1,268
Views
42
CrossRef citations to date
0
Altmetric
Review

Update on pollen-food allergy syndrome

, &
Pages 561-578 | Received 13 Mar 2020, Accepted 22 May 2020, Published online: 21 Jul 2020

References

  • Bjorksten B, Clayton T, Ellwood P, et al. Worldwide time trends for symptoms of rhinitis and conjunctivitis: phase III of the International Study of Asthma and Allergies in Childhood. Pediatr Allergy Immunol. 2008 Mar;19(2):110–124.
  • Sasso F, Izard M, Beneteau T, et al. 18-year evolution of asthma and allergic diseases in French urban schoolchildren in relation to indoor air pollutant levels. Respir Med. 2019 Mar;148:31–36.
  • Werfel T, Asero R, Ballmer-Weber B, et al. Position paper of the EAACI: food allergy due to immunological cross-reactions with common inhalant allergens. Allergy. 2015;70:(September):1079–90.
  • Turner PJ, Dawson TC, Skypala IJ, et al. Management of pollen food and oral allergy syndrome by health care professionals in the United Kingdom [letter research support, Non-U.S. Gov’t]. Ann Allergy Asthma Immunol. 2015 May;114(5):427–8 e1.
  • Muluk NB, Cingi C. Oral allergy syndrome [Review]. Am J Rhinol Allergy. 2018 Jan 1;32(1):27–30.
  • Ma S, Sicherer SH, Nowak-Wegrzyn A. A survey on the management of pollen-food allergy syndrome in allergy practices. J Allergy Clin Immunol. 2003 Oct;112(4):784–788.
  • Price A, Ramachandran S, Smith GP, et al. Oral allergy syndrome (pollen-food allergy syndrome). Dermatitis. 2015 Mar-Apr;26(2):78–88.
  • Osterballe M, Hansen TK, Mortz CG, et al. The prevalence of food hypersensitivity in an unselected population of children and adults. Pediatr Allergy Immunol. 2005 Nov;16(7):567–573.
  • Cuesta-Herranz J, Lazaro M, Figueredo E, et al. Allergy to plant-derived fresh foods in a birch- and ragweed-free area. Clin Exp Allergy. 2000 Oct;30(10):1411–1416.
  • Skypala IJ, Calderon MA, Leeds AR, et al. Development and validation of a structured questionnaire for the diagnosis of oral allergy syndrome in subjects with seasonal allergic rhinitis during the UK birch pollen season. Clin Exp Allergy. 2011 Jul;41(7):1001–1011.
  • Versluis A, van Os-medendorp H, Kruizinga AG, et al. Cofactors in allergic reactions to food: physical exercise and alcohol are the most important. Immun Inflamm Dis. 2016 Dec;4(4):392–400.
  • Inomata N, Miyagawa M, Aihara M. High prevalence of sensitization to gibberellin-regulated protein (peamaclein) in fruit allergies with negative immunoglobulin E reactivity to Bet v 1 homologs and profilin: clinical pattern, causative fruits and cofactor effect of gibberellin-regulated protein allergy. J Dermatol. 2017;44(7):735–741.
  • Baek CH, Bae YJ, Cho YS, et al. Food-dependent exercise-induced anaphylaxis in the celery-mugwort-birch-spice syndrome [Case Reports]. Allergy. 2010 Jun 1;65(6):792–793.
  • Mansoor DK, Sharma HP. Clinical presentations of food allergy. Pediatr Clin North Am. 2011 Apr;58(2):315–326. ix.
  • Kim M, Ahn Y, Yoo Y, et al. Clinical manifestations and risk factors of anaphylaxis in pollen-food allergy syndrome. Yonsei Med J. 2019 Oct;60(10):960–968.
  • Sicherer SH, Sampson HA. Food allergy. J Allergy Clin Immunol. 2010 Feb;125(2 Suppl 2):S116–25.
  • Soares-Weiser K, Takwoingi Y, Panesar SS, et al. The diagnosis of food allergy: a systematic review and meta-analysis. Allergy. 2014 Jan;69(1):76–86.
  • Mastrorilli C, Cardinale F, Giannetti A, et al. Pollen-food allergy syndrome: a not so rare disease in childhood. Medicina (Kaunas). 2019 Sep 26;55:10.
  • Di Fraia M, Arasi S, Castelli S, et al. A new molecular multiplex IgE assay for the diagnosis of pollen allergy in Mediterranean countries: a validation study. Clin Exp Allergy. 2019 Mar;49(3):341–349.
  • Muraro A, Werfel T, Hoffmann-Sommergruber K, et al. EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy. 2014 Aug;69(8):1008–1025.
  • Radauer C, Bublin M, Wagner S, et al. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008 Apr;121(4):847–52 e7.
  • Midoro-Horiuti T, Brooks EG, Goldblum RM. Pathogenesis-related proteins of plants as allergens. Ann Allergy Asthma Immunol. 2001 Oct;87(4):261–271.
  • Kapingidza AB, Pye SE, Hyduke N, et al. Comparative structural and thermal stability studies of Cuc m 2.0101, Art v 4.0101 and other allergenic profilins. Mol Immunol. 2019 Jul 18;114:19–29.
  • Salcedo G, Sanchez-Monge R, Diaz-Perales A, et al. Plant non-specific lipid transfer proteins as food and pollen allergens. Clin Exp Allergy. 2004 Sep;34(9):1336–1341.
  • Breiteneder H. Thaumatin-like proteins – a new family of pollen and fruit allergens. Allergy. 2004 May;59(5):479–481.
  • Karamloo F, Wangorsch A, Kasahara H, et al. Phenylcoumaran benzylic ether and isoflavonoid reductases are a new class of cross-reactive allergens in birch pollen, fruits and vegetables. Eur J Biochem. 2001 Oct;268(20):5310–5320.
  • Torres M, Palomares O, Quiralte J, et al. An enzymatically active beta-1,3-glucanase from ash pollen with allergenic properties: a particular member in the oleaceae family. PLoS One. 2015;10(7):e0133066.
