761
Views
23
CrossRef citations to date
0
Altmetric
Review

The role of Epstein-Barr virus in the etiology of multiple sclerosis: a current review

Pages 1143-1157 | Received 16 Sep 2020, Accepted 04 Nov 2020, Published online: 17 Dec 2020

References

  • Compston A, Coles A. Multiple sclerosis. Lancet. 2008 Oct 25;372(9648):1502–1517.
  • Miller DH, Chard DT, Ciccarelli O. Clinically isolated syndromes. Lancet Neurol. 2012 Feb;11(2):157–169.
  • Willer CJ, Dyment DA, Risch NJ, et al. Twin concordance and sibling recurrence rates in multiple sclerosis. PNAS. 2003;100:12877–12882.
  • Sawcer S, Hellenthal G, Pirinen M, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011 Aug 10;476(7359):214–219.
  • Hedström AK, Huang J, Michel A, et al. High levels of Epstein-Barr virus nuclear antigen-1-specific antibodies and infectious mononucleosis act both independently and synergistically to increase multiple sclerosis risk. Front Neurol. 2020;10:1368.
  • Consortium IMSG. A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nat Commun. 2019 May 20;10(1):2236.
  • Kurtzke JF, Beebe GW, Norman JE Jr. Epidemiology of multiple sclerosis in US veterans: III. Migration and the risk of MS. Neurology. 1985 May;35(5):672–678.
  • Gale CR, Martyn CN. Migrant studies in multiple sclerosis. Prog Neurobiol. 1995;47:425–448.
  • Ascherio A, Munger KL. Epidemiology of multiple sclerosis: from risk factors to prevention - an update. Semin Neurol. 2016 Apr;36(2):103–114.
  • Wallin MT, Page WF, Kurtzke JF. Multiple sclerosis in US veterans of the Vietnam era and later military service: race, sex, and geography. Ann Neurol. 2004 Jan;55(1):65–71.
  • Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. part I: the role of infection. Ann Neurol. 2007;61:288–299.
  • Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964 Mar 28;1(7335):702–703.
  • Thorley-Lawson DA. EBV persistence–introducing the virus. Curr Top Microbiol Immunol. 2015;390(Pt 1):151–209.
  • Kang MS, Kieff E. Epstein-Barr virus latent genes. Exp Mol Med. 2015 Jan 23;47(1):e131.
  • Balfour HH Jr., Odumade OA, Schmeling DO, et al. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. J Infect Dis. 2013 Jan 1;207(1):80–88.
  • Hochberg D, Souza T, Catalina M, et al. Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J Virol. 2004 May;78(10):5194–5204.
  • Niller HH, Bauer G. Epstein-Barr Virus: clinical diagnostics. Methods Mol Biol. 2017;1532:33–55.
  • Haahr S, Hollsberg P. Multiple sclerosis is linked to Epstein-Barr virus infection. Rev Med Virol. 2006 Sep-Oct;16(5):297–310.
  • Ruprecht K. Multiple sclerosis and Epstein-Barr virus: new developments and perspectives. Nervenarzt. 2008 Apr;79(4):399–407.
  • Pohl D. Epstein-Barr virus and multiple sclerosis. J Neurol Sci. 2009 Nov 15;286(1–2):62–64.
  • Salvetti M, Giovannoni G, Aloisi F. Epstein-Barr virus and multiple sclerosis. Curr Opin Neurol. 2009 Jun;22(3):201–206.
  • Ascherio A, Munger KL. Epstein-barr virus infection and multiple sclerosis: a review. J Neuroimmune Pharmacol. 2010 Sep;5(3):271–277.
  • Ascherio A, Munger KL, Lunemann JD. The initiation and prevention of multiple sclerosis. Nat Rev Neurol. 2012 Nov 5;8(11):602–612.
  • Ruprecht K. [Multiple sclerosis and Epstein-Barr virus: a current review]. Akt Neurol. 2013;40: 400–407.
  • Belbasis L, Bellou V, Evangelou E, et al. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 2015 Mar;14(3):263–273.
  • Bar-Or A, Pender MP, Khanna R, et al. Epstein-Barr virus in multiple sclerosis: theory and emerging immunotherapies. Trends Mol Med. 2019 Mar;26(3):296–310.
