;32:99–105.
  • Bargagli E, Mazzi A, Mezzasalma F, et al. The analysis of tryptase in serum of sarcoidosis patients. Inflammation. 2009;32:310–314.
  • Johansen JS, Milman N, Hansen M, et al. Increased serum YKL-40 in patients with pulmonary sarcoidosis–a potential marker of disease activity? Respir Med. 2005;99:396–402.
  • Date T, Shinozaki T, Yamakawa M, et al. Elevated plasma brain natriuretic peptide level in cardiac sarcoidosis patients with preserved ejection fraction. Cardiology. 2007;107:277–280.
  • Kandolin R, Lehtonen J, Airaksinen J, et al. Usefulness of cardiac troponins as markers of early treatment response in cardiac sarcoidosis. Am J Cardiol. 2015;116:960–964.
  • Gupta D, Gupta S, Balamugesh T, et al. Circulating D-dimers as a marker of disease activity in pulmonary sarcoidosis. Indian J Chest Dis Allied Sci. 2005;47:175–179.
  • Shorr AF, Hnatiuk OW. Circulating D dimer in patients with sarcoidosis. Chest. 2000;117:1012–1016.
  • Kyriacou DN. Reliability and validity of diagnostic tests. Acad Emerg Med. 2001;8:404–405.
  • Trevethan R. Sensitivity, specificity, and predictive values: foundations, pliabilities, and pitfalls in research and practice. Front Public Heal. 2017;5:307.
  • Beirne P, Pantelidis P, Charles P, et al. Multiplex immune serum biomarker profiling in sarcoidosis and systemic sclerosis. Eur Respir J. 2009;34:1376–1382.
  • Loza MJ, Brodmerkel C, Bois RMD, et al. Inflammatory profile and response to anti-tumor necrosis factor therapy in patients with chronic pulmonary sarcoidosis. Clin Vaccine Immunol. 2011;18:931–939.
  • Carleo A, Bennett D, Rottoli P. Biomarkers in sarcoidosis: the contribution of system biology. Curr Opin Pulm Med. 2016;22:509–514.
  • Crouser ED, Fingerlin TE, Yang IV, et al. Application of “Omics” and systems biology to sarcoidosis research. Ann Am Thorac Soc. 2017;14:S445–S451.
  • Schupp JC, Vukmirovic M, Kaminski N, et al. Transcriptome profiles in sarcoidosis and their potential role in disease prediction. Curr Opin Pulm Med. 2017;23:487–492.
  • Monast CS, Li K, Judson MA, et al. Sarcoidosis extent relates to molecular variability. Clin Exp Immunol. 2017;188:444–454.
  • Kachamakova-Trojanowska N, Jazwa-Kusior A, Szade K, et al. Molecular profiling of regulatory T cells in pulmonary sarcoidosis. J Autoimmun. 2018;94:56–69.
  • Huho A, Foulke L, Jennings T, et al. The role of serum amyloid A staining of granulomatous tissues for the diagnosis of sarcoidosis. Respir Med. 2017;126:1–8.
  • Geamanu A, Gupta SV, Bauerfeld C, et al. Metabolomics connects aberrant bioenergetic, transmethylation, and gut microbiota in sarcoidosis. Metabolomics. 2016;12.
  • Zimmermann A, Knecht H, Hasler R, et al. Atopobium and Fusobacterium as novel candidates for sarcoidosis-associated microbiota. Eur Respir J. 2017;50(6). pii: 1600746. doi: 10.1183/13993003.00746-2016.
  • Clarke EL, Lauder AP, Hofstaedter CE, et al. Microbial lineages in sarcoidosis. a metagenomic analysis tailored for low-microbial content samples. Am J Respir Crit Care Med. 2018;197:225–234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.