220
Views
0
CrossRef citations to date
0
Altmetric
Review

Pathophysiology and management of Staphylococcus aureus in nasal polyp disease

, , , &
Pages 981-992 | Received 03 Apr 2023, Accepted 03 Jul 2023, Published online: 13 Jul 2023

References

  • Bachert C, Marple B, Schlosser RJ, et al. Adult chronic rhinosinusitis. Nat Rev Dis Primers. 2020;6:86.
  • Tomassen P, Vandeplas G, Van Zele T, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol. 2016;137(5):1449–56.e4. doi: 10.1016/j.jaci.2015.12.1324
  • Wang X, Zhang N, Bo M, et al. Diversity of T(H) cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol. 2016;138:1344–1353.
  • Bachert C, Gevaert P, Holtappels G, et al. Total and specific IgE in nasal polyps is related to local eosinophilic inflammation. J Allergy Clin Immunol. 2001;107(4):607–614. doi: 10.1067/mai.2001.112374
  • Grumann D, Nübel U, Bröker BM. Staphylococcus aureus toxins – Their functions and genetics. Infect Genet Evol. 2014;21:583–592. doi: 10.1016/j.meegid.2013.03.013
  • Schmidt F, Völker U, Sundaramoorthy N, et al. Characterization of human and Staphylococcus aureus proteins in respiratory mucosa by in vivo- and immunoproteomics. Journal Proteomics. 2017;155:31–39.
  • Rha MS, Kim SW, Chang DY, et al. Superantigen-related T(H)2 CD4(+) T cells in nonasthmatic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2020;145:1378–88.e10. doi: 10.1016/j.jaci.2019.12.915
  • Bachert C, Zhang N, Holtappels G, et al. Presence of IL-5 protein and IgE antibodies to staphylococcal enterotoxins in nasal polyps is associated with comorbid asthma. J Allergy Clin Immunol. 2010;126:962-8, 8 e1–6. doi: 10.1016/j.jaci.2010.07.007
  • Patou J, Gevaert P, Van Zele T, et al. Staphylococcus aureus enterotoxin B, protein A, and lipoteichoic acid stimulations in nasal polyps. J Allergy Clin Immunol. 2008;121:110–115. doi: 10.1016/j.jaci.2007.08.059
  • Bernstein JM, Allen C, Rich G, et al. Further observations on the role of Staphylococcus aureus exotoxins and IgE in the pathogenesis of nasal polyposis. Laryngoscope. 2011;121(3):647–655. doi: 10.1002/lary.21400
  • Tomassen P, Jarvis D, Newson R, et al. Staphylococcus aureus enterotoxin-specific IgE is associated with asthma in the general population: a GA(2)LEN study. Allergy. 2013;68:1289–1297. doi: 10.1111/all.12230
  • Breuer K, Wittmann M, Bösche B, et al. Severe atopic dermatitis is associated with sensitization to staphylococcal enterotoxin B (SEB). Allergy. 2000;55(6):551–555. doi: 10.1034/j.1398-9995.2000.00432.x
  • Caruso C, Colantuono S, Ciasca G, et al. Different aspects of severe asthma in real life: role of Staphylococcus aureus enterotoxins and correlation to comorbidities and disease severity. Allergy. 2022;78(1):131–140. doi: 10.1111/all.15466
  • Wei B, Liu F, Zhang J, et al. Multivariate analysis of inflammatory endotypes in recurrent nasal polyposis in a Chinese population. Rhinology. 2018;56(3):216–226. doi: 10.4193/Rhin17.240
  • Shamji MH, Thomsen I, Layhadi JA, et al. Broad IgG repertoire in patients with chronic rhinosinusitis with nasal polyps regulates proinflammatory IgE responses. J Allergy Clin Immunol. 2019;143(6):2086–94.e2. doi: 10.1016/j.jaci.2019.02.001
  • Calus L, Derycke L, Dullaers M, et al. IL-21 is increased in nasal polyposis and after stimulation with staphylococcus aureus enterotoxin B. Int Arch Allergy Immunol. 2017;174(3–4):161–169. doi: 10.1159/000481435
  • Chen JB, James LK, Davies AM, et al. Antibodies and superantibodies in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2017;139(4):1195–204.e11. doi: 10.1016/j.jaci.2016.06.066