  • Sumaya CV, Myers LW, Ellison GW. Epstein-Barr virus antibodies in multiple sclerosis. Arch Neurol. 1980;37:94–96.
  • Almohmeed YH, Avenell A, Aucott L, et al. Systematic review and meta-analysis of the sero-epidemiological association between Epstein Barr virus and multiple sclerosis. PLoS One. 2013;8(4):e61110. .
  • Jacobs BM, Giovannoni G, Cuzick J, et al. Systematic review and meta-analysis of the association between Epstein-Barr virus, multiple sclerosis and other risk factors. Mult Scler. 2020 Mar;23:1352458520907901.
  • De Paschale M, Agrappi C, Manco MT, et al. Seroepidemiology of EBV and interpretation of the “isolated VCA IgG” pattern. J Med Virol. 2009 Feb;81(2):325–331.
  • Langer-Gould A, Wu J, Lucas R, et al. Epstein-Barr virus, cytomegalovirus, and multiple sclerosis susceptibility: A multiethnic study. Neurology. 2017 Sep 26;89(13):1330–1337.
  • Deuschle K, Hofmann J, Otto C, et al. Are there Epstein-Barr virus seronegative patients with multiple sclerosis? Mult Scler. 2013 Jan;10(19):1242–1243.
  • Pakpoor J, Disanto G, Gerber JE, et al. The risk of developing multiple sclerosis in individuals seronegative for Epstein-Barr virus: a meta-analysis. Mult Scler. 2012 Jun;11(19):162–166.
  • Kuhle J, Disanto G, Dobson R, et al. Conversion from clinically isolated syndrome to multiple sclerosis: A large multicentre study. Mult Scler. 2015 Feb;13(21):1013–1024.
  • Dobson R, Kuhle J, Middeldorp J, et al. Epstein-Barr-negative MS: a true phenomenon? Neurol Neuroimmunol Neuroinflamm. 2017 Mar;4(2):e318.
  • Abrahamyan S, Eberspächer B, Hoshi MM, et al. Complete Epstein-Barr virus seropositivity in a large cohort of patients with early multiple sclerosis. J Neurol Neurosurg Psychiatry. 2020 Jul;91(7):681–686.
  • Larsen PD, Bloomer LC, Bray PF. Epstein-Barr nuclear antigen and viral capsid antigen antibody titers in multiple sclerosis. Neurology. 1985 Mar;35(3):435–438.
  • Lindsey JW, Hatfield LM, Vu T. Epstein-Barr virus neutralizing and early antigen antibodies in multiple sclerosis. Eur J Neurol. 2010 Oct;17(10):1263–1269.
  • Lunemann JD, Tintore M, Messmer B, et al. Elevated Epstein-Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis. Ann Neurol. 2010 Feb;67(2):159–169.
  • Lucas RM, Ponsonby AL, Dear K, et al. Current and past Epstein-Barr virus infection in risk of initial CNS demyelination. Neurology. 2011 Jul 26;77(4):371–379.
  • Ruprecht K, Wunderlich B, Giess R, et al. Multiple sclerosis: the elevated antibody response to Epstein-Barr virus primarily targets, but is not confined to, the glycine-alanine repeat of Epstein-Barr nuclear antigen-1. J Neuroimmunol. 2014 Jul 15;272(1–2):56–61.
  • Giess RM, Pfuhl C, Behrens JR, et al. Epstein-Barr virus antibodies in serum and DNA load in saliva are not associated with radiological or clinical disease activity in patients with early multiple sclerosis. PLoS One. 2017;12(4):e0175279. .
  • Ascherio A, Munger KL, Lennette ET, et al. Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA. 2001 Dec 26;286(24):3083–3088.
  • Sundstrom P, Juto P, Wadell G, et al. An altered immune response to Epstein-Barr virus in multiple sclerosis: a prospective study. Neurology. 2004 Jun 22;62(12):2277–2282.
  • Levin LI, Munger KL, Rubertone MV, et al. Temporal relationship between elevation of Epstein-Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA. 2005;293(20):2496–2500. .
