335
Views
3
CrossRef citations to date
0
Altmetric
Review

An updated review on Mendelian susceptibility to mycobacterial diseases– a silver jubilee celebration of its first genetic diagnosis

ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 1103-1120 | Received 12 May 2021, Accepted 13 Jul 2021, Published online: 01 Oct 2021

References

  • Bustamante J. Mendelian susceptibility to mycobacterial disease: recent discoveries. Hum Genet. 2020;139(6–7):993–1000.
  • Filipe-Santos O, Bustamante J, Chapgier A, et al. Inborn errors of IL-12/23- and IFN-γ-mediated immunity: molecular, cellular, and clinical features. Semin Immunol. 2006;18(6):347–361.
  • Mimouni J. [Our experiences in three years of BCG vaccination at the center of the O.P.H.S. at Constantine; study of observed cases (25 cases of complications from BCG vaccination)]. Alger Medicale. 55(8):1138–1147. French; 1951.
  • Difs H. [Some experience of complications from BCG vaccination and the effectiveness of vaccination]. Dtsch Med Rundsch. 1948;2(4):152. German.
  • Despierres G, Viallier J, Sabot A. [BCG in infants, according to statistics on 650 vaccinations; factors regarding complications and allergic variations]. Rev Tuberc. 1951;15(4–5):451–454. French.
  • Newport MJ, Huxley CM, Huston S, et al., A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med. 335(26): 1941–1949. 1996. .
  • Jouanguy E, Altare F, Lamhamedi S, et al. Interferon-γ –receptor deficiency in an infant with fatal Bacille Calmette–Guérin infection. N Engl J Med. 1996;335(26):1956–1962.
  • Caragol I, Raspall M, Fieschi C, et al. Clinical tuberculosis in 2 of 3 siblings with interleukin-12 receptor beta1 deficiency. Clin Infect Dis. 2003;37(2):302–306.
  • Fieschi C, Dupuis S, Catherinot E, et al. Low penetrance, broad resistance, and favorable outcome of interleukin 12 receptor β1 deficiency. J Exp Med. 2003;197(4):527–535.
  • de Beaucoudrey L, Samarina A, Bustamante J, et al., Revisiting human IL-12Rβ1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore). 89(6): 381–402. 2010. .
  • Ouederni M, Sanal O, Ikincioğullari A, et al. Clinical features of candidiasis in patients with inherited interleukin 12 receptor β1 deficiency. Clin Infect Dis. 2014;58(2):204–213.
  • de Beaucoudrey L, Puel A, Filipe-Santos O, et al., Mutations in STAT3 and IL12RB1 impair the development of human IL-17–producing T cells. J Exp Med. 205(7): 1543–1550. 2008. .
  • MacLennan C, Fieschi C, Lammas DA, et al. Interleukin (IL)–12 and IL‐23 are key cytokines for immunity against Salmonella in humans. J Infect Dis. 2004;190(10):1755–1757.
  • Khoshnevisan R, Nekooei-Marnany N, Klein C, et al. IL-12Rβ1 deficiency corresponding to concurrency of two diseases, Mendelian susceptibility to mycobacterial disease and Crohn’s disease. J Clin Tuberc Other Mycobact Dis. 2019;17:100123.
  • van de Vosse E, Haverkamp MH, Ramirez-Alejo N, et al. IL-12Rβ1 deficiency: mutation update and description of the IL12RB1 variation database. Hum Mutat. 2013;34(10):1329–1339.
  • Fieschi C, Dupuis S, Picard C, et al. High levels of interferon gamma in the plasma of children with complete interferon gamma receptor deficiency. Pediatrics. 2001;107(4):E48.
  • van de Vosse E, van Dissel JT. IFN-γR1 defects: mutation update and description of the IFNGR1 variation database. Hum Mutat. 2017;38(10):1286–1296.
  • Allende LM, López-Goyanes A, Paz-Artal E, et al. A point mutation in a domain of gamma interferon receptor 1 provokes severe immunodeficiency. Clin Diagn Lab Immunol. 2001;8(1):133–137.
  • Sologuren I, Boisson-Dupuis S, Pestano J, et al. Partial recessive IFN-γR1 deficiency: genetic, immunological and clinical features of 14 patients from 11 kindreds. Hum Mol Genet. 2011;20(8):1509–1523.
  • Dorman SE, Picard C, Lammas D, et al. Clinical features of dominant and recessive interferon gamma receptor 1 deficiencies. Lancet. 2004;364(9451):2113–2121.
