227
Views
0
CrossRef citations to date
0
Altmetric
Review

Precision medicine in chronic rhinosinusitis – using endotype and endotype-driven therapeutic options

, , &
Pages 949-958 | Received 06 Feb 2023, Accepted 28 Jun 2023, Published online: 04 Jul 2023

References

  • Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58:1–464. doi: 10.4193/Rhin20.600
  • Shi JB, Fu QL, Zhang H, et al. Epidemiology of chronic rhinosinusitis: results from a cross-sectional survey in seven Chinese cities. Allergy. 2015;70(5):533–539. doi: 10.1111/all.12577
  • Zhang L, Zhang Y, Gao Y, et al. Long-term outcomes of different endoscopic sinus surgery in recurrent chronic rhinosinusitis with nasal polyps and asthma. Rhinology. 2020;58(2):126–135. doi: 10.4193/Rhin19.184
  • Bachert C, Zhang N, Hellings PW, et al. Endotype-driven care pathways in patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2018;141(5):1543–1551. doi: 10.1016/j.jaci.2018.03.004
  • Turner JH, Chandra RK, Li P, et al. Identification of clinically relevant chronic rhinosinusitis endotypes using cluster analysis of mucus cytokines. J Allergy Clin Immunol. 2018;141(5):1895–1897.e7. doi: 10.1016/j.jaci.2018.02.002
  • Tomassen P, Vandeplas G, Van Zele T, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. Journal Of Allergy And Clinical Immunology. 2016;137(5):1449–1456.e4. doi: 10.1016/j.jaci.2015.12.1324
  • Delemarre T, Holtappels G, De Ruyck N, et al. Type 2 inflammation in chronic rhinosinusitis without nasal polyps: another relevant endotype. J Allergy Clin Immunol. 2020;146(2):337–343.e6. doi: 10.1016/j.jaci.2020.04.040
  • Avdeeva K, Fokkens W. Precision medicine in chronic rhinosinusitis with nasal polyps. Curr Allergy Asthma Rep. 2018;18(4):25. doi: 10.1007/s11882-018-0776-8
  • McHugh T, Snidvongs K, Xie M, et al. High tissue eosinophilia as a marker to predict recurrence for eosinophilic chronic rhinosinusitis: a systematic review and meta-analysis. Int Forum Allergy Rhinol. 2018;8(12):1421–1429. doi: 10.1002/alr.22194
  • Lou H, Meng Y, Piao Y, et al. Cellular phenotyping of chronic rhinosinusitis with nasal polyps. Rhinology. 2016;54(2):150–159. doi: 10.4193/Rhino15.271
  • Hwang CS, Park SC, Cho HJ, et al. Eosinophil extracellular trap formation is closely associated with disease severity in chronic rhinosinusitis regardless of nasal polyp status. Sci Rep. 2019;9(1):8061. doi: 10.1038/s41598-019-44627-z
  • Wang W, Gao Y, Zhu Z, et al. Changes in the clinical and histological characteristics of Chinese chronic rhinosinusitis with nasal polyps over 11 years. Int Forum Allergy Rhinol. 2019;9(2):149–157. doi: 10.1002/alr.22234
  • Katotomichelakis M, Tantilipikorn P, Holtappels G, et al. Inflammatory patterns in upper airway disease in the same geographical area may change over time. Am J Rhinol Allergy. 2013;27(5):354–360. doi: 10.2500/ajra.2013.27.3922
  • Delemarre T, Holtappels G, De Ruyck N, et al. A substantial neutrophilic inflammation as regular part of severe type 2 chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2021;147(1):179–188.e2. doi: 10.1016/j.jaci.2020.08.036
  • Wang X, Sima Y, Zhao Y, et al. Endotypes of chronic rhinosinusitis based on inflammatory and remodeling factors. Journal Of Allergy And Clinical Immunology. 2022;151(2):458–468. doi: 10.1016/j.jaci.2022.10.010
  • Zhao Y, Mo S, Yu L, et al. Crystalline state determines the potency of galectin-10 protein assembly to induce inflammation. Nano Lett. 2022;22(6):2350–2357. doi: 10.1021/acs.nanolett.1c04817
  • Gevaert E, Delemarre T, De Volder J, et al. Charcot-Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis. J Allergy Clin Immunol. 2020;145(1):427–430.e4. doi: 10.1016/j.jaci.2019.08.027
  • Pothoven KL, Norton JE, Suh LA, et al. Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease. J Allergy Clin Immunol. 2017;139(6):1966–1978.e9. doi: 10.1016/j.jaci.2016.10.039
  • Pothoven KL, Norton JE, Hulse KE, et al. Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. J Allergy Clin Immunol. 2015;136(3):737–746.e4. doi: 10.1016/j.jaci.2015.01.043
