620
Views
3
CrossRef citations to date
0
Altmetric
Review

Immune mechanisms, the role of complement, and related therapies in autoimmune neuropathies

Pages 1269-1281 | Received 19 Sep 2021, Accepted 01 Nov 2021, Published online: 23 Nov 2021

References

  • Conigliaro P, Triggianese P, Ballanti E, et al. Complement, infection, and autoimmunity. Curr Opin Rheumatol. 2019;31:532–541.
  • Thordardottir S, Vikingsdottir T, Bjarnadottir H, et al. Activation of complement following total hip replacement. Scand J Immunol. 2016;83:219–224.
  • Fosse E, Pillgram-Larsen J, Svennevig JL, et al. Complement activation in injured patients occurs immediately and is dependent on the severity of the trauma. Injury. 1998;29:509–514.
  • Szebeni J. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals. Mol Immunol. 2014;61:163–173.
  • Trier NH, Güven E, Skogstrand K, et al. Comparison of immunological adjuvants. Apmis. 2019;127:635–641.
  • Morgan BP. The membrane attack complex as an inflammatory trigger. Immunobiology. 2016;221:747–751.
  • Morgan BP, Dankert JR, Esser AF. Recovery of human neutrophils from complement attack: removal of the membrane attack complex by endocytosis and exocytosis. J Immunol. 1987;138:246–253.
  • Hafer-Macko CE, Sheikh KA, Li CY, et al. Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann Neurol. 1996;39:625–635.
  • Kwan WH, van der Touw W, Heeger PS. Complement regulation of T cell immunity. Immunol Res. 2012;54:247–253.
  • Mihai S, Nimmerjahn F. The role of fc receptors and complement in autoimmunity. Autoimmun Rev. 2013;12:657–660.
  • Apostolski S, McAlarney T, Hays AP, et al. Complement dependent cytotoxicity of sensory ganglion neurons mediated by the gp120 glycoprotein of HIV-1. Immunol Invest. 1994;23:47–52.
  • Tabib A, Karbian N, Mevorach D. Demyelination, strokes, and eculizumab: lessons from the congenital CD59 gene mutations. Mol Immunol. 2017;89:69–72.
  • Ekdahl KN, Persson B, Mohlin C, et al. Interpretation of serological complement biomarkers in disease. Front Immunol. 2018;9:2237.
  • Narang A, Qiao F, Atkinson C, et al. Natural IgM antibodies that bind neoepitopes exposed as a result of spinal cord injury, drive secondary injury by activating complement. J Neuroinflammation. 2017;14:120.
  • McMullen ME, Hart ML, Walsh MC, et al. Mannose-binding lectin binds IgM to activate the lectin complement pathway in vitro and in vivo. Immunobiology. 2006;211:759–766.
  • Ramaglia V, King RH, Nourallah M, et al. The membrane attack complex of the complement system is essential for rapid wallerian degeneration. J Neurosci. 2007;27:7663–7672.
  • Silberberg DH, Manning MC, Schreiber AD. Tissue culture demyelination by normal human serum. Ann Neurol. 1984;15:575–580.
  • Rosoklija GB, Dwork AJ, Younger DS, et al. Local activation of the complement system in endoneurial microvessels of diabetic neuropathy. Acta Neuropathol. 2000;99:55–62.
  • Yell PC, Burns DK, Dittmar EG, et al. Diffuse microvascular C5b-9 deposition is a common feature in muscle and nerve biopsies from diabetic patients. Acta Neuropathol Commun. 2018;6:11.
  • Barnum SR, Bubeck D, Schein TN. soluble membrane attack complex: biochemistry and immunobiology. Front Immunol. 2020;11:585108.
  • Kronbichler A. Therapeutic plasma exchange strategy in complement-mediated diseases: an overview. Ther Apher Dial. 2018;22:8–10.
  • Wagner E, Platt JL, Frank MM. High dose intravenous immunoglobulin does not affect complement-bacteria interactions. J Immunol. 1998;160(4):1936–1943.
  • Mollnes TE, Høgåsen K, Hoaas BF, et al. Inhibition of complement-mediated red cell lysis by immunoglobulins is dependent on the IG isotype and its C1 binding properties. Scand J Immunol. 1995;41:449–456.
  • Mollnes TE, Andreassen IH, Høgåsen K, et al. Effect of whole and fractionated intravenous immunoglobulin on complement in vitro. Mol Immunol. 1997;34:719–729.
  • Piepers S, Jansen MD, Cats EA, et al. van der POl WL. IVIg inhibits classical pathway activity and anti-GM1 IgM-mediated complement deposition in MMN. J Neuroimmunol. 2010;229:256–262.
  • Yuki N, Watanabe H, Nakajima T, et al. IVIG blocks complement deposition mediated by anti-GM1 antibodies in multifocal motor neuropathy. J Neurol Neurosurg Psychiatry. 2011;82:87–91.
  • Basta M, Dalakas MC. High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J Clin Invest. 1994;94:1729–1735.