  • Jappe U, Schwager C. Relevance of lipophilic allergens in food allergy diagnosis. Curr Allergy Asthma Rep. 2017 Aug 9;17(9):61.
  • Kondo Y, Tokuda R, Urisu A, et al. Assessment of cross-reactivity between Japanese cedar (Cryptomeria japonica) pollen and tomato fruit extracts by RAST inhibition and immunoblot inhibition. Clin Exp Allergy. 2002 Apr;32(4):590–594.
  • Sénéchal H, Santrucek J, Melcova M, et al., A new allergen family involved in pollen food associated syndrome: snakin/gibberellin regulated proteins. J Allergy Clin Immunol. 2018;141(1):411–414.
  • Homann A, Schramm G, Jappe U. Glycans and glycan-specific IgE in clinical and molecular allergology: sensitization, diagnostics, and clinical symptoms. J Allergy Clin Immunol. 2017 Aug;140(2):356–368.
  • Patel S, Goyal A. Chitin and chitinase: role in pathogenicity, allergenicity and health. Int J Biol Macromol. 2017 Apr;97:331–338.
  • Weber RW. Cross-reactivity of pollen allergens: impact on allergen immunotherapy. Ann Allergy Asthma Immunol. 2007 Sep;99(3):203–211. quiz 212-3, 231.
  • Egger M, Mutschlechner S, Wopfner N, et al. Pollen-food syndromes associated with weed pollinosis: an update from the molecular point of view [research support, Non-U.S. Gov’t Review]. Allergy. 2006 Apr;61(4):461–476.
  • Popescu FD. Cross-reactivity between aeroallergens and food allergens. World J Methodol. 2015 Jun 26;5(2):31–50.
  • Pauli G, Metz-Favre C. Cross reactions between pollens and vegetable food allergens. Rev Mal Respir. 2013;30:328–337.
  • Carlson G, Coop C. Pollen food allergy syndrome (PFAS): a review of current available literature. Ann Allergy Asthma Immunol. 2019 Oct;123(4):359–365.
  • Faber MA, Van Gasse AL, Decuyper II, et al. Cross-reactive aeroallergens: which need to cross our mind in food allergy diagnosis? J Allergy Clin Immunol Pract. 2018 Nov - Dec;6(6):1813–1823.
  • Yagami A, Ebisawa M. New findings, pathophysiology, and antigen analysis in pollen-food allergy syndrome. Curr Opin Allergy Clin Immunol. 2019 Jun;19(3):218–223.
  • Garcia BE, Lizaso MT. Cross-reactivity syndromes in food allergy. J Investig Allergol Clin Immunol. 2011;21(3):162–170. quiz 2 p following 170.
  • Ebner C, Hirschwehr R, Bauer L, et al. Identification of allergens in apple, pear, celery, carrot and potato: cross-reactivity with pollen allergens [Review]. Monogr Allergy. 1996;32:73–77.
  • Bohle B, Radakovics A, Jahn-Schmid B, et al. Bet v 1, the major birch pollen allergen, initiates sensitization to Api g 1, the major allergen in celery: evidence at the T cell level [research support, Non-U.S. Gov’t]. Eur J Immunol. 2003 Dec;33(12):3303–3310.
  • Hoffmann-Sommergruber K, O’Riordain G, Ahorn H, et al. Molecular characterization of Dau c 1, the Bet v 1 homologous protein from carrot and its cross-reactivity with Bet v 1 and Api g 1 [research support, Non-U.S. Gov’t]. Clin Exp Allergy. 1999 Jun;29(6):840–847.
  • Wagner A, Szwed A, Buczylko K, et al. Allergy to apple cultivars among patients with birch pollinosis and oral allergy syndrome. Ann Allergy Asthma Immunol. 2016 Oct;117(4):399–404.
  • Asero R. Relevance of pollen-specific IgE levels to the development of apiaceae hypersensitivity in patients with birch pollen allergy. Allergy. 1997 May;52(5):560–564.
  • Scheurer S, Wangorsch A, Haustein D, et al. Cloning of the minor allergen Api g 4 profilin from celery (Apium graveolens) and its cross-reactivity with birch pollen profilin Bet v 2 [clinical trial controlled clinical trial]. Clin Exp Allergy. 2000 Jul;30(7):962–971.
  • Rodriguez-Perez R, Fernandez-Rivas M, Gonzalez-Mancebo E, et al. Peach profilin: cloning, heterologous expression and cross-reactivity with Bet v 2 [comparative study research support, Non-U.S. Gov’t]. Allergy. 2003 Jul;58(7):635–640.
  • Reindl J, Rihs HP, Scheurer S, et al. IgE reactivity to profilin in pollen-sensitized subjects with adverse reactions to banana and pineapple [research support, Non-U.S. Gov’t. Int Arch Allergy Immunol. 2002 Jun;128(2):105–114.
  • Callejo A, Sanchis ME, Armentia A, et al. A new pollen-fruit cross-reactivity. Allergy. 2002 Nov;57(11):1088–1089.
  • Sirvent S, Tordesillas L, Villalba M, et al. Pollen and plant food profilin allergens show equivalent IgE reactivity [research support, Non-U.S. Gov’t]. Ann Allergy Asthma Immunol. 2011 May;106(5):429–435.
  • Tordesillas L, Pacios LF, Palacin A, et al. Characterization of IgE epitopes of Cuc m 2, the major melon allergen, and their role in cross-reactivity with pollen profilins [research support, Non-U.S. Gov’t]. Clin Exp Allergy. 2010 Jan;40(1):174–181.
  • de Martino M, Novembre E, Cozza G, et al. Sensitivity to tomato and peanut allergens in children monosensitized to grass pollen [research support, Non-U.S. Gov’t]. Allergy. 1988 Apr;43(3):206–213.
  • Raap U, Schaefer T, Kapp A, et al. Exotic food allergy: anaphylactic reaction to lychee [case reports]. J Investig Allergol Clin Immunol. 2007;17(3):199–201.
  • Pauli G, Bessot JC, Dietemann-Molard A, et al. Celery sensitivity: clinical and immunological correlations with pollen allergy [research support, Non-U.S. Gov’t]. Clin Allergy. 1985 May;15(3):273–279.