  • Rosenzweig SD, Schwartz OM, Brown MR, et al. Characterization of a dipeptide motif regulating IFN-gamma receptor 2 plasma membrane accumulation and IFN-gamma responsiveness. J Immunol. 2004;173(6):3991–3999.
  • Dorman SE, Holland SM. Mutation in the signal-transducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection. J Clin Invest. 1998;101(11):2364–2369.
  • Vogt G, Chapgier A, Yang K, et al. Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. Nat Genet. 2005;37(7):692–700.
  • Kong X-F, Vogt G, Itan Y, et al. Haploinsufficiency at the human IFNGR2 locus contributes to mycobacterial disease. Hum Mol Genet. 2013;22(4):769–781.
  • Rosenzweig SD, Dorman SE, Uzel G, et al. A novel mutation in IFN-gamma receptor 2 with dominant negative activity: biological consequences of homozygous and heterozygous states. J Immunol. 2004;173(6):4000–4008.
  • Martínez-Barricarte R, Megged O, Stepensky P, et al. Mycobacterium simiae infection in two unrelated patients with different forms of inherited IFN-γR2 deficiency. J Clin Immunol. 2014;34(8):904–909.
  • Kilic SS, van Wengen A, de Paus RA, et al. Severe disseminated mycobacterial infection in a boy with a novel mutation leading to IFN-γR2 deficiency. J Infect. 2012;65(6):568–572.
  • Moncada-Vélez M, Martinez-Barricarte R, Bogunovic D, et al. Partial IFN-γR2 deficiency is due to protein misfolding and can be rescued by inhibitors of glycosylation. Blood. 2013;122(14):2390–2401.
  • Döffinger R, Jouanguy E, Dupuis S, et al. Partial interferon-gamma receptor signaling chain deficiency in a patient with bacille Calmette-Guérin and Mycobacterium abscessus infection. J Infect Dis. 2000;181(1):379–384.
  • Kerner G, Rosain J, Guérin A, et al., Inherited human IFN-γ deficiency underlies mycobacterial disease. J Clin Invest. 130(6): 3158–3171. 2020. .
  • Bustamante J, Arias AA, Vogt G, et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol. 2011;12(3):213–221.
  • Smahi A, Courtois G, Vabres P, et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature. 2000;405(6785):466–472.
  • Filipe-Santos O, Bustamante J, Haverkamp MH, et al. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med. 2006;203(7):1745–1759.
  • Tsujimura H, Tamura T, Ozato K. Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. J Immunol. 2003;170(3):1131–1135.
  • Hambleton S, Salem S, Bustamante J, et al., IRF8 Mutations and human dendritic-cell immunodeficiency. N Engl J Med. 365(2): 127–138. 2011. .
  • Salem S, Langlais D, Lefebvre F, et al. Functional characterization of the human dendritic cell immunodeficiency associated with the IRF8 K108E mutation. Blood. 2014;124(12):1894–1904.
  • Bigley V, Maisuria S, Cytlak U, et al. Biallelic interferon regulatory factor 8 mutation: a complex immunodeficiency syndrome with dendritic cell deficiency, monocytopenia, and immune dysregulation. J Allergy Clin Immunol. 2018;141(6):2234–2248.
  • Salem S, Gros P. Genetic determinants of susceptibility to Mycobacterial infections: IRF8, a new kid on the block. Adv Exp Med Biol. 2013;783:45–80.
  • Bigley V, Collin M. Insights from patients with dendritic cell immunodeficiency. Mol Immunol. 2020;122:116–123.
  • Boisson-Dupuis S, Kong X-F, Okada S, et al. Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr Opin Immunol. 2012;24(4):364–378.
  • Hirata O, Okada S, Tsumura M, et al. Heterozygosity for the Y701C STAT1 mutation in a multiplex kindred with multifocal osteomyelitis. Haematologica. 2013;98(10):1641–1649.
  • Chapgier A, Boisson-Dupuis S, Jouanguy E, et al. Novel STAT1 alleles in otherwise healthy patients with mycobacterial disease. PLoS Genet. 2006;2(8):e131.
  • Bogunovic D, Boisson-Dupuis S, Casanova JL. ISG15: leading a double life as a secreted molecule. Exp Mol Med. 2013;45(4):e18.
