429
Views
8
CrossRef citations to date
0
Altmetric
Review

Nanoparticle-based immunotherapy: state of the art and future perspectives

, , , , , , , , & show all
Pages 513-525 | Received 02 Oct 2019, Accepted 27 Apr 2020, Published online: 20 May 2020

References

  • Venkataraman A, Amadi EV, Chen Y, et al. Carbon nanotube assembly and integration for applications. Nanoscale Res Lett. 2019;14:220.
  • Oberdörster G, Oberdörster E. Oberdörster. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823.
  • Chen Y, Feng X, Meng S. Site-specific drug delivery in the skin for the localized treatment of skin diseases. Expert Opin Drug Deliv. 2019;16(8):847–867.
  • Lademann J, Richter H, Schanzer S, et al. Follicular penetration of nanocarriers is an important penetration pathway for topically applied drugs. Hautarzt. 2019;70(3):185–192.
  • Liang XW, Xu ZP, Grice J, et al. Penetration of nanoparticles into human skin. Curr Pharm Des. 2013;19(35):6353–6366.
  • Bossi E, Zanella D, Gornati R, et al. Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes. Sci Rep. 2016;6(1):22254.
  • Papis E, Rossi F, Raspanti M, et al. Engineered cobalt oxide nanoparticles readily enter cells. Toxicol Lett. 2009;189(3):253–259.
  • Decuzzi P, Ferrari M. The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials. 2007;28(18):2915–2922.
  • Naota M, Shimada A, Morita T, et al. Translocation pathway of the intratracheally instilled C60 fullerene from the lung into the blood circulation in the mouse: possible association of diffusion and caveolae-mediated pinocytosis. Toxicol Pathol. 2009;37(4):456–462.
  • Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66(17):2873–2896.
  • Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev pii: S0169-409X(19)30050-X. 2019;143:68–96.
  • Sabbioni E, Fortaner S, Farina M, et al. Interaction with culture medium components, cellular uptake and intracellular distribution of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts. Nanotoxicology. 2014;8(1):88–99.
  • Quadros ME, Marr LC. Environmental and human health risks of aerosolized silver nanoparticles. J Air Waste Manag Assoc. 2010;60(7):770–781.
  • Beech JR, Shin SJ, Smith JA, et al. Mechanisms for targeted delivery of nanoparticles in cancer. Curr Pharm Des. 2013;19(37):6560–6574.
  • Fokong S, Theek B, Wu Z, et al. Image-guided, targeted and triggered drug delivery to tumors using polymer-based microbubbles. J Control Release. 2012;163(1):75–81.
  • Lammers T, Kiessling F, Hennink WE, et al. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release. 2012;161(2):175–187.
  • Li X, Zhao Q, Qiu L. Smart ligand: aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy. J Control Release. 2013;171(2):152–162.
  • Shin SJ, Beech JR, Kelly KA. Targeted nanoparticles in imaging: paving the way for personalized medicine in the battle against cancer. Integr Biol (Camb). 2013;5(1):29–42.
  • Morachis JM, Mahmoud EA, Sankaranarayanan J, et al. Triggered rapid degradation of nanoparticles for gene delivery. J Drug Deliv. 2012;2012:291219.
  • Halamoda-Kenzaoui B, Bremer-Hoffmann S. Main trends of immune effects triggered by nanomedicines in preclinical studies. Int J Nanomedicine. 2018;13:5419–5431.
  • Petrarca C, Perrone A, Verna N, et al. Cobalt nano-particles modulate cytokine in vitro release by human mononuclear cells mimicking autoimmune disease. Int J Immunopathol Pharmacol. 2006;19(4 Suppl):11–14.
  • Reale M, Vianale G, Lotti LV, et al. Effects of palladium nanoparticles on the cytokine release from peripheral blood mononuclear cells of palladium-sensitized women. J Occup Environ Med. 2011;53(9):1054–1060.
  • Nygaard UC, Samuelsen M, Marioara CD, et al. Carbon nanofibers have IgE adjuvant capacity but are less potent than nanotubes in promoting allergic airway responses. Biomed Res Int. 2013;2013:476010.