  • Stager J, Wuthrich B, Johansson SG. Spice allergy in celery-sensitive patients [research support, Non-U.S. Gov’t]. Allergy. 1991 Aug;46(6):475–478.
  • Anliker MD, Borelli S, Wuthrich B. Occupational protein contact dermatitis from spices in a butcher: a new presentation of the mugwort-spice syndrome [case reports]. Contact Dermatitis. 2002 Feb;46(2):72–74.
  • Wuthrich B, Stager J, Johansson SG. Celery allergy associated with birch and mugwort pollinosis [research support, Non-U.S. Gov’t]. Allergy. 1990 Nov;45(8):566–571.
  • Bauer L, Ebner C, Hirschwehr R, et al. IgE cross-reactivity between birch pollen, mugwort pollen and celery is due to at least three distinct cross-reacting allergens: immunoblot investigation of the birch-mugwort-celery syndrome [research support, Non-U.S. Gov’t]. Clin Exp Allergy. 1996 Oct;26(10):1161–1170.
  • Pastorello EA, Pravettoni V, Farioli L, et al. Hypersensitivity to mugwort (Artemisia vulgaris) in patients with peach allergy is due to a common lipid transfer protein allergen and is often without clinical expression. J Allergy Clin Immunol. 2002 Aug;110(2):310–317.
  • Sugita Y, Makino T, Mizawa M, et al. Mugwort-mustard allergy syndrome due to broccoli consumption. Case Rep Dermatol Med. 2016;2016:8413767.
  • Asero R, Mistrello G, Amato S. The nature of melon allergy in ragweed-allergic subjects: a study of 1000 patients. Allergy Asthma Proc. 2011 Jan-Feb;32(1):64–67.
  • Anderson LB Jr., Dreyfuss EM, Logan J, et al. Melon and banana sensitivity coincident with ragweed pollinosis. J Allergy. 1970 May;45(5):310–319.
  • Enberg RN, Leickly FE, McCullough J, et al. Watermelon and ragweed share allergens [research support, Non-U.S. Gov’t]. J Allergy Clin Immunol. 1987 Jun;79(6):867–875.
  • Palacin A, Cumplido J, Figueroa J, et al. Cabbage lipid transfer protein Bra o 3 is a major allergen responsible for cross-reactivity between plant foods and pollens [randomized controlled trial research support, Non-U.S. Gov’t]. J Allergy Clin Immunol. 2006 Jun;117(6):1423–1429.
  • Lombardero M, Garcia-Selles FJ, Polo F, et al. Prevalence of sensitization to Artemisia allergens Art v 1, Art v 3 and Art v 60 kDa. Cross-reactivity among Art v 3 and other relevant lipid-transfer protein allergens [research support, Non-U.S. Gov’t]. Clin Exp Allergy. 2004 Sep;34(9):1415–1421.
  • Deng S, Yin J. Mugwort pollen-related food allergy: lipid transfer protein sensitization and correlation with the severity of allergic reactions in a Chinese Population. Allergy Asthma Immunol Res. 2019 Jan;11(1):116–128.
  • Lauer I, Miguel-Moncin MS, Abel T, et al. Identification of a plane pollen lipid transfer protein (Pla a 3) and its immunological relation to the peach lipid-transfer protein, Pru p 3 [research support, Non-U.S. Gov’t]. Clin Exp Allergy. 2007 Feb;37(2):261–269.
  • Asero R. Co-recognition of lipid transfer protein in pollen and foods in northern Italy: clinician’s view. Eur Ann Allergy Clin Immunol. 2010 Dec;42(6):205–208.
  • Fu W, Gao Z, Gao L, et al. Identification of a 62-kDa major allergen from artemisia pollen as a putative galactose oxidase [research support, Non-U.S. Gov’t]. Allergy. 2018 May;73(5):1041–1052.
  • Borghesan F, Mistrello G, Amato S, et al. Mugwort-fennel-allergy-syndrome associated with sensitization to an allergen homologous to Api g 5 [case reports]. Eur Ann Allergy Clin Immunol. 2013 Aug 1;45(4):130–137.
  • Lukschal A, Wallmann J, Bublin M, et al. Mimotopes for Api g 5, a relevant cross-reactive allergen, in the celery-mugwort-birch-spice syndrome. Allergy Asthma Immunol Res. 2016 Mar;8(2):124–131.
  • Nakagawa M, Hanada M, Amano H. A case of anaphylactic reaction to chamomile tea in a patient with mugwort pollinosis [case reports letter]. Allergol Int. 2019 Jul;68(3):396–398.
  • Andres C, Chen WC, Ollert M, et al. Anaphylactic reaction to camomile tea [case reports]. Allergol Int. 2009 Mar;58(1):135–136.
  • de la Torre Morin F, Sanchez Machin I, Garcia Robaina JC, et al. Clinical cross-reactivity between artemisia vulgaris and matricaria chamomilla (chamomile). J Investig Allergol Clin Immunol. 2001;11(2):118–122.
  • Reider N, Sepp N, Fritsch P, et al. Anaphylaxis to camomile: clinical features and allergen cross-reactivity. Clin Exp Allergy. 2000 Oct;30(10):1436–1443.
  • Martinez S, Gouitaa M, Tummino C, et al., The cypress/citrus syndrome. Rev Fr Allergol. 2015;55(4):305–307.
  • Wagner S, Radauer C, Hafner C, et al. Characterization of cross-reactive bell pepper allergens involved in the latex-fruit syndrome [research support, Non-U.S. Gov’t]. Clin Exp Allergy. 2004 Nov;34(11):1739–1746.
  • Biedermann T, Winther L, Till SJ, et al. Birch pollen allergy in Europe. Allergy. 2019 Jul;74(7):1237–1248.
  • Geroldinger-Simic M, Zelniker T, Aberer W, et al. Birch pollen-related food allergy: clinical aspects and the role of allergen-specific IgE and IgG4 antibodies. J Allergy Clin Immunol. 2011 Mar;127(3):616–22 e1.