  • Wang BF, Cao PP, Norton JE, et al. Evidence that oncostatin M synergizes with IL-4 signaling to induce TSLP expression in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2023;151(5):1379–1390.e11. doi: 10.1016/j.jaci.2022.11.029
  • Wang W, Xu Y, Wang L, et al. Single-cell profiling identifies mechanisms of inflammatory heterogeneity in chronic rhinosinusitis. Nat Immunol. 2022;23(10):1484–1494. doi: 10.1038/s41590-022-01312-0
  • Tan BK, Peters AT, Schleimer RP, et al. Pathogenic and protective roles of B cells and antibodies in patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2018;141(5):1553–1560. doi: 10.1016/j.jaci.2018.03.002
  • Hoggard M, Biswas K, Zoing M, et al. Evidence of microbiota dysbiosis in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2017;7(3):230–239. doi: 10.1002/alr.21871
  • Wagner Mackenzie B, Waite DW, Hoggard M, et al. Bacterial community collapse: a meta-analysis of the sinonasal microbiota in chronic rhinosinusitis. Environ Microbiol. 2017;19(1):381–392. doi: 10.1111/1462-2920.13632
  • Choi EB, Hong SW, Kim DK, et al. Decreased diversity of nasal microbiota and their secreted extracellular vesicles in patients with chronic rhinosinusitis based on a metagenomic analysis. Allergy. 2014;69(4):517–526. doi: 10.1111/all.12374
  • Paramasivan S, Bassiouni A, Shiffer A, et al. The international sinonasal microbiome study: a multicentre, multinational characterization of sinonasal bacterial ecology. Allergy. 2020;75(8):2037–2049. doi: 10.1111/all.14276
  • Schleimer RP. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu Rev Pathol. 2017;12(1):331–357. doi: 10.1146/annurev-pathol-052016-100401
  • Ramakrishnan VR, Hauser LJ, Feazel LM, et al. Sinus microbiota varies among chronic rhinosinusitis phenotypes and predicts surgical outcome. J Allergy Clin Immunol. 2015;136(2):334–342.e1. doi: 10.1016/j.jaci.2015.02.008
  • Zhao Y, Chen J, Hao Y, et al. Predicting the recurrence of chronic rhinosinusitis with nasal polyps using nasal microbiota. Allergy. 2022;77(2):540–549. doi: 10.1111/all.15168
  • Valera FCP, Ruffin M, Adam D, et al. Staphylococcus aureus impairs sinonasal epithelial repair: effects in patients with chronic rhinosinusitis with nasal polyps and control subjects. J Allergy Clin Immunol. 2019;143(2):591–603.e3. doi: 10.1016/j.jaci.2018.05.035
  • Cope EK, Goldberg AN, Pletcher SD, et al. Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences. Microbiome. 2017;5(1):53. doi: 10.1186/s40168-017-0266-6
  • Chalermwatanachai T, Zhang N, Holtappels G, et al. Association of mucosal organisms with patterns of inflammation in chronic rhinosinusitis. PLoS One. 2015;10(8):e0136068. doi: 10.1371/journal.pone.0136068
  • Wagner Mackenzie B, Dassi C, Vivekanandan A, et al. Longitudinal analysis of sinus microbiota post endoscopic surgery in patients with cystic fibrosis and chronic rhinosinusitis: a pilot study. Respir Res. 2021;22(1):106. doi: 10.1186/s12931-021-01697-w
  • Ramakrishnan VR, Frank DN. Impact of cigarette smoking on the middle meatus microbiome in health and chronic rhinosinusitis. Int Forum Allergy Rhinol. 2015;5(11):981–989. doi: 10.1002/alr.21626
  • Cherian LM, Bassiouni A, Cooksley CM, et al. The clinical outcomes of medical therapies in chronic rhinosinusitis are independent of microbiomic outcomes: a double-blinded, randomised placebo-controlled trial. Rhinology. 2020;58:559–567. doi: 10.4193/Rhin20.055
  • Lux CA, Wagner Mackenzie B, Johnston J, et al. Antibiotic treatment for chronic rhinosinusitis: prescription patterns and associations with patient outcome and the sinus microbiota. Front Microbiol. 2020;11:595555. doi: 10.3389/fmicb.2020.595555
  • Breiteneder H, Peng YQ, Agache I, et al. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy. 2020;75(12):3039–3068. doi: 10.1111/all.14582
  • Ogulur I, Pat Y, Ardicli O, et al. Advances and highlights in biomarkers of allergic diseases. Allergy. 2021;76(12):3659–3686. doi: 10.1111/all.15089
  • Kato A, Peters AT, Stevens WW, et al. Endotypes of chronic rhinosinusitis: relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy. 2022;77:812–826.