  • Kimberly RP, Salmon JE, Bussel JB, et al. Modulation of mononuclear phagocyte function by intravenous gamma-globulin. J Immunol. 1984;132:745–750.
  • Spycher M, Matozan K, Minnig K, et al. In vitro comparison of the complement-scavenging capacity of different intravenous immunoglobulin preparations. Vox Sang. 2009;97:348–354.
  • Leonhard SE, Mandarakas MR, Gondim FAA, et al. Diagnosis and management of guillain-barré syndrome in ten steps. Nat Rev Neurol. 2019;15:671–683.
  • Hocker S, Nagarajan E, Rubin M, et al. Clinical factors associated with Guillain-Barré syndrome following surgery. Neurol Clin Pract. 2018;8:201–206.
  • Huang C, Zhang Y, Deng S, et al. Trauma-related guillain-barré syndrome: systematic review of an emerging concept. Front Neurol. 2020;11:588290.
  • Langmuir AD, Bregman DJ, Kurland LT, et al. An epidemiologic and clinical evaluation of Guillain-Barré syndrome reported in association with the administration of swine influenza vaccines. Am J Epidemiol. 1984;119:841–879.
  • Willison HJ, Jacobs BC, van Doorn PA. Guillain-BArré syndrome. Lancet. 2016;388:717–727.
  • Koike H, Atsuta N, Adachi H, et al. Clinicopathological features of acute autonomic and sensory neuropathy. Brain. 2010;133:2881–2896.
  • Wakerley BR, Yuki N. Pharyngeal-cervical-brachial variant of Guillain-Barre syndrome. J Neurol Neurosurg Psychiatry. 2014;85:339–344.
  • Faignart N, Nguyen K, Soroken C, et al. Acute monophasic erythromelalgia pain in five children diagnosed as small-fiber neuropathy. Eur J Paediatr Neurol. 2020;28:198–204.
  • Jacobs BC, Schmitz PI. van der meche FG. Campylobacter jejuni infection and treatment for Guillain-Barré syndrome. N Engl J Med. 1996;335:208–209.
  • Wanschitz J, Maier H, Lassmann H, et al. Distinct time pattern of complement activation and cytotoxic T cell response in Guillain-Barré syndrome. Brain. 2003;126:2034–2042.
  • Luijten JA, Baart de La F-K. The occurrence of IgM and complement factors along myelin sheaths of peripheral nerves. An immunohistochemical study of the Guillain-Barré syndrome. Preliminary communication. J Neurol Sci. 1972;15:219–224.
  • Nyland H, Matre R, Mørk S. Immunological characterization of sural nerve biopsies from patients with Guillain-Barré syndrome. Ann Neurol. 1981;9(Suppl):80–86.
  • Hays AP, Lee SS, Latov N. Immune reactive C3d on the surface of myelin sheaths in neuropathy. J Neuroimmunol. 1988;18:231–244.
  • Koike H, Fukami Y, Nishi R, et al. Ultrastructural mechanisms of macrophage-induced demyelination in Guillain-Barré syndrome. J Neurol Neurosurg Psychiatry. 2020;91:650–659.
  • Koski CL, Sanders ME, Swoveland PT, et al. Activation of terminal components of complement in patients with Guillain-Barré syndrome and other demyelinating neuropathies. J Clin Invest. 1987;80:1492–1497.
  • Hafer-Macko C, Hsieh ST, Li CY, et al. Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol. 1996;40:635–644.
  • Griffin JW, Li CY, Ho TW, et al. Guillain-Barré syndrome in northern China. The spectrum of neuropathological changes in clinically defined cases. Brain. 1995;118(Pt 3):577–595.
  • Phillips MS, Stewart S, Anderson JR. Neuropathological findings in miller fisher syndrome. J Neurol Neurosurg Psychiatry. 1984;47:492–495.
  • Tse KS, Arbesman CE, Tomasi TB Jr., et al. Demonstration of antimyelin antibodies by immunofluorescence in Guillain-Barré syndrome. Clin Exp Immunol. 1971;8(6):881–887.
  • Vedeler CA, Nyland H, Matre R. Antibodies to peripheral nerve tissue in sera from patients with acute Guillain-Barré syndrome demonstrated by a mixed haemagglutination technique. J Neuroimmunol. 1982;2:209–214.
  • Koski CL, Humphrey R, Shin ML. Anti-peripheral myelin antibody in patients with demyelinating neuropathy: quantitative and kinetic determination of serum antibody by complement component 1 fixation. Proc Natl Acad Sci U S A. 1985;82:905–909.
  • Carpo M, Pedotti R, Allaria S, et al. Clinical presentation and outcome of Guillain-Barré and related syndromes in relation to anti-ganglioside antibodies. J Neurol Sci. 1999;168:78–84.
  • Hao Q, Saida T, Kuroki S, et al. Antibodies to gangliosides and galactocerebroside in patients with Guillain-Barré syndrome with preceding Campylobacter jejuni and other identified infections. J Neuroimmunol. 1998;81:116–126.