  • Ebner C, Birkner T, Valenta R, et al. Common epitopes of birch pollen and apples – studies by western and northern blot. J Allergy Clin Immunol. 1991 Oct;88(4):588–594.
  • Vieths S, Scheurer S, Ballmer-Weber B. Current understanding of cross-reactivity of food allergens and pollen. Ann N Y Acad Sci. 2002 May;964:47–68.
  • Asero R, Massironi F, Velati C. Detection of prognostic factors for oral allergy syndrome in patients with birch pollen hypersensitivity. J Allergy Clin Immunol. 1996 Feb;97(2):611–616.
  • Fritsch R, Bohle B, Vollmann U, et al. Bet v 1, the major birch pollen allergen, and Mal d 1, the major apple allergen, cross-react at the level of allergen-specific T helper cells. J Allergy Clin Immunol. 1998 Oct;102(4 Pt 1):679–686.
  • Kim JH, Kim SH, Park HW, et al. Oral allergy syndrome in birch pollen-sensitized patients from a Korean University Hospital. J Korean Med Sci. 2018 Aug 13;33(33):e218.
  • Karamloo F, Scheurer S, Wangorsch A, et al. Pyr c 1, the major allergen from pear (Pyrus communis), is a new member of the Bet v 1 allergen family. J Chromatogr B Biomed Sci Appl. 2001 May 25;756(1–2):281–293.
  • Kitzmuller C, Zulehner N, Roulias A, et al. Correlation of sensitizing capacity and T-cell recognition within the Bet v 1 family. J Allergy Clin Immunol. 2015 Jul;136(1):151–158.
  • Bohle B. T-cell epitopes of food allergens. Clin Rev Allergy Immunol. 2006 Apr;30(2):97–108.
  • Bohle B. The impact of pollen-related food allergens on pollen allergy. Allergy. 2007 Jan;62(1):3–10.
  • Oberhuber C, Bulley SM, Ballmer-Weber BK, et al. Characterization of Bet v 1-related allergens from kiwifruit relevant for patients with combined kiwifruit and birch pollen allergy. Mol Nutr Food Res. 2008 Nov;52(Suppl 2):S230–40.
  • Hauser M, Roulias A, Ferreira F, et al. Panallergens and their impact on the allergic patient. Allergy Asthma Clin Immunol. 2010 Jan 18;6(1):1–14.
  • Radauer C, Lackner P, Breiteneder H. The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol Biol. 2008 Oct 15;8(1):286.
  • Seutter von Loetzen C, Hoffmann T, MJ H, et al. Secret of the major birch pollen allergen Bet v 1: identification of the physiological ligand. Biochem J. 2014 Feb 1;457(3):379–390.
  • Seutter von Loetzen C, Jacob T, Hartl-Spiegelhauer O, et al. Ligand recognition of the major birch pollen allergen Bet v 1 is isoform dependent. PLoS One. 2015;10(6):e0128677.
  • Roth-Walter F, Gomez-Casado C, Pacios LF, et al. Bet v 1 from birch pollen is a lipocalin-like protein acting as allergen only when devoid of iron by promoting Th2 lymphocytes. J Biol Chem. 2014 Jun 20;289(25):17416–17421.
  • Radauer C, Breiteneder H. Pollen allergens are restricted to few protein families and show distinct patterns of species distribution. J Allergy Clin Immunol. 2006 Jan;117(1):141–147.
  • Jankiewicz A, Aulepp H, Baltes W, et al. Allergic sensitization to native and heated celery root in pollen-sensitive patients investigated by skin test and IgE binding. Int Arch Allergy Immunol. 1996 Nov;111(3):268–278.
  • Movérare R, Westritschnig K, Svensson M, et al. Different IgE reactivity profiles in birch pollen-sensitive patients from six European populations revealed by recombinant allergens: an imprint of local sensitization. Int Arch Allergy Immunol. 2002 Aug;128(4):325–335.
  • Valenta R, Duchene M, Ebner C, et al. Profilins constitute a novel family of functional plant pan-allergens. J Exp Med. 1992 Feb 1;175(2):377–385.
  • Santos A, Van Ree R. Profilins: mimickers of allergy or relevant allergens? Int Arch Allergy Immunol. 2011;155(3):191–204.
  • Fah J, Wuthrich B, Vieths S. Anaphylactic reaction to lychee fruit: evidence for sensitization to profilin. Clin Exp Allergy. 1995 Oct;25(10):1018–1023.
  • Alvarado MI, Jimeno L, De La Torre F, et al. Profilin as a severe food allergen in allergic patients overexposed to grass pollen. Allergy. 2014 Dec;69(12):1610–1616.
  • Sinha M, Singh RP, Kushwaha GS, et al. Current overview of allergens of plant pathogenesis related protein families. Sci World J. 2014;2014:543195.
  • Dubiela P, Del Conte R, Cantini F, et al. Impact of lipid binding on the tertiary structure and allergenic potential of Jug r 3, the non-specific lipid transfer protein from walnut. Sci Rep. 2019 Feb 14;9(1):2007.
  • Abdullah SU, Alexeev Y, Johnson PE, et al. Ligand binding to an allergenic lipid transfer protein enhances conformational flexibility resulting in an increase in susceptibility to gastroduodenal proteolysis. Sci Rep. 2016 Jul;26(6):30279.
  • Asensio T, Crespo JF, Sanchez-Monge R, et al. Novel plant pathogenesis-related protein family involved in food allergy. J Allergy Clin Immunol. 2004 Oct;114(4):896–899.
  • Asero R, Pravettoni V. Anaphylaxis to plant-foods and pollen allergens in patients with lipid transfer protein syndrome. Curr Opin Allergy Clin Immunol. 2013 Aug;13(4):379–385.
  • Faber MA, Van Gasse AL, Decuyper II, et al. IgE-reactivity profiles to nonspecific lipid transfer proteins in a northwestern European country. J Allergy Clin Immunol. 2017 Feb;139(2):679–682 e5.