  • Delorenze GN, Munger KL, Lennette ET, et al. Epstein-Barr virus and multiple sclerosis: evidence of association from a prospective study with long-term follow-up. Arch Neurol. 2006 Apr;10(63):839–844.
  • Munger KL, Levin LI, O’Reilly EJ, et al. Anti-Epstein-Barr virus antibodies as serological markers of multiple sclerosis: a prospective study among United States military personnel. Mult Scler. 2011 Oct;17(10):1185–1193.
  • Decard BF, von Ahsen N, Grunwald T, et al. Low vitamin D and elevated immunoreactivity against Epstein-Barr virus before first clinical manifestation of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2012 Dec;83(12):1170–1173.
  • Pohl D, Krone B, Rostasy K, et al. High seroprevalence of Epstein-Barr virus in children with multiple sclerosis. Neurology. 2006;67:2063–2065.
  • Gordon-Lipkin E, Banwell B. An update on multiple sclerosis in children: diagnosis, therapies, and prospects for the future. Expert Rev Clin Immunol. 2017 Oct;13(10):975–989.
  • Handel AE, Williamson AJ, Disanto G, et al. An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS One. 2010;5(9):e12496. .
  • Rostgaard K, Balfour HH Jr., Jarrett R, et al. Primary Epstein-Barr virus infection with and without infectious mononucleosis. PLoS One. 2019;14(12):e0226436. .
  • Wandinger KP, Jabs W, Siekhaus A, et al. Association between clinical disease activity and Epstein-Barr virus reactivation in MS. Neurology. 2000;55:178–184.
  • Buljevac D, van Doornum GJ, Flach HZ, et al. Epstein-Barr virus and disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2005 Oct;76(10):1377–1381.
  • Zivadinov R, Zorzon M, Weinstock-Guttman B, et al. Epstein-Barr virus is associated with grey matter atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2009 Jun;80(6):620–625.
  • Farrell RA, Antony D, Wall GR, et al. Humoral immune response to EBV in multiple sclerosis is associated with disease activity on MRI. Neurology. 2009 Jul 7;73(1):32–38.
  • Horakova D, Zivadinov R, Weinstock-Guttman B, et al. Environmental Factors Associated with Disease Progression after the First Demyelinating Event: results from the Multi-Center SET Study. PLoS One. 2013;8(1):e53996. .
  • Kvistad S, Myhr KM, Holmoy T, et al. Antibodies to Epstein-Barr virus and MRI disease activity in multiple sclerosis. Mult Scler. 2014 May 19;20:1833–1840.
  • Zivadinov R, Chin J, Horakova D, et al. Humoral responses to herpesviruses are associated with neurodegeneration after a demyelinating event: results from the multi-center set study. J Neuroimmunol. 2014 Aug 15;273(1–2):58–64.
  • Zivadinov R, Cerza N, Hagemeier J, et al. Humoral response to EBV is associated with cortical atrophy and lesion burden in patients with MS. Neurol Neuroimmunol Neuroinflamm. 2016 Feb;3(1):e190.
  • Simpson S Jr., Taylor B, Burrows J, et al. EBV & HHV6 reactivation is infrequent and not associated with MS clinical course. Acta Neurol Scand. 2014 Nov;130(5):328–337.
  • Munger KL, Fitzgerald KC, Freedman MS, et al. No association of multiple sclerosis activity and progression with EBV or tobacco use in BENEFIT. Neurology. 2015 Nov 10;85(19):1694–1701.
  • Cortese M, Munger KL, MartÃnez-Lapiscina EH, et al. Vitamin D, smoking, EBV, and long-term cognitive performance in MS: 11-year follow-up of BENEFIT. Neurology. 2020 May 5;94(18):e1950–e1960.
  • Levin LI, Munger KL, O’Reilly EJ, et al. Primary infection with the Epstein-Barr virus and risk of multiple sclerosis. Ann Neurol. 2010 Jun;67(6):824–830.
  • Ascherio A, Munger KL. EBV and autoimmunity. Curr Top Microbiol Immunol. 2015;390(Pt 1):365–385.
  • https://en.wikipedia.org/wiki/Bradford_Hill_criteria. ( accessed 23 Oct 2020).