  • Di Gioacchino M, Petrarca C, Lazzarin F, et al. Immunotoxicity of nanoparticles. Int J Immunopathol Pharmacol. 2011;24(1 Suppl):65–71.
  • Park HS, Kim KH, Jang S, et al. Attenuation of allergic airway inflammation and hyperresponsiveness in a murine model of asthma by silver nanoparticles. Int J Nanomedicine. 2010;5:505–515.
  • Ryan JJ, Bateman HR, Stover A, et al. Fullerene nanomaterials inhibit the allergic response. J Immunol. 2007;179(1):665–672.
  • Tejeda-Mansir A, García-Rendón A, Guerrero-Germán P. Plasmid-DNA lipid and polymeric nanovaccines: a new strategic in vaccines development. Biotechnol Genet Eng Rev. 2019;35(1):46–68.
  • Grimaldi AM, Incoronato M, Salvatore M, et al. Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics. Nanomedicine (Lond). 2017;12(19):2349–23765.
  • Nandedkar TD. Nanovaccines: recent developments in vaccination. J Biosci. 2009;34(6):995–1003.
  • Zaman M, Good MF, Toth I. Nanovaccines and their mode of action. Methods. 2013 May 1;60(3):226–231.
  • Zubeldia JM, Ferrer M, Dávila I, et al. Adjuvants in allergen-specific immunotherapy: modulating and enhancing the immune response. J Investig Allergol Clin Immunol. 2019;29:103–111.
  • Zhang H. Molecularly imprinted nanoparticles for biomedical applications. Adv Mater. 2019;15:e1806328.
  • Pasto A, Giordano F, Evangelopoulos M, et al. Cell membrane protein functionalization of nanoparticles as a new tumor-targeting strategy. Clin Transl Med. 2019;8(1):8.
  • Mahato K, Nagpal S, Shah MA, et al. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech. 2019;9(2):57.
  • RTSS Clinical Trials Partnership. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;6736:31–45.
  • Singh L, Indermun S, Govender M, et al. Drug delivery strategies for antivirals against hepatitis B virus. Virusess. 2018;10(5):E267.
  • Cutts FT, Franceschi S, Goldie S, et al. Human papillomavirus and HPV vaccines: a review. Bull World Health Organ. 2007;85(9):719–726.
  • Gomes AC, Mohsen M, Bachmann MF. Harnessing nanoparticles for immunomodulation and vaccines. Vaccines (Basel). 2017;5(1):E6.
  • Lv S, Wang J, Dou S, et al. Nanoparticles encapsulating hepatitis B virus cytosine-phosphate-guanosine induce therapeutic immunity against HBV infection. Hepatology. 2014;59(2):385–394.
  • Wen R, Umeano AC, Kou Y, et al. Nanoparticle systems for cancer vaccine. Nanomedicine (Lond). 2019;14(5):627–648.
  • Bai Y, Wang Y, Zhang X, et al. Potential applications of nanoparticles for tumor microenvironment remodeling to ameliorate cancer immunotherapy. Int J Pharm. 2019;570:118636.
  • Ali OA, Lewin SA, Dranoff G, et al. Vaccines combined with immune checkpoint antibodies promote cytotoxic T-cell activity and tumor eradication. Cancer Immunol Res. 2016;4(2):95–100.
  • Flemming A. Autoimmunity: nanoparticles engineered for antigen-specific immunotherapy. Nat Rev Immunol. 2016;16(4):204–205.
  • Pearson RM, Podojil JR, Shea LD, et al. Overcoming challenges in treating autoimmunity: development of tolerogenic immune-modifying nanoparticles. Nanomedicine. 2019;18:282–291.
  • Shamji MH, Durham SR. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J Allergy Clin Immunol. 2017 Dec;140(6):1485–1498.
  • Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010;62(1):3–11.
  • Craparo EF, Bondi` ML. Application of polymeric nanoparticles in immunotherapy. Curr Opin Allergy Clin Immunol. 2012;12(6):658–664.