  • Caudie C, Quittard Pinon A, Taravel D, et al. Preceding infections and anti-ganglioside antibody profiles assessed by a dot immunoassay in 306 french Guillain-Barré syndrome patients. J Neurol. 2011;258:1958–1964.
  • Ho TW, Willison HJ, Nachamkin I, et al. Anti-GD1a antibody is associated with axonal but not demyelinating forms of Guillain-Barré syndrome. Ann Neurol. 1999;45:168–173.
  • Yuki N, Kuwabara S, Koga M, et al. Acute motor axonal neuropathy and acute motor-sensory axonal neuropathy share a common immunological profile. J Neurol Sci. 1999;168:121–126.
  • Yuki N, Yamada M, Koga M, et al. Animal model of axonal Guillain-Barre syndrome induced by sensitization with GM1 ganglioside. Ann Neurol. 2001;49:712–720.
  • Caporale CM, Capasso M, Luciani M, et al. Experimental axonopathy induced by immunization with campylobacter jejuni lipopolysaccharide from a patient with Guillain-Barre syndrome. J Neuroimmunol. 2006;174:12–20.
  • Corbo M, Quattrini A, Latov N, et al. Localization of GM1 and gal(beta 1-3)GalNAc antigenic determinants in peripheral nerve. Neurology. 1993;43:809–814.
  • Wirguin I, Rosoklija G, Trojaborg W, et al. Axonal degeneration accompanied by conduction block induced by toxin mediated immune reactivity to GM1 ganglioside in rat nerves. J Neurol Sci. 1995;130:17–21.
  • Ogino M, Orazio N, Latov N. IgG anti-GM1 antibodies from patients with acute motor neuropathy are predominantly of the IgG1 and IgG3 subclasses. J Neuroimmunol. 1995;58:77–80.
  • McGonigal R, Rowan EG, Greenshields KN, et al. Anti-GD1a antibodies activate complement and calpain to injure distal motor nodes of ranvier in mice. Brain. 2010;133:1944–1960.
  • McGonigal R, Cunningham ME, Yao D, et al. C1q-targeted inhibition of the classical complement pathway prevents injury in a novel mouse model of acute motor axonal neuropathy. Acta Neuropathol Commun. 2016;4:23.
  • Press R, Matá S, Lolli F, et al. Temporal profile of anti-ganglioside antibodies and their relation to clinical parameters and treatment in Guillain-Barré syndrome. J Neurol Sci. 2001;190:41–47.
  • Caudie C, Lagrange E. [Miller-Fisher syndrome associated with monoclonal IgG lambda antibodies against ganglioside GQ1b]. Ann Biol Clin (Paris). 2010;68(3):351–354.
  • Alaedini A, Green PH, Sander HW, et al. Ganglioside reactive antibodies in the neuropathy associated with celiac disease. J Neuroimmunol. 2002;127:145–148.
  • Shill HA, Alaedini A, Bushara KO, et al. Anti-ganglioside antibodies in idiopathic and hereditary cerebellar degeneration. Neurology. 2003;60:1672–1673.
  • Stubbs EB Jr. Targeting the blood-nerve barrier for the management of immune-mediated peripheral neuropathies. Exp Neurol. 2020;331:113385.
  • Seitz RJ, Reiners K, Himmelmann F, et al. The blood-nerve barrier in wallerian degeneration: a sequential long-term study. Muscle Nerve. 1989;12:627–635.
  • de Jonge RR, van Schaik IN, Vreijling JP, et al. Expression of complement components in the peripheral nervous system. Hum Mol Genet. 2004;13:295–302.
  • Misawa S, Kuwabara S, Sato Y, et al. Safety and efficacy of eculizumab in Guillain-Barré syndrome: a multicentre, double-blind, randomised phase 2 trial. Lancet Neurol. 2018;17:519–529.
  • Davidson AI, Halstead SK, Goodfellow JA, et al. Inhibition of complement in Guillain-Barré syndrome: the ICA-GBS study. J Peripher Nerv Syst. 2017;22:4–12.
  • Koski CL, Estep AE, Sawant-Mane S, et al. Complement regulatory molecules on human myelin and glial cells: differential expression affects the deposition of activated complement proteins. J Neurochem. 1996;66:303–312.
  • Mevorach D, Reiner I, Grau A, et al. Therapy with eculizumab for patients with CD59 p.Cys89Tyr mutation. Ann Neurol. 2016;80:708–717.
  • Javadi Parvaneh V, Ghasemi L, Rahmani K, et al. Recurrent angioedema, Guillain-Barré, and myelitis in a girl with systemic lupus erythematosus and CD59 deficiency syndrome. Auto Immun Highlights: © The Author(s). 2020; 11: 9.
  • Van Den Bergh PYK, van Doorn PA, Hadden RDM, et al. European academy of neurology/peripheral nerve society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force-second revision. Eur J Neurol. 2021;28:3556–3583.
  • Shelly S, Shouman K, Paul P, et al. Expanding the spectrum of Chronic Immune Sensory Polyradiculopathy: CISP-Plus. Neurology. 2021;96:e2078–e2089.