  • Martens K, Seys SF, Alpizar YA, et al. Staphylococcus aureus enterotoxin B disrupts nasal epithelial barrier integrity. Clin Exp Allergy. 2021;51(1):87–98. doi: 10.1111/cea.13760
  • Liu C, Chi K, Yang M, et al. Staphylococcal enterotoxin a induces intestinal barrier dysfunction and activates NLRP3 inflammasome via NF-κB/MAPK signaling pathways in mice. Toxins (Basel). 2022;14(1):14. doi: 10.3390/toxins14010029
  • Jin J, Yoon YH, Kwak SY, et al. Staphylococcal enterotoxin B induced expression of IL-17A in nasal epithelial cells and its association with pathogenesis of nasal polyposis. Eur Arch Otorhinolaryngol. 2014;271:525–534. doi: 10.1007/s00405-013-2589-7
  • Noyama Y, Okano M, Fujiwara T, et al. IL-22/IL-22R1 signaling regulates the pathophysiology of chronic rhinosinusitis with nasal polyps via alteration of MUC1 expression. Allergol Int. 2017;66(1):42–51. doi: 10.1016/j.alit.2016.04.017
  • Haruna T, Kariya S, Fujiwara T, et al. Association between impaired IL-10 production following exposure to Staphylococcus aureus enterotoxin B and disease severity in eosinophilic chronic rhinosinusitis. Allergol Int. 2018;67(3):392–398. doi: 10.1016/j.alit.2018.02.001
  • Yoon YH, Yeon SH, Choi MR, et al. Altered mitochondrial functions and morphologies in epithelial cells are associated with pathogenesis of chronic rhinosinusitis with nasal polyps. Allergy Asthma Immunol Res. 2020;12(4):653–668. doi: 10.4168/aair.2020.12.4.653
  • Kim YM, Jin J, Choi JA, et al. Staphylococcus aureus enterotoxin B-induced endoplasmic reticulum stress response is associated with chronic rhinosinusitis with nasal polyposis. Clin Biochem. 2014;47(1–2):96–103. doi: 10.1016/j.clinbiochem.2013.10.030
  • Rouyar A, Classe M, Gorski R, et al. Type 2/Th2-driven inflammation impairs olfactory sensory neurogenesis in mouse chronic rhinosinusitis model. Allergy. 2019;74(3):549–559. doi: 10.1111/all.13559
  • Popowicz GM, Dubin G, Stec-Niemczyk J, et al. Functional and structural characterization of Spl proteases from Staphylococcus aureus. J Mol Biol. 2006;358(1):270–279. doi: 10.1016/j.jmb.2006.01.098
  • Nordengrün M, Abdurrahman G, Treffon J, et al. Allergic reactions to serine protease-like proteins of Staphylococcus aureus. Front Immunol. 2021;12:651060. doi: 10.3389/fimmu.2021.651060
  • Stentzel S, Teufelberger A, Nordengrün M, et al. Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. J Allergy Clin Immunol. 2017;139:492–500.e8. doi: 10.1016/j.jaci.2016.03.045
  • Teufelberger AR, Nordengrün M, Braun H, et al. The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus–derived serine protease–like protein D. J Allergy Clin Immunol. 2018;141(2):549–59.e7. doi: 10.1016/j.jaci.2017.05.004
  • Teufelberger AR, Van Nevel S, Hulpiau P, et al. Mouse strain-dependent difference toward the staphylococcus aureus allergen serine protease-like protein d reveals a novel regulator of IL-33. Front Immunol. 2020;11:582044. doi: 10.3389/fimmu.2020.582044
  • Tan NC, Foreman A, Jardeleza C, et al. The multiplicity of Staphylococcus aureus in chronic rhinosinusitis: correlating surface biofilm and intracellular residence. Laryngoscope. 2012;122:1655–1660. doi: 10.1002/lary.23317
  • Panchatcharam BS, Cooksley CM, Ramezanpour M, et al. Staphylococcus aureus biofilm exoproteins are cytotoxic to human nasal epithelial barrier in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2020;10(7):871–883. doi: 10.1002/alr.22566