  • Purnell PR, Addicks BL, Zalzal HG, et al. Single nucleotide polymorphisms in chemosensory pathway genes GNB3, TAS2R19, and TAS2R38 are associated with chronic rhinosinusitis. Int Arch Allergy Immunol. 2019;180(1):72–78. doi: 10.1159/000499875
  • Kristjansson RP, Benonisdottir S, Davidsson OB, et al. A loss-of-function variant in ALOX15 protects against nasal polyps and chronic rhinosinusitis. Nat Genet. 2019;51(2):267–276. doi: 10.1038/s41588-018-0314-6
  • Hao Y, Zhao Y, Wang P, et al. Transcriptomic signatures and functional network analysis of chronic rhinosinusitis with nasal polyps. Front Genet. 2021;12:609754. doi: 10.3389/fgene.2021.609754
  • Yan B, Wang C, Zhang L. Cystatin SN—more than a type 2 immunity marker. J Allergy Clin Immunol. 2023;151(1):287–288. doi: 10.1016/j.jaci.2022.10.001
  • Kato Y, Takabayashi T, Sakashita M, et al. Expression and functional analysis of CST1 in intractable nasal polyps. Am J Respir Cell Mol Biol. 2018;59(4):448–457. doi: 10.1165/rcmb.2017-0325OC
  • Wu D, Yan B, Wang Y, et al. Prognostic and pharmacologic value of cystatin SN for chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2021;148(2):450–460. doi: 10.1016/j.jaci.2021.01.036
  • Bai J, Huang JH, Price CPE, et al. Prognostic factors for polyp recurrence in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2022;150(2):352–361.e7. doi: 10.1016/j.jaci.2022.02.029
  • Wen W, Liu W, Zhang L, et al. Increased neutrophilia in nasal polyps reduces the response to oral corticosteroid therapy. J Allergy Clin Immunol. 2012;129(6):1522–1528.e5. doi: 10.1016/j.jaci.2012.01.079
  • Hissaria P, Smith W, Wormald PJ, et al. Short course of systemic corticosteroids in sinonasal polyposis: a double-blind, randomized, placebo-controlled trial with evaluation of outcome measures. J Allergy Clin Immunol. 2006;118(1):128–133. doi: 10.1016/j.jaci.2006.03.012
  • Milara J, Morell A, Ballester B, et al. MUC4 impairs the anti-inflammatory effects of corticosteroids in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2017;139(3):855–862.e13. doi: 10.1016/j.jaci.2016.06.064
  • Hong H, Chen F, Sun Y, et al. Nasal IL-25 predicts the response to oral corticosteroids in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2018;141(5):1890–1892. doi: 10.1016/j.jaci.2017.10.050
  • Wu D, Yan B, Wang Y, et al. Charcot-Leyden crystal concentration in nasal secretions predicts clinical response to glucocorticoids in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2019;144(1):345–348.e8. doi: 10.1016/j.jaci.2019.03.029
  • Murr AH, Smith TL, Hwang PH, et al. Safety and efficacy of a novel bioabsorbable, steroid-eluting sinus stent. Int Forum Allergy Rhinol. 2011;1(1):23–32. doi: 10.1002/alr.20020
  • Schneider AL, Racette SD, Kang AK, et al. Use of intraoperative frontal sinus mometasone-eluting stents decreased interleukin 5 and interleukin 13 in patients with chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2022;12(11):1330–1339. doi: 10.1002/alr.23005
  • Bachert C, Zhang L, Gevaert P. Current and future treatment options for adult chronic rhinosinusitis: focus on nasal polyposis. J Allergy Clin Immunol. 2015;136(6):1431–1440. doi: 10.1016/j.jaci.2015.10.010
  • Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet. 2019;394(10209):1638–1650. doi: 10.1016/S0140-6736(19)31881-1
  • Maspero JF, Katelaris CH, Busse WW, et al. Dupilumab efficacy in uncontrolled, moderate-to-severe asthma with self-reported chronic rhinosinusitis. J Allergy Clin Immunol Pract. 2020;8(2):527–539.e9. doi: 10.1016/j.jaip.2019.07.016