  • Landriscina A, Rosen J, Friedman AJ. Biodegradable chitosan nano- particles in drug delivery for infectious disease. Nanomedicine (Lond). 2015;10(10):1609–1619.
  • Torres MP, Wilson-Welder JH, Lopac SK, et al. Polyanhydride microparticles enhance dendritic cell antigen presentation and activation. Acta Biomater. 2011;7(7):2857–2864.
  • Maldonado RA, LaMothe RA, Ferrari JD, et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc Natl Acad Sci U S A. 2015;112(2):156–165.
  • Zhang X-Q, Dahle CE, Baman NK, et al. Potent antigen-specific immune responses stimulated by codelivery of CpG ODN and antigens in degradable microparticles. J Immunother. 2007;30(5):469–478.
  • Marti´nez Go´mez JM, Fischer S, Csaba N, et al. A protective allergy vaccine based on CpG- and protamine-containing PLGA microparticles. Pharm Res. 2007;24(10):1927–1935.
  • San Román B, Irache JM, Gómez S, et al. Co-Delivery of ovalbumin and CpG motifs into microparticles protected sensitized mice from anaphylaxis. Int Arch Allergy Immunol. 2009;149(2):111–118.
  • Gómez S, Gamazo C, Roman BS, et al. Gantrez AN nanoparticles as an adjuvant for oral immunotherapy with allergens. Vaccine. 2007;25(29):5263–5271.
  • Go´mez S, Gamazo C, San Roman B, et al. Development of a novel vaccine delivery system based on Gantrez nanoparticles. J Nanosci Nanotechnol. 2006;6(9):3283–3289.
  • Bernasconi V, Norling K, Bally M, et al. Mucosal vaccine development based on liposome technology. J Immunol Res. 2016;2016:5482087.
  • Galvain S, Andre´ C, Vatrinet C, et al. Safety and efficacy studies of liposomes in specific immunotherapy. Curr Ther Res. 1999;60(5):278–294.
  • Audera C, Ramirez J, Soler E, et al. Liposomes as carriers for allergy immunotherapy. Clin Exp Allergy. 1991;21(1):139–144.
  • Ichikawa K, Asai T, Shimizu K, et al. Suppression of immune response by antigen-modified liposomes encapsulating model agents: A novel strategy for the treatment of allergy. J Control Release. 2013;167(3):284–289.
  • Pohlit H, Bellinghausen I, Frey H, et al. Recent advances in the use of nanoparticles for allergen-specific immunotherapy. Allergy. 2017;72(10):1461–1474.
  • Perrie Y, Crofts F, Devitt A, et al. Designing liposomal adjuvants for the next generation of vaccines. Adv Drug Deliv Rev. 2016;99:85–96.
  • Pfaar O, Bonini S, Cardona V, et al. Perspectives in allergen immunotherapy: 2017 and beyond. Allergy. 2018;73(Suppl 1):5–23.
  • Zeltins A. Construction and characterization of virus-like particles: a review. Mol Biotechnol. 2013;53(1):92–107.
  • Walpita P, Barr J, Sherman M, et al. Vaccine potential of nipah virus-like particles. PLoS One. 2011;6(4):e18437.
  • Jegerlehner A, Zabel F, Langer A, et al. Bacterially produced recombinant influenza vaccines based on virus- like particles. PLoS One. 2013;8(11):e78947.
  • Anzaghe M, Schülke S, Scheurer S. Virus-like particles as carrier systems to enhance immunomodulation in allergen immunotherapy. Curr Allergy Asthma Rep. 2018;18(12):71.
  • Mohsen MO, Gomes AC, Vogel M, et al. interaction of viral capsid-derived virus-like particles (VLPs) with the innate immune system. Vaccines (Basel). 2018;6(3):37.
  • Tewalt EF, Grant JM, Granger EL, et al. Viral sequestration of antigen subverts cross presentation to CD8(+) T cells. PLoS Pathog. 2009;5(5):e1000457.
  • Ito T, Yang M, Wang YH, et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med. 2007;204(1):105–115.