  • Racaniello VR. One hundred years of poliovirus pathogenesis. Virology. 2006 Jan 5;344(1):9–16.
  • Garg RK, Mahadevan A, Malhotra HS, et al. Subacute sclerosing panencephalitis. Rev Med Virol. 2019 Sep;29(5):e2058.
  • Bangham CR, Araujo A, Yamano Y, et al. HTLV-1-associated myelopathy/tropical spastic paraparesis. Nat Rev Dis Primers. 2015 Jun 18;1:15012.
  • Balfour HH Jr., Schmeling DO, Grimm-Geris JM. The promise of a prophylactic Epstein-Barr virus vaccine. Pediatr Res. 2020 Jan;87(2):345–352.
  • Dunmire SK, Hogquist KA, Balfour HH. Infectious Mononucleosis. Curr Top Microbiol Immunol. 2015;390(Pt 1):211–240.
  • Rojas M, Restrepo-Jimenez P, Monsalve DM, et al. Molecular mimicry and autoimmunity. J Autoimmun. 2018 Dec;95:100–123.
  • Lang HLE, Jacobsen H, Ikemizu S, et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol. 2002;3:940–943.
  • Holmoy T, Kvale EO, Vartdal F. Cerebrospinal fluid CD4+ T cells from a multiple sclerosis patient cross-recognize Epstein-Barr virus and myelin basic protein. J Neurovirol. 2004 Oct;10(5):278–283.
  • Lunemann JD, Edwards N, Muraro PA, et al. Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain. 2006 Mar 28;129:493–506.
  • Lunemann JD, Jelcic I, Roberts S, et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J Exp Med. 2008 Aug 4;205(8):1763–1773.
  • Jilek S, Schluep M, Meylan P, et al. Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain. 2008 Jul;131(Pt 7):1712–1721.
  • Lindsey JW, deGannes SL, Pate KA, et al. Antibodies specific for Epstein-Barr virus nuclear antigen-1 cross-react with human heterogeneous nuclear ribonucleoprotein L. Mol Immunol. 2016 Jan;69:7–12.
  • Lindsey JW. Antibodies to the Epstein-Barr virus proteins BFRF3 and BRRF2 cross-react with human proteins. J Neuroimmunol. 2017 Sep 15;310:131–134.
  • Tengvall K, Huang J, Hellström C, et al. Molecular mimicry between Anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16955–16960.
  • Schlemm L, Giess RM, Rasche L, et al. Fine specificity of the antibody response to Epstein-Barr nuclear antigen-2 and other Epstein-Barr virus proteins in patients with clinically isolated syndrome: A peptide microarray-based case-control study. J Neuroimmunol. 2016 Aug 15;297:56–62.
  • Lunemann JD, Huppke P, Roberts S, et al. Broadened and elevated humoral immune response to EBNA1 in pediatric multiple sclerosis. Neurology. 2008 Sep 23;71(13):1033–1035.
  • Sundstrom P, Nystrom M, Ruuth K, et al. Antibodies to specific EBNA-1 domains and HLA DRB1*1501 interact as risk factors for multiple sclerosis. J Neuroimmunol. 2009 Oct 30;215(1–2):102–107.
  • Jafari N, van Nierop GP, Verjans GM, et al. No evidence for intrathecal IgG synthesis to Epstein Barr virus nuclear antigen-1 in multiple sclerosis. J Clin Virol. 2010 Sep;49(1):26–31.
  • Mechelli R, Anderson J, Vittori D, et al. Epstein-Barr virus nuclear antigen-1 B-cell epitopes in multiple sclerosis twins. Mult Scler. 2011 Nov;17(11):1290–1294.
  • Pender MP. Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol. 2003;24:584–588.
  • Swanson-Mungerson M, Longnecker R. Epstein-Barr virus latent membrane protein 2A and autoimmunity. Trends Immunol. 2007 May;28(5):213–218.
  • Tracy SI, Kakalacheva K, Lünemann JD, et al. Persistence of Epstein-Barr virus in self-reactive memory B cells. J Virol. 2012 Nov;86(22):12330–12340.