  • Skypala IJ, Cecchi L, Shamji MH, et al. Lipid transfer protein allergy in the United Kingdom: characterization and comparison with a matched Italian cohort. Allergy. 2019 Jul;74(7):1340–1351.
  • Borges JP, Barre A, Culerrier R, et al. How reliable is the structural prediction of IgE-binding epitopes of allergens? The case study of plant lipid transfer proteins. Biochimie. 2007 Jan;89(1):83–91.
  • Kader JC. Lipid-transfer proteins in plants. Ann Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:627–654.
  • Douliez J, Michon T, Elmorjani K, et al. Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J Cereal Sci. 2000;32:1–20.
  • Cruz F, Julca I, Gomez-Garrido J, et al. Genome sequence of the olive tree, olea Europaea. Gigascience. 2016 Jun;27(5):29.
  • Tejera ML, Villalba M, Batanero E, et al. Identification, isolation, and characterization of ole e 7, a new allergen of olive tree pollen. J Allergy Clin Immunol. 1999 Oct;104(4 Pt 1):797–802.
  • Chardin H, Mayer C, Senechal H, et al. Lipid transfer protein 1 is a possible allergen in arabidopsis thaliana. Int Arch Allergy Immunol. 2003 Jun;131(2):85–90.
  • Garcia-Selles FJ, Diaz-Perales A, Sanchez-Monge R, et al. Patterns of reactivity to lipid transfer proteins of plant foods and artemisia pollen: an in vivo study. Int Arch Allergy Immunol. 2002 Jun;128(2):115–122.
  • Borges JP, Jauneau A, Brule C, et al. The lipid transfer proteins (LTP) essentially concentrate in the skin of rosaceae fruits as cell surface exposed allergens. Plant Physiol Biochem. 2006 Oct;44(10):535–542.
  • Ahrazem O, Ibanez MD, Lopez-Torrejon G, et al. Lipid transfer proteins and allergy to oranges. Int Arch Allergy Immunol. 2005;137(3):201–210.
  • Diaz-Perales A, Lombardero M, Sanchez-Monge R, et al. Lipid-transfer proteins as potential plant panallergens: cross-reactivity among proteins of artemisia pollen, castanea nut and rosaceae fruits, with different IgE-binding capacities. Clin Exp Allergy. 2000 Oct;30(10):1403–1410.
  • Sanchez-Lopez J, Tordesillas L, Pascal M, et al. Role of Art v 3 in pollinosis of patients allergic to Pru p 3. J Allergy Clin Immunol. 2014 Apr;133(4):1018–1025.
  • Gao ZS, Yang ZW, Wu SD, et al. Peach allergy in China: a dominant role for mugwort pollen lipid transfer protein as a primary sensitizer. J Allergy Clin Immunol. 2013 Jan;131(1):224–6e1-3.
  • Figueroa J, Blanco C, Dumpierrez AG, et al. Mustard allergy confirmed by double-blind placebo-controlled food challenges: clinical features and cross-reactivity with mugwort pollen and plant-derived foods. Allergy. 2005 Jan;60(1):48–55.
  • Ibrahim AR, Kawamoto S, Nishimura M, et al. A new lipid transfer protein homolog identified as an IgE-binding antigen from Japanese cedar pollen. Biosci Biotechnol Biochem. 2010;74(3):504–509.
  • Sanchez-Lopez J, Asturias JA, Enrique E, et al. Cupressus arizonica pollen: a new pollen involved in the lipid transfer protein syndrome? J Investig Allergol Clin Immunol. 2011;21(7):522–526.
  • Enrique E, Cistero-Bahima A, Bartolome B, et al. Platanus acerifolia pollinosis and food allergy. Allergy. 2002 Apr;57(4):351–356.
  • Wangorsch A, Larsson H, Messmer M, et al. Molecular cloning of plane pollen allergen Pla a 3 and its utility as diagnostic marker for peach associated plane pollen allergy. Clin Exp Allergy. 2016 May;46(5):764–774.
  • Morales M, Lopez-Matas MA, Moya R, et al. Cross-reactivity among non-specific lipid-transfer proteins from food and pollen allergenic sources. Food Chem. 2014 Dec;15(165):397–402.
  • Ciprandi G, Del Barba P, Silvestri M, et al. Pru p 3 sensitization in children with allergy to parietaria pollens. Acta Biomed. 2019 May 23;90(2):265–268.
  • Scala E, Alessandri C, Bernardi ML, et al. Cross-sectional survey on immunoglobulin E reactivity in 23 077 subjects using an allergenic molecule-based microarray detection system. Clin Exp Allergy. 2010;40(6):911–921.
  • Higginbotham JD, Snodin DJ, Eaton KK, et al. Safety evaluation of thaumatin (talin protein). Food Chem Toxicol. 1983;21(6):815–823.
  • Palacin A, Tordesillas L, Gamboa P, et al. Characterization of peach thaumatin-like proteins and their identification as major peach allergens. Clin Exp Allergy. 2010;40(9):1422–1430.
  • Cortegano I, Civantos E, Aceituno E, et al. Cloning and expression of a major allergen from Cupressus arizonica pollen, Cup a 3, a PR-5 protein expressed under polluted environment. Allergy. 2004 May;59(5):485–490.
  • Liu JJ, Zamani A, Ekramoddoullah AK. Expression profiling of a complex thaumatin-like protein family in western white pine. Planta. 2010 Feb;231(3):637–651.
  • Soman KV, Midoro-Horiuti T, Ferreon JC, et al. Homology modeling and characterization of IgE binding epitopes of mountain cedar allergen Jun a 3. Biophys J. 2000 Sep;79(3):1601–1609.
  • Fujimura T, Futamura N, Midoro-Horiuti T, et al. Isolation and characterization of native Cry j 3 from Japanese cedar (Cryptomeria japonica) pollen. Allergy. 2007 May;62(5):547–553.
  • Togawa A, Panzani RC, Garza MA, et al. Identification of Italian cypress (Cupressus sempervirens) pollen allergen Cup s 3 using homology and cross-reactivity. Ann Allergy Asthma Immunol. 2006 Sep;97(3):336–342.