  • Klimek L, Kündig T, Kramer MF, et al. Virus-like particles (VLP) in prophylaxis and immunotherapy of allergic diseases. Allergo J Int. 2018;27(8):245–255.
  • Kim CS, Tonga GY, Solfiell D, et al. Inorganic nanosystems for therapeutic delivery: status and prospects. Adv Drug Deliv Rev. 2013;65(1):93–99.
  • Pandey RS, Sahu S, Sudheesh MS, et al. Carbohydrate modified ultrafine ceramic nanoparticles for allergen immunotherapy. Int Immunopharmacol. 2011;11(8):925–931.
  • Marengo M, Bonomi F, Iametti S, et al. Recognition and uptake of free and nanoparticle-bound betalactoglobulin–a food allergen–by human monocytes. Mol Nutr Food Res. 2011;55(11):1708–1716.
  • Barreto E, Serra MF, Dos Santos RV, et al. local administration of gold nanoparticles prevents pivotal pathological changes in murine models of atopic asthma. J Biomed Nanotechnol. 2015;11(6):1038–1050.
  • Astruc D, Boisselier E, Ornelas C. dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, and nanomedicine. Chem Rev. 2010;110(4):1857–1959.
  • Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci. 2014;39(2):268–307.
  • Madan T, Munshi N, De TK, et al. Biodegradable nanoparticles as a sustained release system for the antigens/allergens of Aspergillus fumigatus: preparation and characterisation. Int J Pharm. 1997;159(2):135–147.
  • Givens BE, Geary SM, Salem AK. Nanoparticle-based CpG-oligonucleotide therapy for treating allergic asthma. Immunotherapy. 2018;10(7):595–604.
  • Ballester M, Jeanbart L, Titta A, et al. Nanoparticle conjugation enhances the immunomodulatory effects of intranasally delivered CpG in house dust mite-allergic mice. Sci Rep. 2015;5(1):14274–14286.
  • Go´mez S, Gamazo C, San Roman B, et al. Allergen immunotherapy with nanoparticles containing lipopolysaccharide from Brucella ovis. Eur J Pharm Biopharm. 2008;70(3):711–717.
  • Go´mez S, Gamazo C, San Roman B, et al. A novel nanoparticulate adjuvant for immunotherapy with Lolium perenne. J Immunol Methods. 2009;348(1–2):1–8.
  • Herzberger J, Niederer K, Pohlit H, et al. polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation. Chem Rev. 2016;116(4):2170–2243.
  • Pohlit H, Bellinghausen I, Scho¨mer M, et al. biodegradable Ph-sensitive poly(ethylene glycol) nanocarriers for allergen encapsulation and controlled release. Biomacromolecules. 2015;16(10):3103–3111.
  • Laverny G, Casset A, Purohit A, et al. Immunomodulatory properties of multi-walled carbon nanotubes in peripheral blood mononuclear cells from healthy subjects and allergic patients. Toxicol Lett. 2013;217(2):91–101.
  • Ronzani C, Casset A, Pons F. Exposure to multi-walled carbon nanotubes results in aggravation of airway inflammation and remodeling and in increased production of epithelium-derived innate cytokines in a mouse model of asthma. Arch Toxicol. 2014;88(2):489–499.
  • Pedata P, Petrarca C, Garzillo EM, et al. Immunotoxicological impact of occupational and environmental nanoparticles exposure: the influence of physical, chemical, and combined characteristics of the particles. Int J Immunopathol Pharmacol. 2016;29(3):343–353.
  • Petrarca C, Clemente E, Amato V, et al. Engineered metal based nanoparticles and innate immunity. Clin Mol Allergy. 2015;13:13.
  • Najafi-Hajivar S, Zakeri-Milani P, Mohammadi H, et al. Overview on experimental models of interactions between nanoparticles and the immune system. Biomed Pharmacother. 2016;83:1365–1378.
  • Zhu M, Wang R, Nie G. Applications of nanomaterials as vaccine adjuvants. Hum Vaccin Immunother. 2014;10(9):2761–2774.