  • Frey AM, Chaput D, Shaw LN. Insight into the human pathodegradome of the V8 protease from Staphylococcus aureus. Cell Rep. 2021;35(1):108930. doi: 10.1016/j.celrep.2021.108930
  • Murphy J, Ramezanpour M, Stach N, et al. Staphylococcus Aureus V8 protease disrupts the integrity of the airway epithelial barrier and impairs IL-6 production in vitro. Laryngoscope. 2018;128(1):E8–E15. doi: 10.1002/lary.26949
  • Zhang G, Zhao Y, Hayes AJ, et al. Staphylococcus aureus small colony variants: Prevalence in chronic rhinosinusitis and induction by antibiotics. Allergy. 2018;73(12):2403–2405. doi: 10.1111/all.13580
  • Tan NC, Cooksley CM, Roscioli E, et al. Small-colony variants and phenotype switching of intracellular Staphylococcus aureus in chronic rhinosinusitis. Allergy. 2014;69(10):1364–1371. doi: 10.1111/all.12457
  • Lan F, Zhang N, Holtappels G, et al. Staphylococcus aureus induces a mucosal type 2 immune response via epithelial cell-derived cytokines. Am J Respir Crit Care Med. 2018;198:452–463.
  • Sachse F, Becker K, Von Eiff C, et al. Staphylococcus aureus invades the epithelium in nasal polyposis and induces IL-6 in nasal epithelial cells in vitro. Allergy: Eur J Allergy Clin Immunol. 2010;65(11):1430–1437. doi: 10.1111/j.1398-9995.2010.02381.x
  • Martens K, Seys SF, Alpizar YA, et al. Staphylococcus aureus enterotoxin B disrupts nasal epithelial barrier integrity. Clin Exp Immunol. 2021;51(1):87–98. doi: 10.1111/cea.13760
  • Bubeck Wardenburg J, Patel RJ, Schneewind O. Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect Immun. 2007;75(2):1040–1044. doi: 10.1128/IAI.01313-06
  • Ziesemer S, Eiffler I, Schonberg A, et al. Staphylococcus aureus alpha-toxin induces actin filament remodeling in human airway epithelial model cells. Am J Respir Cell Mol Biol. 2018;58:482–491. doi: 10.1165/rcmb.2016-0207OC
  • Hermann I, Rath S, Ziesemer S, et al. Staphylococcus aureus hemolysin a disrupts cell-matrix adhesions in human airway epithelial cells. Am J Respir Cell Mol Biol. 2015;52:14–24. doi: 10.1165/rcmb.2014-0082OC
  • Murphy J, Ramezanpour M, Drilling A, et al. In vitro characteristics of an airway barrier-disrupting factor secreted by Staphylococcus aureus. Int Forum Allergy Rhinol. 2019;9(2):187–196. doi: 10.1002/alr.22232
  • Thienhaus ML, Wohlers J, Podschun R, et al. Antimicrobial peptides in nasal secretion and mucosa with respect to Staphylococcus aureus colonization in chronic rhinosinusitis with nasal polyps. Rhinology. 2011;49(5):554–561. doi: 10.4193/Rhino11.072
  • Homma T, Kato A, Sakashita M, et al. Potential involvement of the epidermal growth factor receptor ligand epiregulin and matrix metalloproteinase-1 in pathogenesis of chronic rhinosinusitis. Am J Respir Cell Mol Biol. 2017;57:334–345. doi: 10.1165/rcmb.2016-0325OC
  • Lan F, Zhong H, Zhang N, et al. IFN-λ1 enhances Staphylococcus aureus clearance in healthy nasal mucosa but not in nasal polyps. J Allergy Clin Immunol. 2019;143(4):1416–25.e4. doi: 10.1016/j.jaci.2018.09.041
  • Krysko O, Holtappels G, Zhang N, et al. Alternatively activated macrophages and impaired phagocytosis of S. aureus in chronic rhinosinusitis. Allergy: Eur J Allergy Clin Immunol. 2011;66(3):396–403. doi: 10.1111/j.1398-9995.2010.02498.x
  • Biggs TC, Hayes SM, Harries PG, et al. Immunological profiling of key inflammatory drivers of nasal polyp formation and growth in chronic rhinosinusitis. Rhinology. 2019;57(5):336–342. doi: 10.4193/Rhin19.167