  • Palacin A, Rivas LA, Gomez-Casado C, et al. The involvement of thaumatin-like proteins in plant food cross-reactivity: a multicenter study using a specific protein microarray. PLoS One. 2012;7(9):e44088.
  • Tiotiu A, Brazdova A, Longe C, et al. Urtica dioica pollen allergy: clinical, biological, and allergomics analysis. Ann Allergy Asthma Immunol. 2016 Nov;117(5):527–534.
  • Torres M, Alvarez-Garcia E, Bartra J, et al. The allergenic structure of the thaumatin-like protein Ole e 13 is degraded by processing of raw olive fruits. J Investig Allergol Clin Immunol. 2014;24(3):162–168.
  • Jimenez-Lopez JC, Robles-Bolivar P, Lopez-Valverde FJ, et al. Ole e 13 is the unique food allergen in olive: structure-functional, substrates docking, and molecular allergenicity comparative analysis. J Mol Graph Model. 2016 May;66:26–40.
  • Vieths S, Frank E, Scheurer S, et al. Characterization of a new IgE-binding 35-kDa protein from birch pollen with cross-reacting homologues in various plant foods. Scand J Immunol. 1998 Mar;47(3):263–272.
  • Karamloo F, Schmitz N, Scheurer S, et al. Molecular cloning and characterization of a birch pollen minor allergen, Bet v 5, belonging to a family of isoflavone reductase-related proteins. J Allergy Clin Immunol. 1999 Nov;104(5):991–999.
  • Castro L, Crespo JF, Rodriguez J, et al. Immunoproteomic tools are used to identify masked allergens: ole e 12, an allergenic isoflavone reductase from olive (Olea europaea) pollen. Biochim Biophys Acta. 2015 Dec;1854(12):1871–1880.
  • Mas S, Torres M, Garrido-Arandia M, et al. Ash pollen immunoproteomics: identification, immunologic characterization, and sequencing of 6 new allergens. J Allergy Clin Immunol. 2014 Mar;133(3):923–6 e3.
  • Huecas S, Villalba M, Rodriguez R. Ole e 9, a major olive pollen allergen is a 1,3-beta-glucanase. Isolation, characterization, amino acid sequence, and tissue specificity. J Biol Chem. 2001 Jul 27;276(30):27959–27966.
  • Villalba M, Rodriguez R, Batanero E. The spectrum of olive pollen allergens. From structures to diagnosis and treatment. Methods. 2014Mar1;66(1):44–54.
  • Palomares O, Villalba M, Quiralte J, et al. 1,3-beta-glucanases as candidates in latex-pollen-vegetable food cross-reactivity. Clin Exp Allergy. 2005 Mar;35(3):345–351.
  • Aleksic I, Popovic M, Dimitrijevic R, et al. Molecular and immunological characterization of Mus a 5 allergen from banana fruit. Mol Nutr Food Res. 2012 Mar;56(3):446–453.
  • Rodriguez-Romero A, Hernandez-Santoyo A, Fuentes-Silva D, et al. Structural analysis of the endogenous glycoallergen Hev b 2 (endo-beta-1,3-glucanase) from hevea brasiliensis and its recognition by human basophils. Acta Crystallogr D Biol Crystallogr. 2014 Feb;70(Pt 2):329–341.
  • Compes E, Hernandez E, Quirce S, et al. Hypersensitivity to black locust (Robinia pseudoacacia) pollen: “allergy mirages”. Ann Allergy Asthma Immunol. 2006 Apr;96(4):586–592.
  • Schwager C, Kull S, Behrends J, et al. Peanut oleosins associated with severe peanut allergy-importance of lipophilic allergens for comprehensive allergy diagnostics. J Allergy Clin Immunol. 2017 Nov;140(5):1331–1338 e8.
  • Zuidmeer-Jongejan L, Fernandez-Rivas M, Winter MG, et al. Oil body-associated hazelnut allergens including oleosins are underrepresented in diagnostic extracts but associated with severe symptoms. Clin Transl Allergy. 2014 Feb 2;4(1):4.
  • Akkerdaas JH, Schocker F, Vieths S, et al. Cloning of oleosin, a putative new hazelnut allergen, using a hazelnut cDNA library. Mol Nutr Food Res. 2006 Jan;50(1):18–23.
  • Leduc V, Moneret-Vautrin DA, Tzen JT, et al. Identification of oleosins as major allergens in sesame seed allergic patients. Allergy. 2006 Mar;61(3):349–356.
  • Kim HU, Hsieh K, Ratnayake C, et al. A novel group of oleosins is present inside the pollen of arabidopsis. J Biol Chem. 2002 Jun 21;277(25):22677–22684.
  • Hsieh K, Huang AH. Lipid-rich tapetosomes in brassica tapetum are composed of oleosin-coated oil droplets and vesicles, both assembled in and then detached from the endoplasmic reticulum. Plant J. 2005 Sep;43(6):889–899.
  • Jiang PL, Wang CS, Hsu CM, et al. Stable oil bodies sheltered by a unique oleosin in lily pollen. Plant Cell Physiol. 2007 Jun;48(6):812–821.
  • Pasaribu B, Chen CS, Liao YK, et al. Identification of caleosin and oleosin in oil bodies of pine pollen. Plant Physiol Biochem. 2017 Feb;111:20–29.
  • Rivera-Martos O, Sutra J-P, Sénéchal H, et al., editors. Réactions croisées entre pollen et graine de Brassica napus: implications des allergènes non hydrosolubles. 9ème congrès francophone d’allergologie; 2014; Paris, France: Revue Française d’Allergologie.
  • Levesque-Lemay M, Chabot D, Hubbard K, et al. Tapetal oleosins play an essential role in tapetosome formation and protein relocation to the pollen coat. New Phytol. 2016 Jan;209(2):691–704.
  • Swoboda I, Grote M, Verdino P, et al. Molecular characterization of polygalacturonases as grass pollen-specific marker allergens: expulsion from pollen via submicronic respirable particles. J Immunol. 2004 May 15;172(10):6490–6500.