  • Nanbo A, Sugden A, Sugden B. The coupling of synthesis and partitioning of EBV’s plasmid replicon is revealed in live cells. Embo J. 2007 Oct 3;26(19):4252–4262.
  • Laurence M, Benito-Leon J. Epstein-Barr virus and multiple sclerosis: updating Pender’s hypothesis. Mult Scler Relat Disord. 2017 Aug;16:8–14.
  • van Sechel AC, Bajramovic JJ, van Stipdonk MJ, et al. EBV-induced expression and HLA-DR-restricted presentation by human B cells of alpha B-crystallin, a candidate autoantigen in multiple sclerosis. J Immunol. 1999;162:129–135.
  • Hohlfeld R, Dornmair K, Meinl E, et al. The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol. 2016 Feb;15(2):198–209.
  • Hohlfeld R, Dornmair K, Meinl E, et al. The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol. 2016 Mar;15(3):317–331.
  • Hollsberg P, Hansen HJ, Haahr S. Altered CD8+ T cell responses to selected Epstein-Barr virus immunodominant epitopes in patients with multiple sclerosis. Clin Exp Immunol. 2003 Apr;132(1):137–143.
  • Pender MP, Csurhes PA, Lenarczyk A, et al. Decreased T cell reactivity to Epstein-Barr virus infected lymphoblastoid cell lines in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2009 May;80(5):498–505.
  • Pender MP, Csurhes PA, Burrows JM, et al. Defective T-cell control of Epstein-Barr virus infection in multiple sclerosis. Clin Transl Immunology. 2017 Jan;6(1):e126.
  • Gronen F, Ruprecht K, Weissbrich B, et al. Frequency analysis of HLA-B7-restricted Epstein-Barr virus-specific cytotoxic T lymphocytes in patients with multiple sclerosis and healthy controls. J Neuroimmunol. 2006;180:185–192.
  • Angelini DF, Serafini B, Piras E, et al. Increased CD8+ T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis. PLoS Pathog. 2013;9(4):e1003220. .
  • Jaquiery E, Jilek S, Schluep M, et al. Intrathecal immune responses to EBV in early MS. Eur J Immunol. 2010 Mar;40(3):878–887.
  • Serafini B, Rosicarelli B, Franciotta D, et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med. 2007 Nov 26;204(12):2899–2912.
  • Serafini B, Severa M, Columba-Cabezas S, et al. Epstein-Barr virus latent infection and BAFF expression in B cells in the multiple sclerosis brain: implications for viral persistence and intrathecal B-cell activation. J Neuropathol Exp Neurol. 2010 Jul;69(7):677–693.
  • Magliozzi R, Serafini B, Rosicarelli B, et al. B-cell enrichment and epstein-barr virus infection in inflammatory cortical lesions in secondary progressive multiple sclerosis. J Neuropathol Exp Neurol. 2012 Jan;72(1):29–41.
  • Serafini B, Muzio L, Rosicarelli B, et al. Radioactive in situ hybridization for Epstein-Barr virus-encoded small RNA supports presence of Epstein-Barr virus in the multiple sclerosis brain. Brain. 2013 Jan 25;136:e233-e233.
  • Serafini B, Scorsi E, Rosicarelli B, et al. Massive intracerebral Epstein-Barr virus reactivation in lethal multiple sclerosis relapse after natalizumab withdrawal. J Neuroimmunol. 2017 Jun;15(307):14–17.
  • Veroni C, Serafini B, Rosicarelli B, et al. Transcriptional profile and Epstein-Barr virus infection status of laser-cut immune infiltrates from the brain of patients with progressive multiple sclerosis. J Neuroinflammation. 2018 Jan 16;15(1):18.
  • Serafini B, Rosicarelli B, Veroni C, et al. Epstein-Barr virus-specific CD8 T cells selectively infiltrate the brain in multiple sclerosis and interact locally with virus-infected cells: clue for a virus-driven immunopathological mechanism. J Virol. 2019 Dec 15;93(24):e00980.
  • Willis SN, Stadelmann C, Rodig SJ, et al. Epstein-Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain. 2009 Dec;132(Pt 12):3318–3328.
  • Peferoen LA, Lamers F, Lodder LN, et al. Epstein Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis. Brain. 2010 May;133(Pt 5):e137.