  • Kelly HG, Kent SJ, Wheatley AK. Immunological basis for enhanced immunity of nanoparticle vaccines. Expert Rev Vaccines. 2019;18(3):269–280.
  • Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine delivery systems: size matters. Aaps J. 2013 Jan;15(1):85–94.
  • Kalkanidis M, Pietersz GA, Xiang SD, et al. Methods for nano-particle based vaccine formulation and evaluation of their immunogenicity. Methods. 2006 Sep;40(1):20–29.
  • TePas EC, Hoyte EG, McIntire JJ, et al. Clinical efficacy of microencapsulated timothy grass pollen extract in grass-allergic individuals. Ann Allergy Asthma Immunol. 2004;92(1):25–31.
  • Sirvent S, Soria I, Cirauqui C, et al. Novel vaccines targeting dendritic cells by coupling allergoids to nonoxidized mannan enhance allergen uptake and induce functional regulatory T cells through programmed death ligand 1. J Allergy Clin Immunol. 2016;138(2):558–567.e11.
  • Broos S, Lundberg K, Akagi T, et al. Immunomodulatory nanoparticles as adjuvants and allergen-delivery system to human dendritic cells: implications for specific immunotherapy. Vaccine. 2010;28(31):5075–5085.
  • Norton SK, Wijesinghe DS, Dellinger A, et al. Epoxyeicosatrienoic acids are involved in the C70 fullerene derivative– induced control of allergic asthma. J Allergy Clin Immunol. 2012;130(3):761–769.
  • Shershakova N, Baraboshkina E, Andreev S, et al. Anti-inflammatory effect of fullerene C60 in a mice model of atopic dermatitis. J Nanobiotechnology. 2016;14(1):8–18.
  • Li GP, Liu ZG, Liao B, et al. Induction of Th1-type immune response by chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen Der p 2 for oral vaccination in mice. Cell Mol Immunol. 2009;6(1):45–50.
  • Beilvert F, Tissot A, Langelot M, et al. DNA/amphiphilic block copolymer nanospheres reduce asthmatic response in a mouse model of allergic asthma. HumGene Ther. 2012;23(6):597–608.
  • Balenga NAB, Zahedifard F, Weiss R, et al. Protective efficiency of dendrosomes as novel nano-sized adjuvants for DNA vaccination against birch pollen allergy. J Biotechnol. 2006;124(3):602–614.
  • Nigam S, Ghosh PC, Sarma PU. Altered immune response to liposomal allergens of Aspergillus fumigatus in mice. Int J Pharm. 2002;236(1–2):97–109.
  • Nouri HR, Varasteh A, Jaafari MR, et al. Induction of a Th1 immune response and suppression of IgE via immunotherapy with a recombinant hybrid molecule encapsulated in liposome-protamine-DNA nanoparticles in a model of experimental allergy. Immunol Res. 2015;62(3):280–291.
  • Caldero´n L, Facenda E, Machado L, et al. Modulation of the specific allergic response by mite allergens encapsulated into liposomes. Vaccine. 2006;24:38–39.
  • Tasaniyananda N, Chaisri U, Tungtrongchitr A, et al. Mouse model of cat allergic rhinitis and intranasal liposome-adjuvanted refined Fel d 1 vaccine. PloS One. 2016;11(3):e0150463–e577.
  • Ishii M, Koyama A, Iseki H, et al. Anti-allergic potential of oligomannose-coated liposome-entrapped Cry j 1 as immunotherapy for Japanese cedar pollinosis in mice. Int Immunopharmacol. 2010;10(9):1041–1046.
  • Kawakita A, Shirasaki H, Yasutomi M, et al. Immunotherapy with oligomannose-coated liposomes ameliorates allergic symptoms in a murine food allergy model. Allergy. 2012;67(3):371–379.
  • Meechan P, Tungtrongchitr A, Chaisri U, et al. Intranasal, liposome-adjuvanted cockroach allergy vaccines made of refined major allergen and whole-body extract of periplaneta americana. Int Arch Allergy Immunol. 2013;161(4):351–362.