  • Ikeda S, Koike H, Nishi R, et al. Clinicopathological characteristics of subtypes of chronic inflammatory demyelinating polyradiculoneuropathy. J Neurol Neurosurg Psychiatry. 2019;90:988–996.
  • Latov N. Diagnosis and treatment of chronic acquired demyelinating polyneuropathies. Nat Rev Neurol. 2014;10:435–446.
  • Schmidt B, Toyka KV, Kiefer R, et al. Inflammatory infiltrates in sural nerve biopsies in Guillain-Barre syndrome and chronic inflammatory demyelinating neuropathy. Muscle Nerve. 1996;19:474–487.
  • Vallat J-M, Mathis S, Vegezzi E, et al. Antibody- and macrophage-mediated segmental demyelination in chronic inflammatory demyelinating polyneuropathy: clinical, electrophysiological, immunological and pathological correlates. Eur J Neurol. 2020;27(4):692–701.
  • Koike H, Nishi R, Ikeda S, et al. Ultrastructural mechanisms of macrophage-induced demyelination in CIDP. Neurology. 2018;91:1051–1060.
  • Dalakas MC, Engel WK. Immunoglobulin and complement deposits in nerves of patients with chronic relapsing polyneuropathy. Arch Neurol. 1980;37:637–640.
  • Renaud S, Hays AP, Brannagan TH 3rd, et al. Gene expression profiling in chronic inflammatory demyelinating polyneuropathy. J Neuroimmunol. 2005;159:203–214.
  • Yan WX, Taylor J, Andrias-Kauba S, et al. Passive transfer of demyelination by serum or IgG from chronic inflammatory demyelinating polyneuropathy patients. Ann Neurol. 2000;47:765–775.
  • Keller CW, Quast I, Dalakas MC, et al. IVIG efficacy in CIDP patients is not associated with terminal complement inhibition. J Neuroimmunol. 2019;330:23–27.
  • Grüner J, Stengel H, and Werner C, et al. Anti-contactin-1 antibodies affect surface expression and sodium currents in dorsal root ganglia. Neurol Neuroimmunol Neuroinflamm. 2021;8:e1056.
  • Cortese A, Lombardi R, and Briani C, et al. Antibodies to neurofascin, contactin-1, and contactin-associated protein 1 in CIDP: clinical relevance of IgG isotype. Neurol Neuroimmunol Neuroinflamm. 2019;7:e639.
  • Delmont E, Brodovitch A, Kouton L, et al. Antibodies against the node of ranvier: a real-life evaluation of incidence, clinical features and response to treatment based on a prospective analysis of 1500 sera. J Neurol. 2020;267:3664–3672.
  • Pascual-Goñi E, Fehmi J, Lleixà C, et al. Antibodies to the Caspr1/contactin-1 complex in chronic inflammatory demyelinating polyradiculoneuropathy. Brain. 2021;144:1183–1196.
  • Manso C, Querol L, Mekaouche M, et al. Contactin-1 IgG4 antibodies cause paranode dismantling and conduction defects. Brain. 2016;139:1700–1712.
  • Koike H, Kadoya M, Kaida KI, et al. Paranodal dissection in chronic inflammatory demyelinating polyneuropathy with anti-neurofascin-155 and anti-contactin-1 antibodies. J Neurol Neurosurg Psychiatry. 2017;88:465–473.
  • Stengel H, Vural A, and Brunder AM, et al. Anti-pan-neurofascin IgG3 as a marker of fulminant autoimmune neuropathy. Neurol Neuroimmunol Neuroinflamm. 2019;6:e603.
  • Watanabe J, Scornik JC. IVIG and HLA antibodies. Evidence for inhibition of complement activation but not for anti-idiotypic activity. Am J Transplant. 2005;5:2786–2790.
  • Machimoto T, Guerra G, Burke G, et al. Effect of IVIG administration on complement activation and HLA antibody levels. Transpl Int. 2010;23:1015–1022.
  • Latov N. Antibody testing in neuropathy associated with anti-myelin-associated glycoprotein antibodies: where we are after 40 years. Curr Opin Neurol 2021.
  • Steck AJ. Anti-MAG neuropathy: from biology to clinical management. J Neuroimmunol. 2021;361:577725.
  • Kawagashira Y, Koike H, Tomita M, et al. Morphological progression of myelin abnormalities in IgM-monoclonal gammopathy of undetermined significance anti-myelin-associated glycoprotein neuropathy. J Neuropathol Exp Neurol. 2010;69:1143–1157.
  • Gabriel JM, Erne B, Bernasconi L, et al. Confocal microscopic localization of anti-myelin-associated glycoprotein autoantibodies in a patient with peripheral neuropathy initially lacking a detectable IgM gammopathy. Acta Neuropathol. 1998;95:540–546.
  • Monaco S, Bonetti B, Ferrari S, et al. Complement-mediated demyelination in patients with IgM monoclonal gammopathy and polyneuropathy. N Engl J Med. 1990;322:649–652.