  • Hayes SM, Biggs TC, Goldie SP, et al. Staphylococcus aureus internalization in mast cells in nasal polyps: characterization of interactions and potential mechanisms. J Allergy Clin Immunol. 2020;145(1):147–159. doi: 10.1016/j.jaci.2019.06.013
  • Feng T, Miao P, Liu B, et al. Sinus microbiota in patients with eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Front Cell Infect Microbiol. 2021;11:672355. doi: 10.3389/fcimb.2021.672355
  • Lee K, Zhang I, Kyman S, et al. Co-infection of malassezia sympodialis with bacterial pathobionts pseudomonas aeruginosa or staphylococcus aureus leads to distinct sinonasal inflammatory responses in a murine acute sinusitis model. Front Cell Infect Microbiol. 2020;10:472. doi: 10.3389/fcimb.2020.00472
  • Wang X, Zhang N, Glorieux S, et al. Herpes simplex virus type 1 infection facilitates invasion of Staphylococcus aureus into the nasal mucosa and nasal polyp tissue. PLoS One. 2012;7(6):e39875. doi: 10.1371/journal.pone.0039875
  • Chalermwatanachai T, Vilchez-Vargas R, Holtappels G, et al. Chronic rhinosinusitis with nasal polyps is characterized by dysbacteriosis of the nasal microbiota. Sci Rep. 2018;8(1):7926. doi: 10.1038/s41598-018-26327-2
  • Huang S, Hon K, Bennett C, et al. Corynebacterium accolens inhibits Staphylococcus aureus induced mucosal barrier disruption. Front Microbiol. 2022;13. doi: 10.3389/fmicb.2022.984741
  • De Boeck I, Wittouck S, Martens K, et al. The nasal mutualist Dolosigranulum pigrum AMBR11 supports homeostasis via multiple mechanisms. Iscience. 2021;24:9.
  • Liu Q, Liu Q, Meng H, et al. Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production. Cell Host Microbe. 2020;27(1):68–78.e5. doi: 10.1016/j.chom.2019.11.003
  • Head K, Chong LY, Piromchai P, et al. Systemic and topical antibiotics for chronic rhinosinusitis. Cochrane Database Syst Rev. 2016;4:Cd011994. doi: 10.1002/14651858.CD011994.pub2
  • Schalek P, Petrás P, Klement V, et al. Short-term antibiotics treatment in patients with nasal polyps and enterotoxins producing Staphylococcus aureus strains. Eur Arch Otorhinolaryngol. 2009;266(12):1909–1913. doi: 10.1007/s00405-009-1049-x
  • Maniakas A, Asmar MH, Renteria AE, et al. Azithromycin in high-risk, refractory chronic rhinosinusitis after endoscopic sinus surgery and corticosteroid irrigations: a double-blind, randomized, placebo-controlled trial. Int Forum Allergy Rhinol. 2021;11(4):747–754. doi: 10.1002/alr.22691
  • Renteria AE, Maniakas A, Mfuna LE, et al. Low-dose and long-term azithromycin significantly decreases Staphylococcus aureus in the microbiome of refractory CRS patients. Int Forum Allergy Rhinol. 2021;11(2):93–105. doi: 10.1002/alr.22653
  • Jervis-Bardy J, Boase S, Psaltis A, et al. A randomized trial of mupirocin sinonasal rinses versus saline in surgically recalcitrant staphylococcal chronic rhinosinusitis. Laryngoscope. 2012;122(10):2148–2153. doi: 10.1002/lary.23486
  • Seiberling KA, Aruni W, Kim S, et al. The effect of intraoperative mupirocin irrigation on Staphylococcus aureus within the maxillary sinus. Int Forum Allergy Rhinol. 2013;3:94–98. doi: 10.1002/alr.21076
  • Jervis-Bardy J, Wormald PJ. Microbiological outcomes following mupirocin nasal washes for symptomatic, Staphylococcus aureus-positive chronic rhinosinusitis following endoscopic sinus surgery. Int Forum Allergy Rhinol. 2012;2(2):111–115. doi: 10.1002/alr.20106
  • Videler WJ, van Drunen CM, Reitsma JB, et al. Nebulized bacitracin/colimycin: a treatment option in recalcitrant chronic rhinosinusitis with Staphylococcus aureus? A double-blind, randomized, placebo-controlled, cross-over pilot study. Rhinology. 2008;46:92–98.