  • D’Cunha J, Ramanujam S, Wagner RJ, et al. In vitro and in vivo secretion of human ISG15, an IFN-induced immunomodulatory cytokine. J Immunol. 1996;157(9):4100–4108.
  • Bogunovic D, Byun M, Durfee LA, et al. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science. 2012;337(6102):1684–1688.
  • Martin-Fernandez M, García-Morato MB, Gruber C, et al. Systemic type I IFN inflammation in human ISG15 deficiency leads to necrotizing skin lesions. Cell Rep. 2020;31(6):107633.
  • Zhang X, Bogunovic D, Payelle-Brogard B, et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature. 2015;517(7532):89–93.
  • Buda G, Valdez RM, Biagioli G, et al. Inflammatory cutaneous lesions and pulmonary manifestations in a new patient with autosomal recessive ISG15 deficiency case report. Allergy Asthma Clin Immunol. 2020;16(1):77.
  • Altare F, Lammas D, Revy P, et al. Inherited interleukin 12 deficiency in a child with bacille Calmette-Guérin and Salmonella enteritidis disseminated infection. J Clin Invest. 1998;102(12):2035–2040.
  • Prando C, Samarina A, Bustamante J, et al. Inherited IL-12p40 deficiency: genetic, immunologic, and clinical features of 49 patients from 30 kindreds. Medicine (Baltimore). 2013;92(2):109–122.
  • Mansouri D, Adimi P, Mirsaeidi M, et al. Inherited disorders of the IL-12-IFN-gamma axis in patients with disseminated BCG infection. Eur J Pediatr. 2005;164(12):753–757.
  • Pulickal AS, Hambleton S, Callaghan MJ, et al. Biliary cirrhosis in a child with inherited interleukin-12 deficiency. J Trop Pediatr. 2008;54(4):269–271.
  • Ben-Mustapha I, Ben-Ali M, Mekki N, et al. A 1,100-year-old founder effect mutation in IL12B gene is responsible for Mendelian susceptibility to mycobacterial disease in Tunisian patients. Immunogenetics. 2014;66(1):67–71.
  • Happel KI, Dubin PJ, Zheng M, et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med. 2005;202(6):761–769.
  • Martínez-Barricarte R, Markle JG, Ma CS, et al. Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23. Sci Immunol. 2018;3(30):eaau6759.
  • Fayez EA, Koohini Z, Koohini Z, et al. Characterization of two novel mutations in IL-12R signaling in MSMD patients. Pathog Dis. 2019;77(3):ftz030.
  • Mahdaviani SA, Mansouri D, Jamee M, et al. Mendelian susceptibility to mycobacterial disease (MSMD): clinical and genetic features of 32 Iranian patients. J Clin Immunol. 2020;40(6):872–882.
  • Boisson-Dupuis S, Bustamante J, El-Baghdadi J, et al. Inherited and acquired immunodeficiencies underlying tuberculosis in childhood. Immunol Rev. 2015;264(1):103–120.
  • Minegishi Y, Saito M, Morio T, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25(5):745–755.
  • Nemoto M, Hattori H, Maeda N, et al. Compound heterozygous TYK2 mutations underlie primary immunodeficiency with T-cell lymphopenia. Sci Rep. 2018;8(1):6956.
  • Kreins AY, Ciancanelli MJ, Okada S, et al. Human TYK2 deficiency: mycobacterial and viral infections without hyper-IgE syndrome. J Exp Med. 2015;212(10):1641–1662.
  • Kerner G, Ramirez-Alejo N, Seeleuthner Y, et al. Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of patients in a cohort of European ancestry. Proc Natl Acad Sci U S A. 2019;116(21):10430–10434.
  • Schneppenheim J, Dressel R, Hüttl S, et al. The intramembrane protease SPPL2a promotes B cell development and controls endosomal traffic by cleavage of the invariant chain. J Exp Med. 2013;210(1):41–58.
  • Beisner DR, Langerak P, Parker AE, et al. The intramembrane protease Sppl2a is required for B cell and DC development and survival via cleavage of the invariant chain. J Exp Med. 2013;210(1):23–30.
  • Kong XF, Martinez-Barricarte R, Kennedy J, et al., Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat Immunol. 19(9): 973–985. 2018. .
  • Hirose T, Smith RJ, Jetten AMROR-Γ. The third member of ROR/RZR orphan receptor subfamily that is highly expressed in skeletal muscle. Biochem Biophys Res Commun. 1994;205(3):1976–1983.