  • Ritz MF, Erne B, Ferracin F, et al. Anti-MAG IgM penetration into myelinated fibers correlates with the extent of myelin widening. Muscle Nerve. 1999;22:1030–1037.
  • Hays AP, Latov N, Takatsu M, et al. Experimental demyelination of nerve induced by serum of patients with neuropathy and an anti-MAG IgM M-protein. Neurology. 1987;37:242–256.
  • Monaco S, Ferrari S, Bonetti B, et al. Experimental induction of myelin changes by anti-MAG antibodies and terminal complement complex. J Neuropathol Exp Neurol. 1995;54:96–104.
  • Willison HJ, Trapp BD, Bacher JD, et al. Demyelination induced by intraneural injection of human antimyelin-associated glycoprotein antibodies. Muscle Nerve. 1988;11:1169–1176.
  • Tatum AH. Experimental paraprotein neuropathy, demyelination by passive transfer of human IgM anti-myelin-associated glycoprotein. Ann Neurol. 1993;33:502–506.
  • Dalakas MC. Advances in the diagnosis, immunopathogenesis and therapies of IgM-anti-MAG antibody-mediated neuropathies. Ther Adv Neurol Disord. 2018;11:1756285617746640.
  • Castellani F, Visentin A, and Campagnolo M, et al. The Bruton tyrosine kinase inhibitor ibrutinib improves anti-MAG antibody polyneuropathy. Neurol Neuroimmunol Neuroinflamm. 2020;7:e720.
  • Nobile-Orazio E, Cappellari A, Priori A. Multifocal motor neuropathy: current concepts and controversies. Muscle Nerve. 2005;31:663–680.
  • Beadon K, Guimarães-Costa R, Léger JM. Multifocal motor neuropathy. Curr Opin Neurol. 2018;31:559–564.
  • Riva N, Gallia F, Iannaccone S, et al. Chronic motor axonal neuropathy. J Peripher Nerv Syst. 2011;16:341–346.
  • Delmont E, Azulay JP, Giorgi R, et al. Multifocal motor neuropathy with and without conduction block: a single entity? Neurology. 2006;67:592–596.
  • Vlam L, Piepers S, Sutedja NA, et al. Association of IgM monoclonal gammopathy with progressive muscular atrophy and multifocal motor neuropathy: a case-control study. J Neurol. 2015;262:666–673.
  • Kinsella LJ, Lange DJ, Trojaborg W, et al. Clinical and electrophysiologic correlates of elevated anti-GM1 antibody titers. Neurology. 1994;44:1278–1282.
  • Taylor BV, Gross L, Windebank AJ. The sensitivity and specificity of anti-GM1 antibody testing. Neurology. 1996;47:951–955.
  • Cats EA, Jacobs BC, Yuki N, et al. Multifocal motor neuropathy: association of anti-GM1 IgM antibodies with clinical features. Neurology. 2010;75:1961–1967.
  • Galban-Horcajo F, Vlam L, Delmont E, et al. The diagnostic utility of determining anti-gm1: galc complex antibodies in multifocal motor neuropathy: a validation study. J Neuromuscul Dis. 2015;2:157–165.
  • Freddo L, Yu RK, Latov N, et al. Gangliosides GM1 and GD1b are antigens for IgM M-protein in a patient with motor neuron disease. Neurology. 1986;36:454–458.
  • Pestronk A, Cornblath DR, Ilyas AA, et al. A treatable multifocal motor neuropathy with antibodies to GM1 ganglioside. Ann Neurol. 1988;24:73–78.
  • Carpo M, Nobile-Orazio E, Meucci N, et al. Anti-GD1a ganglioside antibodies in peripheral motor syndromes. Ann Neurol. 1996;39:539–543.
  • Caudie C, Vial C, Petiot P, et al. [Monoclonal IgM autoantibody activity vis-à-vis glycoconjugates of peripheral nerves: apropos of 112 cases]. Ann Biol Clin (Paris). 2001;59:567–577.
  • Riva N, Iannaccone S, Corbo M, et al. Motor nerve biopsy: clinical usefulness and histopathological criteria. Ann Neurol. 2011;69:197–201.
  • Corbo M, Abouzahr MK, Latov N, et al. Motor nerve biopsy studies in motor neuropathy and motor neuron disease. Muscle Nerve. 1997;20:15–21.
  • Rowland LP, Defendini R, Sherman W, et al. Macroglobulinemia with peripheral neuropathy simulating motor neuron disease. Ann Neurol. 1982;11:532–536.
  • Oh SJ, Claussen GC, Odabasi Z, et al. Multifocal demyelinating motor neuropathy: pathologic evidence of ‘inflammatory demyelinating polyradiculoneuropathy’. Neurology. 1995;45:1828–1832.
  • Gorson KC, Ropper AH, Adelman LS, et al. Chronic motor axonal neuropathy: pathological evidence of inflammatory polyradiculoneuropathy. Muscle Nerve. 1999;22:266–270.