  • Mullol J, Bachert C, Amin N, et al. Olfactory outcomes with dupilumab in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol Pract. 2022;10(4):1086–1095.e5. doi: 10.1016/j.jaip.2021.09.037
  • Bachert C, Hellings PW, Mullol J, et al. Dupilumab improves patient-reported outcomes in patients with chronic rhinosinusitis with nasal polyps and comorbid asthma. J Allergy Clin Immunol Pract. 2019;7(7):2447–2449.e2. doi: 10.1016/j.jaip.2019.03.023
  • Bachert C, Zinreich SJ, Hellings PW, et al. Dupilumab reduces opacification across all sinuses and related symptoms in patients with CRSwNP. Rhinology. 2020;58(1):10–17. doi: 10.4193/Rhin18.282
  • Lee SE, Hopkins C, Mullol J, et al. Dupilumab improves health related quality of life: results from the phase 3 SINUS studies. Allergy. 2022;77(7):2211–2221. doi: 10.1111/all.15222
  • Bachert C, Hellings PW, Mullol J, et al. Dupilumab improves health-related quality of life in patients with chronic rhinosinusitis with nasal polyposis. Allergy. 2020;75(1):148–157. doi: 10.1111/all.13984
  • Desrosiers M, Mannent LP, Amin N, et al. Dupilumab reduces systemic corticosteroid use and sinonasal surgery rate in CRSwNP. Rhinology. 2021;59(3):301–311. doi: 10.4193/Rhin20.415
  • Jonstam K, Swanson BN, Mannent LP, et al. Dupilumab reduces local type 2 pro-inflammatory biomarkers in chronic rhinosinusitis with nasal polyposis. Allergy. 2019;74(4):743–752. doi: 10.1111/all.13685
  • Fujieda S, Matsune S, Takeno S, et al. Dupilumab efficacy in chronic rhinosinusitis with nasal polyps from SINUS-52 is unaffected by eosinophilic status. Allergy. 2022;77(1):186–196. doi: 10.1111/all.14906
  • Soyka MB, Ryser FS, Brühlmann C, et al. Predicting dupilumab treatment outcome in patients with primary diffuse type 2 chronic rhinosinusitis. Allergy. 2022;78(4):1036–1046. doi: 10.1111/all.15532
  • Bachert C, Vignola AM, Gevaert P, et al. Allergic rhinitis, rhinosinusitis, and asthma: one airway disease. Immunol Allergy Clin North Am. 2004;24(1):19–43. doi: 10.1016/S0889-8561(03)00104-8
  • Gevaert P, Omachi TA, Corren J, et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. J Allergy Clin Immunol. 2020;146(3):595–605. doi: 10.1016/j.jaci.2020.05.032
  • Gevaert P, Calus L, Van Zele T, et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol. 2013;131(1):110–116.e1. doi: 10.1016/j.jaci.2012.07.047
  • Gevaert P, Saenz R, Corren J, et al. Long-term efficacy and safety of omalizumab for nasal polyposis in an open-label extension study. J Allergy Clin Immunol. 2022;149(3):957–965.e3. doi: 10.1016/j.jaci.2021.07.045
  • Zheng M, Sima Y, Liu C, et al. Clinical effectiveness and potential predictability of omalizumab in patients with difficult-to-treat chronic rhinosinusitis with nasal polyps and asthma based on the noninvasive markers – a real-life prospective study. World Allergy Organ J. 2022;15(10):100702. doi: 10.1016/j.waojou.2022.100702
  • Emma R, Morjaria JB, Fuochi V, et al. Mepolizumab in the management of severe eosinophilic asthma in adults: current evidence and practical experience. Ther Adv Respir Dis. 2018;12:1753466618808490. doi: 10.1177/1753466618808490
  • Han JK, Bachert C, Fokkens W, et al. Mepolizumab for chronic rhinosinusitis with nasal polyps (SYNAPSE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med. 2021;9(10):1141–1153. doi: 10.1016/S2213-2600(21)00097-7