  • Feizi S, Cooksley CM, Nepal R, et al. Silver nanoparticles as a bioadjuvant of antibiotics against biofilm-mediated infections with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in chronic rhinosinusitis patients. Pathology. 2022;54(4):453–459. doi: 10.1016/j.pathol.2021.08.014
  • Tian P, Ye W, Zhang X, et al. Ten-step asymmetric total syntheses of potent antibiotics anthracimycin and anthracimycin B. Chem Sci. 2022;13(43):12776–12781. doi: 10.1039/D2SC05049H
  • Bachert C, Holtappels G, Merabishvili M, et al. Staphylococcus aureus controls interleukin-5 release in upper airway inflammation. J Proteomics. 2018;180:53–60. doi: 10.1016/j.jprot.2017.12.003
  • Drilling AJ, Ooi ML, Miljkovic D, et al. Long-term safety of topical bacteriophage application to the frontal sinus region. Front Cell Infect Microbiol. 2017;7:49. doi: 10.3389/fcimb.2017.00049
  • Drilling A, Morales S, Boase S, et al. Safety and efficacy of topical bacteriophage and ethylenediaminetetraacetic acid treatment of Staphylococcus aureus infection in a sheep model of sinusitis. Int Forum Allergy Rhinol. 2014;4(3):176–186. doi: 10.1002/alr.21270
  • Rodriguez JM, Woodworth BA, Horne B, et al. Case report: successful use of phage therapy in refractory MRSA chronic rhinosinusitis. Int J Infect Dis. 2022;121:14–16. doi: 10.1016/j.ijid.2022.04.049
  • Ooi ML, Drilling AJ, Morales S, et al. Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus. JAMA Otolaryngology–Head & Neck Surg. 2019;145(8):723–729. doi: 10.1001/jamaoto.2019.1191
  • Doub JB, Johnson AJ, Nandi S, et al. Experience using adjuvant bacteriophage therapy for the treatment of 10 recalcitrant periprosthetic joint infections: a case series. Clin Infect Dis. 2022;76(3):e1463–e1466. doi: 10.1093/cid/ciac694
  • Wang F, Xiao Y, Lu Y, et al. Bacteriophage lytic enzyme P9ly as an alternative antibacterial agent against antibiotic-resistant shigella dysenteriae and Staphylococcus aureus. Front Microbiol. 2022;13:821989. doi: 10.3389/fmicb.2022.821989
  • Bispo M, Santos SB, Melo LDR, et al. Targeted antimicrobial photodynamic therapy of biofilm-embedded and intracellular staphylococci with a phage endolysin’s cell binding domain. Microbiol Spectr. 2022;10(1):e0146621. doi: 10.1128/spectrum.01466-21
  • Gong C, Guan W, Liu X, et al. Biomimetic bacteriophage-like particles formed from probiotic extracts and no donors for eradicating multidrug-resistant Staphylococcus aureus. Adv Mater. 2022;34(45):e2206134. doi: 10.1002/adma.202206134
  • Liu S, Zhao Y, Hayes A, et al. Overcoming bacteriophage insensitivity in Staphylococcus aureus using clindamycin and azithromycin at subinhibitory concentrations. Allergy. 2021;76(11):3446–3458. doi: 10.1111/all.14883
  • Save J, Que YA, Entenza J, et al. Subtherapeutic doses of vancomycin synergize with bacteriophages for treatment of experimental methicillin-resistant Staphylococcus aureus infective endocarditis. Viruses. 2022;14(8):1792.