  • Kaji R, Oka N, Tsuji T, et al. Pathological findings at the site of conduction block in multifocal motor neuropathy. Ann Neurol. 1993;33:152–158.
  • Taylor BV, Dyck PJ, Engelstad J, et al. Multifocal motor neuropathy: pathologic alterations at the site of conduction block. J Neuropathol Exp Neurol. 2004;63:129–137.
  • Corse AM, Chaudhry V, Crawford TO, et al. Sensory nerve pathology in multifocal motor neuropathy. Ann Neurol. 1996;39:319–325.
  • Urbanits S, Grisold W, Zifko U, et al. [Multifocal motor neuropathy with conduction block–a clinico-neuropathologic case report]. Wien Med Wochenschr. 1996;146:206–209.
  • Roberts M, Willison HJ, Vincent A, et al. Multifocal motor neuropathy human sera block distal motor nerve conduction in mice. Ann Neurol. 1995;38:111–118.
  • Wirguin I, Suturkova-Milosevic L, Della-Latta P, et al. Monoclonal IgM antibodies to GM1 and asialo-GM1 in chronic neuropathies cross-react with Campylobacter jejuni lipopolysaccharides. Ann Neurol. 1994;35:698–703.
  • European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of multifocal motor neuropathy. Report of a joint task force of the European federation of neurological societies and the peripheral nerve society–first revision. J Peripher Nerv Syst 2010;15:295–301.
  • Fitzpatrick AM, Mann CA, Barry S, et al. An open label clinical trial of complement inhibition in multifocal motor neuropathy. J Peripher Nerv Syst. 2011;16:84–91.
  • Willison HJ, O’Leary CP, Veitch J, et al. The clinical and laboratory features of chronic sensory ataxic neuropathy with anti-disialosyl IgM antibodies. Brain. 2001;124:1968–1977.
  • Le Cann M, Bouhour F, Viala K, et al. CANOMAD: a neurological monoclonal gammopathy of clinical significance that benefits from B-cell-targeted therapies. Blood. 2020;136:2428–2436.
  • Garcia-Santibanez R, Zaidman CM, Sommerville RB, et al. CANOMAD and other chronic ataxic neuropathies with disialosyl antibodies (CANDA). J Neurol. 2018;265:1402–1409.
  • Marastoni D, Africa L, Peretti A, et al. Sustained response to subcutaneous immunoglobulins in chronic ataxic neuropathy with anti-disialosyl IgM antibodies (CANDA): report of two cases and review of the literature. J Neurol. 2020;267:2353–2361.
  • Salamon A, Dézsi L, Radics B, et al. CANOMAD syndrome with respiratory failure. Ideggyogy Sz. 2020;73:141–144.
  • McKelvie PA, Gates PC, Day T. Canomad: report of a case with a 40-year history and autopsy. Is this a sensory ganglionopathy with neuromuscular junction blockade? Muscle Nerve. 2013;48:599–603.
  • Kusunoki S, Shimizu J, Chiba A, et al. Experimental sensory neuropathy induced by sensitization with ganglioside GD1b. Ann Neurol. 1996;39:424–431.
  • Golden EP, Vernino S. Autoimmune autonomic neuropathies and ganglionopathies: epidemiology, pathophysiology, and therapeutic advances. Clin Auton Res. 2019;29:277–288.
  • Nakane S, Mukaino A, Higuchi O, et al. A comprehensive analysis of the clinical characteristics and laboratory features in 179 patients with autoimmune autonomic ganglionopathy. J Autoimmun. 2020;108:102403.
  • Vernino S, Low PA, Lennon VA. Experimental autoimmune autonomic neuropathy. J Neurophysiol. 2003;90:2053–2059.
  • Vernino S, Ermilov LG, Sha L, et al. Passive transfer of autoimmune autonomic neuropathy to mice. J Neurosci. 2004;24:7037–7042.
  • Gwathmey KG, Tracy JA, Dyck PJB. Peripheral nerve vasculitis: classification and disease associations. Neurol Clin. 2019;37:303–333.
  • Cattaneo L, Chierici E, Pavone L, et al. Peripheral neuropathy in wegener’s granulomatosis, churg-strauss syndrome and microscopic polyangiitis. J Neurol Neurosurg Psychiatry. 2007;78:1119–1123.
  • Suppiah R, Hadden RD, Batra R, et al. Peripheral neuropathy in ANCA-associated vasculitis: outcomes from the European vasculitis study group trials. Rheumatology (Oxford). 2011;50:2214–2222.
  • Noone D, Hebert D, Licht C. Pathogenesis and treatment of ANCA-associated vasculitis-a role for complement. Pediatr Nephrol. 2018;33:1–11.
  • Jayne DRW, Bruchfeld AN, Harper L, et al. Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis. J Am Soc Nephrol. 2017;28:2756–2767.
  • Collins MP, Hadden RD. The nonsystemic vasculitic neuropathies. Nat Rev Neurol. 2017;13:302–316.