  • Ibarrola I, Arilla MC, Martinez A, et al. Identification of a polygalacturonase as a major allergen (Pla a 2) from platanus acerifolia pollen. J Allergy Clin Immunol. 2004;113(6):1185–1191.
  • Han HY, Kim HJ, Jeong SH, et al. The flavonoid jaceosidin from artemisia princeps induces apoptotic cell death and inhibits the Akt pathway in oral cancer cells. Evid Based Complement Alternat Med. 2018;2018:5765047.
  • Mori T, Yokoyama M, Komiyama N, et al. Purification, identification, and cDNA cloning of Cha o 2, the second major allergen of Japanese cypress pollen. Biochem Biophys Res Commun. 1999 Sep 16;263(1):166–171.
  • Miyaji K, Okamoto N, Saito A, et al. Cross-reactivity between major IgE core epitopes on Cry j 2 allergen of Japanese cedar pollen and relevant sequences on Cha o 2 allergen of Japanese cypress pollen. Allergol Int. 2016 Feb 23 Open access:1-7. DOI:10.1016/j.alit.2016.01.003.
  • Shahali Y, Sutra JP, Hilger C, et al., Identification of a polygalacturonase (Cup s 2) as the major CCD-bearing allergen in Cupressus sempervirens pollen. Allergy. 2017;72(1):1806–1810.
  • Oeo-Santos C, Mas S, Quiralte J, et al. A hypoallergenic polygalacturonase isoform from olive pollen is implicated in pollen-pollen cross-reactivity. Int Arch Allergy Immunol. 2018;177:290–301.
  • Mas S, Oeo-Santos C, Cuesta-Herranz J, et al. A relevant IgE-reactive 28 kDa protein identified from salsola kali pollen extract by proteomics is a natural degradation product of an integral 47 kDa polygalacturonase. BBA Proteins Proteomics. 2017;1865:1067–1076.
  • Sarkar MB, Sircar G, Ghosh N, et al. Cari p 1, a novel polygalacturonase allergen from papaya acting as respiratory and food sensitizer. Front Plant Sci. 2018;9:823.
  • Inuo C, Kondo Y, Tanaka K, et al., Japanese cedar pollen-based subcutaneous immunotherapy decreases tomato fruit-specific basophil activation. Int Arch Allergy Immunol. 2015;167(2):137–145.
  • Bonds R, Sharma GS, Kondo Y, et al. Pollen food allergy syndrome to tomato in mountain cedar pollen hypersensitivity. Mol Immunol. 2019;111:83–86.
  • Tuppo L, Alessandri C, Pomponi D, et al. Peamaclein – a new peach allergenic protein: similarities, differences and misleading features compared to Pru p 3. Clin Exp Allergy. 2013 Jan;43(1):128–140.
  • Tuppo L, Spadaccini R, Alessandri C, et al. Structure, stability, and IgE binding of the peach allergen peamaclein (Pru p 7). Biopolymers. 2014 Sep;102(5):416–425.
  • Inomata N, Okazaki F, Moriyama T, et al. Identification of peamaclein as a marker allergen related to systemic reactions in peach allergy. Ann Allergy Asthma Immunol. 2014 Feb;112(2):175–177 e3.
  • Inomata N, Miyakawa M, Aihara M. Gibberellin-regulated protein in Japanese apricot is an allergen cross-reactive to Pru p 7. Immun Inflamm Dis. 2017 Dec;5(4):469–479.
  • Inomata N, Miyakawa M, Ikeda N, et al. Identification of gibberellin-regulated protein as a new allergen in orange allergy. Clin Exp Allergy. 2018 Nov;48(11):1509–1520.
  • Tuppo L, Alessandri C, Pasquariello MS, et al., Pomegranate cultivars: identification of the new IgE-binding protein pommaclein and analysis of anti-oxidant variability. J Agric Food Chem. 2017;65(13):2702–2710.
  • Shahali Y, Sutra J-P, Peltre G, et al., IgE reactivity to common cypress (C. sempervirens) pollen extracts: evidence for novel allergens. World Allergy Organ J. 2010;3(8):229–234.
  • Charpin D, Pichot C, Belmonte J, et al. Cypress pollinosis: from tree to clinic. Clin Rev Allergy Immunol. 2019 Apr;56(2):174–195.
  • Shahali Y, Sutra J, Haddad I, et al. Proteomics of cypress pollen allergens using double and triple one-dimensional electrophoresis [research article]. Electrophoresis. 2012;33(3):462–469.
  • Shahali Y, Sutra JP, Charpin D, et al. Differential IgE sensitization to cypress pollen associated to a basic allergen of 14 kDa. Febs J. 2012 Apr;279(8):1445–1455.
  • Sénéchal H, Charpin D, Couderc R, et al. Gibberellin-regulated proteins and the enigma of the « missing link » [Lettre à la rédaction]. Rev Fr Allergol. 2018;58:63–67.
  • Poncet P, Aizawa T, Senechal H. The subtype of cupressaceae pollinosis associated with Pru p 7 sensitization is characterized by a sensitization to a cross-reactive gibberellin-regulated protein in cypress pollen: BP14. Clin Exp Allergy. 2019 Aug;49(8):1163–1166.
  • Hugues B, Didierlaurent A, Charpin D. Cross-reactivity between cypress pollen and peach: a report of seven cases. Allergy. 2006 Oct;61(10):1241–1243.
  • Martinez S, Gouitaa M, Alter M, et al., editors. The cypress/citrus syndrome. 34th EAACI meeting, Barcelona, Spain.; 2015 June 6, 2015; Barcelona, Spain.
  • Klingebiel C, Chantran Y, Arif-Lusson R, et al. Pru p 7 sensitization is a predominant cause of severe, cypress pollen-associated peach allergy. Clin Exp Allergy. 2019 Apr;49(4):526–536.
  • Senechal H, Keykhosravi S, Couderc R, et al. Pollen/fruit syndrome: clinical relevance of the cypress pollen allergenic gibberellin-regulated protein. Allergy Asthma Immunol Res. 2019 Jan;11(1):143–151.