  • Save J, Que YA, Entenza JM, et al. Bacteriophages combined with subtherapeutic doses of flucloxacillin act synergistically against Staphylococcus aureus experimental infective endocarditis. J Am Heart Assoc. 2022;11(3):e023080. doi: 10.1161/JAHA.121.023080
  • Kebriaei R, Lev KL, Shah RM, et al. Eradication of biofilm-mediated methicillin-resistant staphylococcus aureus infections in vitro: bacteriophage-antibiotic combination. Microbiol Spectr. 2022;10(2):e0041122. doi: 10.1128/spectrum.00411-22
  • Bachert C, Han JK, Wagenmann M, et al. EUFOREA expert board meeting on uncontrolled severe chronic rhinosinusitis with nasal polyps (CRSwNP) and biologics: Definitions and management. J Allergy Clin Immunol. 2021;147(1):29–36. doi: 10.1016/j.jaci.2020.11.013
  • Beck LA, Bieber T, Weidinger S, et al. Tralokinumab treatment improves the skin microbiota by increasing the microbial diversity in adults with moderate-to-severe atopic dermatitis: analysis of microbial diversity in ECZTRA 1, a randomized controlled trial. J Am Acad Dermatol. 2022;88(4):816–823. doi: 10.1016/j.jaad.2022.11.047
  • Olesen CM, Ingham AC, Thomsen SF, et al. Changes in skin and nasal microbiome and Staphylococcal species following treatment of atopic dermatitis with dupilumab. Microorganisms. 2021;9(7):1487. doi: 10.3390/microorganisms9071487
  • Cope EK, Goldberg AN, Pletcher SD, et al. Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences. Microbiome. 2017;5(1):53. doi: 10.1186/s40168-017-0266-6
  • Ramakrishnan VR, Hauser LJ, Feazel LM, et al. Sinus microbiota varies among chronic rhinosinusitis phenotypes and predicts surgical outcome. J Allergy Clin Immunol. 2015;136(2):334–42.e1. doi: 10.1016/j.jaci.2015.02.008
  • Hoggard M, Waldvogel-Thurlow S, Zoing M, et al. Inflammatory endotypes and microbial associations in chronic rhinosinusitis. Front Immunol. 2018;9:2065. doi: 10.3389/fimmu.2018.02065
  • Callewaert C, Nakatsuji T, Knight R, et al. IL-4Rα blockade by dupilumab decreases staphylococcus aureus colonization and increases microbial diversity in atopic dermatitis. J Invest Dermatol. 2020;140(1):191–202.e7. doi: 10.1016/j.jid.2019.05.024
  • Lee SJ, Kim SE, Shin KO, et al. Dupilumab therapy improves stratum corneum hydration and skin dysbiosis in patients with atopic dermatitis. Allergy Asthma Immunol Res. 2021;13(5):762–775. doi: 10.4168/aair.2021.13.5.762
  • Geng B, Bachert C, Busse WW, et al. Respiratory infections and anti-infective medication use from phase 3 dupilumab respiratory studies. J Allergy Clin Immunol Pract. 2022;10(3):732–741. doi: 10.1016/j.jaip.2021.12.006
  • Chong LY, Head K, Hopkins C, et al. Saline irrigation for chronic rhinosinusitis. Cochrane Database Syst Rev. 2016;2016(4):Cd011995. doi: 10.1002/14651858.CD011995.pub2
  • Liu CM, Kohanski MA, Mendiola M, et al. Impact of saline irrigation and topical corticosteroids on the postsurgical sinonasal microbiota. Int Forum Allergy Rhinol. 2015;5(3):185–190. doi: 10.1002/alr.21467
  • Seiberling KA, McHugh RK, Aruni W, et al. The impact of intraoperative saline irrigations on bacterial load within the maxillary sinus. Int Forum Allergy Rhinol. 2011;1(5):351–355. doi: 10.1002/alr.20075
  • Raza T, Elsherif HS, Zulianello L, et al. Nasal lavage with sodium hypochlorite solution in Staphylococcus aureus persistent rhinosinusitis. Rhinology. 2008;46:15–22.