  • Sargsyan SA, Shearer AJ, Ritchie AM, et al. Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis. Neurology. 2010 Apr 6;74(14):1127–1135.
  • Torkildsen O, Stansberg C, Angelskar SM, et al. Upregulation of immunoglobulin-related genes in cortical sections from multiple sclerosis patients. Brain Pathol. 2010 Jul;20(4):720–729.
  • Hilton DA, Love S, Fletcher A, et al. Absence of Epstein-Barr virus RNA in multiple sclerosis as assessed by in situ hybridisation. J Neurol Neurosurg Psychiatry. 1994 Aug;57(8):975–976.
  • Sanders VJ, Felisan S, Waddell A, et al. Detection of herpesviridae in postmortem multiple sclerosis brain tissue and controls by polymerase chain reaction. J Neurovirol. 1996 Aug;2(4):249–258.
  • Opsahl ML, Kennedy PG. An attempt to investigate the presence of Epstein Barr virus in multiple sclerosis and normal control brain tissue. J Neurol. 2007 Apr;254(4):425–430.
  • Tzartos JS, Khan G, Vossenkamper A, et al. Association of innate immune activation with latent Epstein-Barr virus in active MS lesions. Neurology. 2012 Jan 3;78(1):15–23.
  • Hassani A, Corboy JR, Al-Salam S, et al. Epstein-Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS One. 2018;13(2):e0192109. .
  • Moreno MA, Or-Geva N, Aftab BT, et al. Molecular signature of Epstein-Barr virus infection in MS brain lesions. Neurol Neuroimmunol Neuroinflamm. 2018 Jul;5(4):e466.
  • Aloisi F, Serafini B, Magliozzi R, et al. Detection of Epstein-Barr virus and B-cell follicles in the multiple sclerosis brain: what you find depends on how and where you look. Brain. 2010 Dec;133(Pt 12):e157.
  • Lassmann H, Niedobitek G, Aloisi F, et al. Epstein-Barr virus in the multiple sclerosis brain: a controversial issue–report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain. 2011 Sep;134(Pt 9):2772–2786.
  • Reiber H, Lange P. Quantification of virus-specific antibodies in cerebrospinal fluid and serum: sensitive and specific detection of antibody synthesis in brain. Clin Chem. 1991 Jul;37(7):1153–1160.
  • Sisay S, Lopez-Lozano L, Mickunas M, et al. Untreated relapsing remitting multiple sclerosis patients show antibody production against latent Epstein Barr Virus (EBV) antigens mainly in the periphery and innate immune IL-8 responses preferentially in the CNS. J Neuroimmunol. 2017 May 15;306:40–45.
  • Otto C, Hofmann J, Ruprecht K. Antibody producing B lineage cells invade the central nervous system predominantly at the time of and triggered by acute Epstein-Barr virus infection: A hypothesis on the origin of intrathecal immunoglobulin synthesis in multiple sclerosis. Med Hypotheses. 2016 Jun;91:109–113.
  • Castellazzi M, Contini C, Tamborino C, et al. Epstein-Barr virus-specific intrathecal oligoclonal IgG production in relapsing-remitting multiple sclerosis is limited to a subset of patients and is composed of low-affinity antibodies. J Neuroinflammation. 2014 Nov;13(11):188.
  • Otto C, Oltmann A, Stein A, et al. Intrathecal EBV antibodies are part of the polyspecific immune response in multiple sclerosis. Neurology. 2011 Apr 12;76(15):1316–1321.
  • Villegas E, Santiago O, Carrillo JA, et al. Low intrathecal immune response of anti-EBNA-1 antibodies and EBV DNA from multiple sclerosis patients. Diagn Microbiol Infect Dis. 2011 May;70(1):85–90.
  • Castellazzi M, Tamborino C, Cani A, et al. Epstein-Barr virus-specific antibody response in cerebrospinal fluid and serum of patients with multiple sclerosis. Mult Scler. 2010 Jul;16(7):883–887.
  • Pohl D, Rostasy K, Jacobi C, et al. Intrathecal antibody production against Epstein-Barr and other neurotropic viruses in pediatric and adult onset multiple sclerosis. J Neurol. 2009 Aug;28(257):212–216.