  • Inomata N, Miyakawa M, Aihara M. Eyelid edema as a predictive factor for sensitization to Pru p 7 in peach allergy. J Dermatol. 2016 Aug;43(8):900–905.
  • Daviere JM, Achard P. Gibberellin signaling in plants. Development. 2013 Mar;140(6):1147–1151.
  • Colebrook EH, Thomas SG, Phillips AL, et al. The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol. 2014 Jan 1;217(Pt 1):67–75.
  • Camara MC, Vandenberghe LPS, Rodrigues C, et al. Current advances in gibberellic acid (GA3) production, patented technologies and potential applications. Planta. 2018 Nov;248(5):1049–1062.
  • Tanaka N, Konishi H, Khan MM, et al. Proteome analysis of rice tissues by two-dimensional electrophoresis: an approach to the investigation of gibberellin regulated proteins. Mol Genet Genomics. 2004 Jan;270(6):485–496.
  • Nahirnak V, Almasia NI, Hopp HE, et al. Snakin/GASA proteins: involvement in hormone crosstalk and redox homeostasis. Plant Signal Behav. 2012 Aug;7(8):1004–1008.
  • Tuppo L, Alessandri C, Giangrieco I, et al. Isolation of cypress gibberellin-regulated protein: analysis of its structural features and IgE binding competition with homologous allergens. Mol Immunol. 2019 Jul;31(114):189–195.
  • Alkanfari I, Freeman KB, Roy S, et al. Small-molecule host-defense peptide mimetic antibacterial and antifungal agents activate human and mouse mast cells via mas-related GPCRs. Cells. 2019 3; 8(4):Apr.
  • Davis CM. Food allergies: clinical manifestations, diagnosis, and management. Curr Probl Pediatr Adolesc Health Care. 2009 Nov;39(10):236–254.
  • Rodriguez J, Crespo JF, Lopez-Rubio A, et al. Clinical cross-reactivity among foods of the Rosaceae family. J Allergy Clin Immunol. 2000 Jul;106(1 Pt 1):183–189.
  • Asero R. Is there a role for birch pollen immunotherapy on concomitant food allergy? Curr Treat Options Allergy. 2015 Nov;2:83–89.
  • Pajno GB, Bernardini R, Peroni D, et al. Clinical practice recommendations for allergen-specific immunotherapy in children: the Italian consensus report. Ital J Pediatr. 2017 Jan 23;43(1):13.
  • van der Valk JPM, Nagl B, van Wljk RG, et al. The effect of birch pollen immunotherapy on apple and rMal d 1 challenges in adults with apple allergy. Nutrients. 2020 18; 12(2):Feb.
  • Bohle B, Kinaciyan T, Gerstmayr M, et al. Sublingual immunotherapy induces IL-10-producing T regulatory cells, allergen-specific T-cell tolerance, and immune deviation. J Allergy Clin Immunol. 2007 Sep;120(3):707–713.
  • Kopac P, Rudin M, Gentinetta T, et al. Continuous apple consumption induces oral tolerance in birch-pollen-associated apple allergy. Allergy. 2012 Feb;67(2):280–285.
  • Geroldinger-Simic M, Kinaciyan T, Nagl B, et al. Oral exposure to Mal d 1 affects the immune response in patients with birch pollen allergy. J Allergy Clin Immunol. 2013 Jan;131(1):94–102.
  • Kinaciyan T, Nagl B, Faustmann S, et al. Efficacy and safety of 4 months of sublingual immunotherapy with recombinant Mal d 1 and Bet v 1 in patients with birch pollen-related apple allergy [multicenter study randomized controlled trial research support, Non-U.S. Gov’t]. J Allergy Clin Immunol. 2018 Mar;141(3):1002–1008.
  • Kitzmuller C, Jahn-Schmid B, Kinaciyan T, et al. Sublingual immunotherapy with recombinant Mal d 1 downregulates the allergen-specific Th2 response [letter research support, Non-U.S. Gov’t]. Allergy. 2019 Aug;74(8):1579–1581.
  • Acosta GS, Kinaciyan T, Kitzmuller C, et al. IgE-blocking antibodies following SLIT with recombinant Mal d 1 accord with improved apple allergy. J Allergy Clin Immunol. 2020 Apr 4;S0091-6749(20)30418-8. doi: 10.1016/j.jaci.2020.03.015. Online ahead of print.
  • Incorvaia C, Ridolo E, Mauro M, et al. Allergen immunotherapy for birch-apple syndrome: what do we know? Immunotherapy. 2017 Nov;9(15):1271–1278.
  • Mushtaq S, Amjad M, Ziaf K, et al. Gibberellins application timing modulates growth, physiology, and quality characteristics of two onion (Allium cepa L.) cultivars. Environ Sci Pollut Res Int. 2018 Sep;25(25):25155–25161.
  • Sénéchal H, Visez N, Charpin D, et al. A review of the effects of major atmospheric pollutants on pollen grains, pollen content, and allergenicity [Review]. Sci World J. 2015;2015:1–29.
  • Iriti M, Faoro F. Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci. 2009 Jul 30;10(8):3371–3399.
  • Verhoeckx KCM, Vissers YM, Baumert JL, et al. Food processing and allergenicity. Food Chem Toxicol. 2015 Jun;80:223–240.
  • Jeebhay MF, Moscato G, Bang BE, et al. Food processing and occupational respiratory allergy – an EAACI position paper. Allergy. 2019 Apr 6;74(10):1852–1871.
  • Selb R, Wal JM, Moreno FJ, et al. Assessment of endogenous allergenicity of genetically modified plants exemplified by soybean – Where do we stand? Food Chem Toxicol. 2017 Mar;101:139–148.
  • Toda M, Hellwig M, Henle T, et al. Influence of the maillard reaction on the allergenicity of food proteins and the development of allergic inflammation. Curr Allergy Asthma Rep. 2019 Jan 28;19(1):4.
  • Słowianek M, Skorupa M, Hallmann E, et al. Allergenic potential of tomatoes cultivated in organic and conventional systems. Plant Foods Hum Nutr. 2016 Mar;71(1):35–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.