  • Bachert C, Sousa AR, Lund VJ, et al. Reduced need for surgery in severe nasal polyposis with mepolizumab: randomized trial. J Allergy Clin Immunol. 2017;140(4):1024–1031.e14. doi: 10.1016/j.jaci.2017.05.044
  • Bachert C, Sousa AR, Han JK, et al. Mepolizumab for chronic rhinosinusitis with nasal polyps: treatment efficacy by comorbidity and blood eosinophil count. J Allergy Clin Immunol. 2022;149(5):1711–1721.e6. doi: 10.1016/j.jaci.2021.10.040
  • Bachert C, Han JK, Desrosiers MY, et al. Efficacy and safety of benralizumab in chronic rhinosinusitis with nasal polyps: a randomized, placebo-controlled trial. J Allergy Clin Immunol. 2022;149(4):1309–1317.e12. doi: 10.1016/j.jaci.2021.08.030
  • Agache I, Song Y, Alonso-Coello P, et al. Efficacy and safety of treatment with biologicals for severe chronic rhinosinusitis with nasal polyps: a systematic review for the EAACI guidelines. Allergy. 2021;76(8):2337–2353. doi: 10.1111/all.14809
  • Dellon ES, Peterson KA, Murray JA, et al. Anti–Siglec-8 antibody for Eosinophilic gastritis and Duodenitis. N Engl J Med. 2020;383(17):1624–1634. doi: 10.1056/NEJMoa2012047
  • Camilleri AE, Nag S, Russo AR, et al. Gene therapy for a murine model of eosinophilic esophagitis. Allergy. 2021;76(9):2740–2752. doi: 10.1111/all.14822
  • Shin HW, Kim DK, Park MH, et al. IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2015;135(6):1476–1485.e7. doi: 10.1016/j.jaci.2015.01.003
  • Kim YH, Yang TY, Park CS, et al. Anti-IL-33 antibody has a therapeutic effect in a murine model of allergic rhinitis. Allergy. 2012;67(2):183–190. doi: 10.1111/j.1398-9995.2011.02735.x
  • Bel EH. Moving upstream — Anti-TSLP in persistent uncontrolled asthma. N Engl J Med. 2017;377(10):989–991. doi: 10.1056/NEJMe1709519
  • Opdenakker G, Vermeire S, Abu El-Asrar A. How to place the duality of specific MMP-9 inhibition for treatment of inflammatory bowel diseases into clinical opportunities? Front Immunol. 2022;13:983964. doi: 10.3389/fimmu.2022.983964
  • Li X, Meng J, Qiao X, et al. Expression of TGF, matrix metalloproteinases, and tissue inhibitors in Chinese chronic rhinosinusitis. J Allergy Clin Immunol. 2010;125(5):1061–1068. doi: 10.1016/j.jaci.2010.02.023
  • Wang X, Zhang N, Bo M, et al. Diversity of T H cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol. 2016;138(5):1344–1353. doi: 10.1016/j.jaci.2016.05.041
  • Camargo LDN, Righetti RF, Aristóteles L, et al. Effects of anti-IL-17 on inflammation, remodeling, and oxidative stress in an experimental model of asthma exacerbated by LPS. Front Immunol. 2017;8:1835. doi: 10.3389/fimmu.2017.01835
  • Kardas G, Kuna P, Panek M. Biological therapies of severe asthma and their possible effects on airway remodeling. Front Immunol. 2020;11:1134. doi: 10.3389/fimmu.2020.01134
  • Loftus CA, Soler ZM, Koochakzadeh S, et al. Revision surgery rates in chronic rhinosinusitis with nasal polyps: meta-analysis of risk factors. Int Forum Allergy Rhinol. 2020;10(2):199–207. doi: 10.1002/alr.22487
  • Bachert C, Marple B, Schlosser RJ, et al. Adult chronic rhinosinusitis. Nat Rev Dis Primers. 2020;6(1):86. doi: 10.1038/s41572-020-00218-1
  • Bachert C, Han JK, Wagenmann M, et al. EUFOREA expert board meeting on uncontrolled severe chronic rhinosinusitis with nasal polyps (CRSwNP) and biologics: definitions and management. J Allergy Clin Immunol. 2021;147(1):29–36. doi: 10.1016/j.jaci.2020.11.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.