  • Jin L, Martynowski D, Zheng S, et al. Structural basis for hydroxycholesterols as natural ligands of orphan nuclear receptor RORγ. Mol Endocrinol. 2010;24(5):923–929.
  • He YW, Deftos ML, Ojala EW, et al. RORgamma t, a novel isoform of an orphan receptor, negatively regulates Fas ligand expression and IL-2 production in T cells. Immunity. 1998;9(6):797–806.
  • Eletto D, Burns SO, Angulo I, et al. Biallelic JAK1 mutations in immunodeficient patient with mycobacterial infection. Nat Commun. 2016;7(1):13992.
  • Yang R, Mele F, Worley L, et al. Human T-bet governs innate and innate-like adaptive IFN-γ immunity against mycobacteria. Cell. 2020;183(7):1826–1847.
  • Louvain De Souza T, de Souza Campos Fernandes RC, Azevedo da Silva J, et al. Microbial disease spectrum linked to a novel IL-12Rβ1 N-terminal signal peptide stop-gain homozygous mutation with paradoxical receptor cell-surface expression. Front Microbiol. 2017;8:616.
  • Fieschi C, Bosticardo M, de Beaucoudrey L, et al. A novel form of complete IL-12/IL-23 receptor beta1 deficiency with cell surface-expressed nonfunctional receptors. Blood. 2004;104(7):2095–2101.
  • Jouanguy E, Lamhamedi-Cherradi S, Altare F, et al. Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis. J Clin Invest. 1997;100(11):2658–2664.
  • Haan S, Haan C. Detection of activated STAT species using electrophoretic mobility shift assay (EMSA) and potential pitfalls arising from the use of detergents. Methods Mol Biol. 2013;967:147–59.
  • Roesler J, Horwitz ME, Picard C, et al. Hematopoietic stem cell transplantation for complete IFN-γ receptor 1 deficiency: a multi-institutional survey. J Pediatr. 2004;145(6):806–812.
  • Olbrich P, Martínez‐Saavedra MT, Perez‐Hurtado JM, et al. Diagnostic and therapeutic challenges in a child with complete Interferon-γ Receptor 1 deficiency. Pediatr Blood Cancer. 2015;62(11):2036–2039.
  • Hahn K, Pollmann L, Nowak J, et al. Human lentiviral gene therapy restores the cellular phenotype of autosomal recessive complete IFN-γR1 deficiency. Mol Ther Methods Clin Dev. 2020;17:785–795.
  • Bax HI, Freeman AF, Ding L, Bax HI, Freeman AF, Ding L, et al. Interferon alpha treatment of patients with impaired interferon gamma signaling. J Clin Immunol. 2013;33(5):991–1001.
  • Oleaga-Quintas C, Deswarte C, Moncada-Vélez M, et al. A purely quantitative form of partial recessive IFN-γR2 deficiency caused by mutations of the initiation or second codon. Hum Mol Genet. 2018;27(22):3919–3935.
  • Le Voyer T, Neehus AL, Yang R, et al., Inherited deficiency of stress granule ZNFX1 in patients with monocytosis and mycobacterial disease. Proc Natl Acad Sci U S A. 118(15): e2102804118. 2021.
  • Banday AZ, Mehta R, Vignesh P, et al. Case Report: ceftriaxone-resistant invasive Salmonella enteritidis infection with secondary hemophagocytic lymphohistiocytosis: a contrast with enteric fever. Am J Trop Med Hyg. 2020;103(6):2515–2517.
  • Picard C, Fieschi C, Altare F, et al. Inherited interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet. 2002;70(2):336–348.
  • Bandari AK, Muthusamy B, Bhat S, et al. A novel splice site mutation in IFNGR2 in patients with primary immunodeficiency exhibiting susceptibility to mycobacterial diseases. Front Immunol. 2019;10:1964.
  • Bhattad S, Unni J, Varkey S. MSMD in a 3-generation multiplex kindred due to autosomal dominant STAT1 deficiency. J Clin Immunol. 2020;41(1):259–261.
  • Arunachalam AK, Maddali M, Aboobacker FN, et al. Primary immunodeficiencies in India: molecular diagnosis and the role of next-generation sequencing. J Clin Immunol. 2021;41(2):393–413.
  • Taur PD, Gowri V, Pandrowala AA, et al. Clinical and molecular findings in Mendelian susceptibility to mycobacterial diseases: experience from India. Front Immunol. 2021;12:631298.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.