  • Rand KH, Houck H, Denslow ND, et al. Epstein-Barr virus nuclear antigen-1 (EBNA-1) associated oligoclonal bands in patients with multiple sclerosis. J Neurol Sci. 2000;173:32–39.
  • Jacobi C, Lange P, Reiber H. Quantitation of intrathecal antibodies in cerebrospinal fluid of subacute sclerosing panencephalitis, herpes simplex encephalitis and multiple sclerosis: discrimination between microorganism-driven and polyspecific immune response. J Neuroimmunol. 2007 Jul;187(1–2):139–146.
  • Otto C, Hofmann J, Finke C, et al. The fraction of varicella zoster virus-specific antibodies among all intrathecally-produced antibodies discriminates between patients with varicella zoster virus reactivation and multiple sclerosis. Fluids Barriers CNS. 2014;11(1):3. .
  • Sutkowski N, Conrad B, Thorley-Lawson DA, et al. Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity. 2001 Oct;15(4):579–589.
  • Haahr S, Sommerlund M, Moller-Larsen A, et al. Is multiple sclerosis caused by a dual infection with retrovirus and Epstein-Barr virus? Neuroepidemiology. 1992;11(4–6):299–303. .
  • Ruprecht K, Perron H. Exposure to infant siblings during early life and risk of multiple sclerosis. JAMA. 2005 May 4;293(17):2089;author reply 2089–90.
  • Mameli G, Madeddu G, Mei A, et al. Activation of MSRV-type endogenous retroviruses during infectious mononucleosis and Epstein-Barr virus latency: the missing link with multiple sclerosis? PLoS One. 2013;8(11):e78474. .
  • Munch M, Hvas J, Christensen T, et al. A single subtype of Epstein-Barr virus in members of multiple sclerosis clusters. Acta Neurol Scand. 1998 Dec;98(6):395–399.
  • Brennan RM, Burrows JM, Bell MJ, et al. Strains of Epstein-Barr virus infecting multiple sclerosis patients. Mult Scler. 2010 Jun;16(6):643–651.
  • Lindsey JW, Patel S, Zou J. Epstein-Barr virus genotypes in multiple sclerosis. Acta Neurol Scand. 2008 Feb;117(2):141–144.
  • Simon KC, Yang X, Munger KL, et al. EBNA1 and LMP1 variants in multiple sclerosis cases and controls. Acta Neurol Scand. 2011 Jul;124(1):53–58.
  • Santon A, Cristobal E, Aparicio M, et al. High frequency of co-infection by Epstein-Barr virus types 1 and 2 in patients with multiple sclerosis. Mult Scler. 2011 Nov;17(11):1295–1300.
  • Mechelli R, Manzari C, Policano C, et al. Epstein-Barr virus genetic variants are associated with multiple sclerosis. Neurology. 2015 Mar 4;84:1362–1368.
  • Reiber H, Ungefehr S, Jacobi C. The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult Scler. 1998;4(3):111–117.
  • Dobson R, Ramagopalan S, Davis A, et al. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude. J Neurol Neurosurg Psychiatry. 2013 Aug;84(8):909–914.
  • Deisenhammer F, Zetterberg H, Fitzner B, et al. The cerebrospinal fluid in multiple sclerosis. Front Immunol. 2019;10:726.
  • Obermeier B, Mentele R, Malotka J, et al. Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nat Med. 2008 Jun;14(6):688–693.
  • Jarius S, Eichhorn P, Franciotta D, et al. The MRZ reaction as a highly specific marker of multiple sclerosis: re-evaluation and structured review of the literature. J Neurol. 2017 Mar;264(3):453–466.
  • Ruprecht K, Wildemann B, Jarius S. Low intrathecal antibody production despite high seroprevalence of Epstein-Barr virus in multiple sclerosis: a review of the literature. J Neurol. 2018 Feb;265(2):239–252.
  • Pfuhl C, Oechtering J, Rasche L, et al. Association of serum Epstein-Barr nuclear antigen-1 antibodies and intrathecal immunoglobulin synthesis in early multiple sclerosis. J Neuroimmunol. 2015 Aug 15;285:156–160.