  • Collins MP, Periquet-Collins I, Sahenk Z, et al. Direct immunofluoresence in vasculitic neuropathy: specificity of vascular immune deposits. Muscle Nerve. 2010;42:62–69.
  • Takahashi M, Koike H, Ikeda S, et al. Distinct pathogenesis in nonsystemic vasculitic neuropathy and microscopic polyangiitis. Neurol Neuroimmunol Neuroinflamm. 2017;4:e407.
  • Kelkar P, Masood M, Parry GJ. Distinctive pathologic findings in proximal diabetic neuropathy (diabetic amyotrophy). Neurology. 2000;55:83–88.
  • Krendel DA, Costigan DA, Hopkins LC. Successful treatment of neuropathies in patients with diabetes mellitus. Arch Neurol. 1995;52:1053–1061.
  • Said G, Goulon-Goeau C, Lacroix C, et al. Nerve biopsy findings in different patterns of proximal diabetic neuropathy. Ann Neurol. 1994;35:559–569.
  • Llewelyn JG, Thomas PK, King RH. Epineurial microvasculitis in proximal diabetic neuropathy. J Neurol. 1998;245:159–165.
  • Dyck PJ, Engelstad J, Norell J. Microvasculitis in non-diabetic lumbosacral radiculoplexus neuropathy (LSRPN): similarity to the diabetic variety (DLSRPN). J Neuropathol Exp Neurol. 2000;59:525–538.
  • Ng PS, Dyck PJ, Laughlin RS, et al. Lumbosacral radiculoplexus neuropathy: incidence and the association with diabetes mellitus. Neurology. 2019;92:e1188–e1194.
  • Younger DS, Rosoklija G, Hays AP, et al. Diabetic peripheral neuropathy: a clinicopathologic and immunohistochemical analysis of sural nerve biopsies. Muscle Nerve. 1996;19:722–727.
  • Said G, Lacroix C, Lozeron P, et al. Inflammatory vasculopathy in multifocal diabetic neuropathy. Brain. 2003;126:376–385.
  • Kelkar P, Parry GJ. Mononeuritis multiplex in diabetes mellitus: evidence for underlying immune pathogenesis. J Neurol Neurosurg Psychiatry. 2003;74:803–806.
  • de Boysson H, Guillevin L. Polyarteritis nodosa neurologic manifestations. Neurol Clin. 2019;37:345–357.
  • Silva F, Pinto C, Barbosa A, et al. New insights in cryoglobulinemic vasculitis. J Autoimmun. 2019;105:102313.
  • El-Shamy A, Branch AD, Schiano TD, et al. The complement system and C1q in chronic hepatitis c virus infection and mixed cryoglobulinemia. Front Immunol. 2018;9:1001.
  • Mori K, Iijima M, Koike H, et al. The wide spectrum of clinical manifestations in Sjögren’s syndrome-associated neuropathy. Brain. 2005;128:2518–2534.
  • Griffin JW, Cornblath DR, Alexander E, et al. Ataxic sensory neuropathy and dorsal root ganglionitis associated with Sjögren’s syndrome. Ann Neurol. 1990;27:304–315.
  • Kawagashira Y, Koike H, Fujioka Y, et al. Differential, size-dependent sensory neuron involvement in the painful and ataxic forms of primary Sjögren’s syndrome-associated neuropathy. J Neurol Sci. 2012;319:139–146.
  • Terrier B, Lacroix C, Guillevin L, et al. Diagnostic and prognostic relevance of neuromuscular biopsy in primary Sjögren’s syndrome-related neuropathy. Arthritis Rheum. 2007;57:1520–1529.
  • Legatowicz-Koprowska M, Nitek S, Czerwińska J. The complement system in primary Sjögren’s syndrome: the expression of certain cascade and regulatory proteins in labial salivary glands - observational study. Reumatologia. 2020;58:357–366.
  • Molina R, Provost TT, Alexander EL. Peripheral inflammatory vascular disease in Sjögren’s syndrome. Association with nervous system complications. Arthritis Rheum. 1985;28:1341–1347.
  • Molina R, Provost TT, Alexander EL. Two types of inflammatory vascular disease in Sjögren’s syndrome. Differential association with seroreactivity to rheumatoid factor and antibodies to Ro (SS-A) and with hypocomplementemia. Arthritis Rheum. 1985;28:1251–1258.
  • Argyropoulou OD, Tzioufas AG. Common and rare forms of vasculitis associated with Sjögren’s syndrome. Curr Opin Rheumatol. 2020;32:21–28.
  • Ramos-Casals M, Brito-Zerón P, Yagüe J, et al. Hypocomplementaemia as an immunological marker of morbidity and mortality in patients with primary Sjogren’s syndrome. Rheumatology (Oxford). 2005;44:89–94.
  • Humă AC, Kecskeş EM, Tulbă D, et al. Immunosuppressive treatment for peripheral neuropathies in Sjogren’s syndrome - a systematic review. Rom J Intern Med. 2020;58:5–12.