  • Wheeler AW, Henderson DC, Youlten LJF, et al. immunogenicity in guinea pigs and tolerance in grass pollen-sensitive volunteers of enteric- coated grass pollen allergens. Int Arch Allergy Immunol. 1987;83(4):354–358.
  • Pereira MA, Rebouças JS, Ferraz-Carvalho RS, et al. Poly(anhydride) nanoparticles containing cashew nut proteins can induce a strong Th1 and Treg immune response after oral administration. Eur J Pharm Biopharm. 2018;127:51–60.
  • O’Konek JJ, Landers JJ, Janczak KW, et al. Nanoemulsion adjuvant-driven redirection of TH2 immunity inhibits allergic reactions in murine models of peanut allergy. J Allergy Clin Immunol. 2018;141(6):2121–2131.
  • Robinson MK, Babcock LS, Horn PA, et al. Specific antibody responses to subtilisin Carlsberg (Alcalase) in mice: development of an intranasal exposure model. Fundam Appl Toxicol. 1996;34(1):15–24.
  • Garaczi E, Szabo´ K, Francziszti L, et al. DermAll nanomedicine for allergen-specific immunotherapy. Nanomedicine. 2013;9(8):1245–1254.
  • Khakzad MR, Hajavi J, Sadeghdoust M, et al. Effects of lipopolysaccharide-loaded PLGA nanoparticles in mice model of asthma by sublingual immunotherapy. Int J Polym Mater. 2020;69(4):222–229.
  • Srivastava KD, Siefert A, Fahmy TM, et al. Investigation of peanut oral immunotherapy with CpG/peanut nanoparticles in a murine model of peanut allergy. J Allergy Clin Immunol. 2016;138(2):536–543. e4.
  • Brotons-Canto A, Gamazo C, Martín-Arbella N, et al. Evaluation of nanoparticles as oral vehicles for immunotherapy against experimental peanut allergy. Int J Biol Macromol. 2018;110:328–335.
  • Brotons-Canto A, Gamazo C, Martín-Arbella N, et al. Mannosylated nanoparticles for oral immunotherapy in a murine model of peanut allergy. J Pharm Sci. 2019;108(7):2421–2429.
  • Tahara Y, Honda S, Kamiya N, et al. A solid-in-oil nanodispersion for transcutaneous protein delivery. J Control Release. 2008;131(1):14–18.
  • Kitaoka M, Shin Y, Kamiya N, et al. Transcutaneous peptide immunotherapy of japanese cedar pollinosis using solid-in-oil nanodispersion technology. AAPS PharmSciTech. 2015;16(6):1418–1424.
  • Kong Q, Kitaoka M, Wakabayashi R, et al. Transcutaneous immunotherapy of pollinosis using solid-in-oil nanodispersions loaded with T cell epitope peptides. Int J Pharm. 2017;529(1–2):401–409.
  • Song TW. A practical view of immunotherapy for food allergy. Korean J Pediatr. 2016 Feb;59(2):47–53.
  • Kratzer B, Köhler C, Hofer S, et al. Prevention of allergy by virus-like nanoparticles (VNP) delivering shielded versions of major allergens in a humanized murine allergy model. Allergy. 2019;74(2):246–260.
  • Liu Q, Wang X, Liu X, et al. Use of polymeric nanoparticle platform targeting the liver to induce treg-mediated antigen-specific immune tolerance in a pulmonary allergen sensitization model. ACS Nano. 2019;13(4):4778–4794.
  • Kostadinova AI, Middelburg J, Ciulla M, et al. PLGA nanoparticles loaded with beta-lactoglobulin-derived peptides modulate mucosal immunity and may facilitate cow’s milk allergy prevention. Eur J Pharmacol. 2018;818:211–220.
  • Litwin A, Flanagan M, Entis G, et al. Oral immunotherapy with short ragweed extract in a novel encapsulated preparation: A double- blind study. J Allergy Clin Immunol. 1997;100:30–38.