  • Nielsen TR, Rostgaard K, Nielsen NM, et al. Multiple sclerosis after infectious mononucleosis. Arch Neurol. 2007 Jan;64(1):72–75.
  • Greenfield AL, Hauser SL. B-cell therapy for multiple sclerosis: entering an era. Ann Neurol. 2018 Jan;83(1):13–26.
  • Baker D, Marta M, Pryce G, et al. Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine. 2017 Feb;16:41–50.
  • Baker D, Pryce G, James LK, et al. Failed B cell survival factor trials support the importance of memory B cells in multiple sclerosis. Eur J Neurol. 2020 Feb;27(2):221–228.
  • De Jager PL, Simon KC, Munger KL, et al. Integrating risk factors: HLA-DRB1*1501 and Epstein-Barr virus in multiple sclerosis. Neurology. 2008 Mar 25;70(13 Pt 2):1113–1118.
  • Nielsen TR, Rostgaard K, Askling J, et al. Effects of infectious mononucleosis and HLA-DRB1*15 in multiple sclerosis. Mult Scler. 2009 Apr;15(4):431–436.
  • Simon KC, van der Mei IA, Munger KL, et al. Combined effects of smoking, anti-EBNA antibodies, and HLA-DRB1*1501 on multiple sclerosis risk. Neurology. 2010 Apr 27;74(17):1365–1371.
  • Sundqvist E, Sundstrom P, Linden M, et al. Epstein-Barr virus and multiple sclerosis: interaction with HLA. Genes Immun. 2012 Jan;13(1):14–20.
  • Ricigliano VA, Handel AE, Sandve GK, et al. EBNA2 binds to genomic intervals associated with multiple sclerosis and overlaps with vitamin D receptor occupancy. PLoS One. 2015;10(4):e0119605.
  • Disanto G, Sandve GK, Berlanga-Taylor AJ, et al. Vitamin D receptor binding, chromatin states and association with multiple sclerosis. Hum Mol Genet. 2012 Aug 15;21(16):3575–3586.
  • Harley JB, Chen X, Pujato M, et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat Genet. 2018 May;50(5):699–707.
  • Afrasiabi A, Parnell GP, Fewings N, et al. Evidence from genome wide association studies implicates reduced control of Epstein-Barr virus infection in multiple sclerosis susceptibility. Genome Med. 2019 Apr 30;11(1):26.
  • Afrasiabi A, Parnell GP, Swaminathan S, et al. The interaction of multiple sclerosis risk loci with Epstein-Barr virus phenotypes implicates the virus in pathogenesis. Sci Rep. 2020 Jan 13;10(1):193.
  • Endriz J, Ho PP, Steinman L. Time correlation between mononucleosis and initial symptoms of MS. Neurol Neuroimmunol Neuroinflamm. 2017 May;4(3):e308.
  • Pender MP, Csurhes PA, Smith C, et al. Epstein-Barr virus-specific adoptive immunotherapy for progressive multiple sclerosis. Mult Scler. 2014 Oct;20(11):1541–1544.
  • Pender MP, Csurhes PA, Smith C, et al. Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight. 2018 Nov 15;3(22):e124714.
  • Drosu NC, Edelman ER, Housman DE. Tenofovir prodrugs potently inhibit Epstein-Barr virus lytic DNA replication by targeting the viral DNA polymerase. Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12368–12374.
  • Lycke J, Svennerholm B, Hjelmquist E, et al. Acyclovir treatment of relapsing-remitting multiple sclerosis. A randomized, placebo-controlled, double-blind study. J Neurol. 1996 Mar;243(3):214–224.
  • Bech E, Lycke J, Gadeberg P, et al. A randomized, double-blind, placebo-controlled MRI study of anti-herpes virus therapy in MS. Neurology. 2002 Jan 8;58(1):31–36.
  • Friedman JE, Zabriskie JB, Plank C, et al. A randomized clinical trial of valacyclovir in multiple sclerosis. Mult Scler. 2005 Jun;11(3):286–295.
  • Lisak RP, Benjamins JA, Nedelkoska L, et al. Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro. J Neuroimmunol. 2012 May 15;246(1–2):85–95.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.