  • Rist S, Sellam J, Hachulla E, et al. Experience of intravenous immunoglobulin therapy in neuropathy associated with primary Sjögren’s syndrome: a national multicentric retrospective study. Arthritis Care Res (Hoboken). 2011;63:1339–1344.
  • Bernal F, Graus F, Pifarré A, et al. Immunohistochemical analysis of anti-Hu-associated paraneoplastic encephalomyelitis. Acta Neuropathol. 2002;103:509–515.
  • Jean WC, Dalmau J, Ho A, et al. Analysis of the IgG subclass distribution and inflammatory infiltrates in patients with anti-Hu-associated paraneoplastic encephalomyelitis. Neurology. 1994;44:140–147.
  • Dubey D, Wilson MR, Clarkson B, et al. Expanded clinical phenotype, oncological associations, and immunopathologic insights of paraneoplastic kelch-like protein-11 encephalitis. JAMA Neurol. 2020;77:1420–1429.
  • Du Pré MF, Blazevski J, and Dewan AE, et al. B cell tolerance and antibody production to the celiac disease autoantigen transglutaminase 2. J Exp Med. 2020;217:e 20190860.
  • Gadoth A, Pittock SJ, Dubey D, et al. Expanded phenotypes and outcomes among 256 LGI1/CASPR2-IgG-positive patients. Ann Neurol. 2017;82:79–92.
  • Katirji B. Peripheral nerve hyperexcitability. Handb Clin Neurol. 2019;161:281–290.
  • Sawlani K, Katirji B. Peripheral Nerve Hyperexcitability Syndromes. Continuum (Minneap Minn). 2017;23(5):1437–1450.
  • van Sonderen A, Ariño H, Petit-Pedrol M, et al. The clinical spectrum of caspr2 antibody-associated disease. Neurology. 2016;87:521–528.
  • Dubey D, Britton J, McKeon A, et al. Randomized placebo-controlled trial of intravenous immunoglobulin in autoimmune LGI1/CASPR2 epilepsy. Ann Neurol. 2020;87:313–323.
  • Giannoccaro MP, Wright SK, Vincent A. In vivo mechanisms of antibody-mediated neurological disorders: animal models and potential implications. Front Neurol. 2019;10:1394.
  • Lahoria R, Pittock SJ, Gadoth A, et al. Clinical-pathologic correlations in voltage-gated Kv1 potassium channel complex-subtyped autoimmune painful polyneuropathy. Muscle Nerve. 2017;55:520–525.
  • Bauer J, Bien CG. Neuropathology of autoimmune encephalitides. Handb Clin Neurol. 2016;133:107–120.
  • Körtvelyessy P, Bauer J, Stoppel CM, et al. Complement-associated neuronal loss in a patient with CASPR2 antibody-associated encephalitis. Neurol Neuroimmunol Neuroinflamm. 2015;2:e75.
  • Sundal C, Vedeler C, Miletic H, et al. Morvan syndrome with caspr2 antibodies. Clinical and autopsy report. J Neurol Sci. 2017;372:453–455.
  • Thompson J, Bi M, Murchison AG, et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain. 2018;141:348–356.
  • Koike H, Iijima M, Mori K, et al. Neuropathic pain correlates with myelinated fibre loss and cytokine profile in POEMS syndrome. J Neurol Neurosurg Psychiatry. 2008;79:1171–1179.
  • Guibert C, Richard L, Durand S, et al. Skin and nerve neovascularization in poems syndrome: insights from a small cohort. J Neuropathol Exp Neurol. 2020;79:542–550.
  • Vital C, Gherardi R, Vital A, et al. Uncompacted myelin lamellae in polyneuropathy, organomegaly, endocrinopathy, M-protein and skin changes syndrome. Ultrastructural study of peripheral nerve biopsy from 22 patients. Acta Neuropathol. 1994;87:302–307.
  • Kelly JJ. Neurologic complications of primary systemic amyloidosis. Rev Neurol Dis. 2006;3:173–181.
  • Hafer-Macko CE, Dyck PJ, Koski CL. Complement activation in acquired and hereditary amyloid neuropathy. J Peripher Nerv Syst. 2000;5:131–139.
  • Marini A, Bernardini A, Gigli GL, et al. Neurologic adverse events of immune checkpoint inhibitors: a systematic review. Neurology. 2021;96:754–766.
  • Chen X, Haggiagi A, Tzatha E, et al. Electrophysiological findings in immune checkpoint inhibitor-related peripheral neuropathy. Clin Neurophysiol. 2019;130:1440–1445.
  • Alaedini A, Sander HW, Hays AP, et al. Antiganglioside antibodies in multifocal acquired sensory and motor neuropathy. Arch Neurol. 2003;60:42–46.
  • Magda P, Latov N, Brannagan TH 3rd, et al. Multifocal acquired sensory and motor neuropathy: electrodiagnostic features. J Clin Neuromuscul Dis. 2005;7:10–18.
  • Tulbă D, Popescu BO, Manole E, et al. Immune axonal neuropathies associated with systemic autoimmune rheumatic diseases. Front Pharmacol. 2021;12:610585.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.