  • Basomba A, Tabar AI, de Rojas DH, et al. Allergen vaccination with a liposome-encapsulated extract of Dermatophagoides pteronyssinus: a randomized, double-blind, placebo-controlled trial in asthmatic patients. J Allergy Clin Immunol. 2002;109:943–948.
  • Ku¨ndig T, Senti G, Schnetzeler G, et al. Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults. J Allergy Clin Immunol. 2006;117(6):1470–1476.
  • Senti G, Johansen P, Haug S, et al. Use of A-type CpG oligodeoxynucleotides as an adjuvant in allergen-specific immunotherapy in humans: a phase I/IIa clinical trial. Clin Exp Allergy. 2009;39(4):562–570.
  • Ku¨ndig TM, Klimek L, Schendzielorz P, et al. Is The allergen really needed in allergy immunotherapy? Curr Treat Options Allergy. 2015;2(1):72–82.
  • Klimek L, Willers J, Hammann-Haenni A, et al. Assessment of clinical efficacy of CYT003- QbG10 in patients with allergic rhinoconjunctivitis: a phase IIb study. Clin Exp Allergy. 2011;41(9):1305–1312.
  • Beeh KM, Kanniess F, Wagner F, et al. The novel TLR-9 agonist QbG10 shows clinical efficacy in persistent allergic asthma. J Allergy Clin Immunol. 2013;131:866–874.
  • Jutel M, Agache I, Bonini S, et al. International consensus on allergen immunotherapy II: mechanisms, standardization, and pharmacoeconomics. J Allergy Clin Immunol. 2016;137(2):358–368.
  • Chen BX, Wilson SR, Das M, et al. Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci U S A. 1998;95(18):10809–10813.
  • Caracciolo G, Farokhzad OC, Mahmoudi M. Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol. 2017;35(3):257–264.
  • Adamson SX, Lin Z, Chen R, et al. Experimental challenges regarding the in vitro investigation of the nanoparticle-biocorona in disease states. Toxicol In Vitro. 2018;51:40–49.
  • Szebeni J, Muggia F, Gabizon A, et al. Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev. 2011;63:1020–1030.
  • Shen L, Tenzer S, Storck W. Protein corona-mediated targeting of nanocarriers to B cells allows redirection of allergic immune responses. J Allergy Clin Immunol. 2018;142:1558–1570.
  • Weber C, Morsbach S, Landfester K. Possibilities and limitations of different separation techniques for the analysis of the protein corona. Angew Chem Int Ed Engl. 2019;58(37):12787–12794.
  • Farrokhi S, Abbasirad N, Movahed A, et al. TLR9-based immunotherapy for the treatment of allergic diseases. Immunotherapy. 2017;9(4):339–346.
  • Bobo D, Robinson KJ, Islam J, et al. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res. 2016 Oct;33(10):2373–2387.
  • ClinicalTrials.gov. [Accessed 2020 Mar 15]. Available at: https://clinicaltrials.gov.
  • Zhu FC, Zhang J, Zhang XF, et al. Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults: A large-scale, randomised, double-blind placebo-controlled, phase 3 trial. Lancet. 2010;376(9744):895–902.
  • Weiss R, Scheiblhofer S, Machado Y, et al. New approaches to transcutaneous immunotherapy: targeting dendritic cells with novel allergen conjugates. Curr Opin Allergy Clin Immunol. 2013;13(6):669–676.
  • Prasad V, Mailankody S. Research and development spending to bring a single cancer drug to market and revenues after approval. JAMA Intern Med. 2017;177(11):1569–1575.
  • Bhardwaj V, Kaushik A, Khatib ZM, et al. Recalcitrant Issues and New Frontiers in Nano-Pharmacology. Front Pharmacol. 2019;10:1369.
  • Passalacqua G, Bagnasco D, Canonica GW. 30 years of sublingual immunotherapy. Allergy. 2019. 10.1111/all.14113
  • Compalati E, Penagos M, Tarantini F, et al. Specific immunotherapy for respiratory allergy: state of the art according to current meta-analyses. Ann Allergy Asthma Immunol. 2009;102(1):22–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.