  • Lee VS, Humphreys IM, Purcell PL, et al. Manuka honey sinus irrigation for the treatment of chronic rhinosinusitis: a randomized controlled trial. Int Forum Allergy Rhinol. 2017;7(4):365–372. doi: 10.1002/alr.21898
  • Ooi ML, Jothin A, Bennett C, et al. Manuka honey sinus irrigations in recalcitrant chronic rhinosinusitis: phase 1 randomized, single-blinded, placebo-controlled trial. Int Forum Allergy Rhinol. 2019;9(12):1470–1477. doi: 10.1002/alr.22423
  • Bennett C, Ramezanpour M, Cooksley C, et al. Kappa-carrageenan sinus rinses reduce inflammation and intracellular Staphylococcus aureus infection in airway epithelial cells. Int Forum Allergy Rhinol. 2019;9(8):918–925. doi: 10.1002/alr.22360
  • Singhal D, Jekle A, Debabov D, et al. Efficacy of NVC-422 against Staphylococcus aureus biofilms in a sheep biofilm model of sinusitis. Int Forum Allergy Rhinol. 2012;2(4):309–315. doi: 10.1002/alr.21038
  • Mukerji SS, Pynnonen MA, Kim HM, et al. Probiotics as adjunctive treatment for chronic rhinosinusitis: a randomized controlled trial. Otolaryngol Head Neck Surg. 2009;140(2):202–208. doi: 10.1016/j.otohns.2008.11.020
  • Pivniouk V, Gimenes-Junior JA, Ezeh P, et al. Airway administration of OM-85, a bacterial lysate, blocks experimental asthma by targeting dendritic cells and the epithelium/IL-33/ILC2 axis. J Allergy Clin Immunol. 2022;149(3):943–956. doi: 10.1016/j.jaci.2021.09.013
  • De Boeck I, van den Broek MFL, Allonsius CN, et al. Lactobacilli have a niche in the human nose. Cell Rep. 2020;31:107674. doi: 10.1016/j.celrep.2020.107674
  • Lambert PA, Gill AL, Gill SR, et al. Microbiomics of irrigation with xylitol or Lactococcus lactis in chronic rhinosinusitis. Laryngoscope Investig Otolaryngol. 2021;6:64–70. doi: 10.1002/lio2.524
  • Mårtensson A, Greiff L, Lamei SS, et al. Effects of a honeybee lactic acid bacterial microbiome on human nasal symptoms, commensals, and biomarkers. Int Forum Allergy Rhinol. 2016;6(9):956–963. doi: 10.1002/alr.21762
  • Endam LM, Alromaih S, Gonzalez E, et al. Intranasal application of Lactococcus lactis W136 is safe in chronic rhinosinusitis patients with previous sinus surgery. Front Cell Infect Microbiol. 2020;10:440. doi: 10.3389/fcimb.2020.00440
  • Menberu MA, Cooksley C, Ramezanpour M, et al. In vitro and in vivo evaluation of probiotic properties of Corynebacterium accolens isolated from the human nasal cavity. Microbiol Res. 2021;255:126927. doi: 10.1016/j.micres.2021.126927
  • Menberu MA, Liu S, Cooksley C, et al. Corynebacterium accolens has antimicrobial activity against Staphylococcus aureus and methicillin-resistant S. aureus pathogens isolated from the sinonasal niche of chronic rhinosinusitis patients. Pathogens. 2021;10(2):10. doi: 10.3390/pathogens10020207
  • Frost I, Sati H, Garcia-Vello P, et al. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. Lancet Microbe. 2022;4(2):e113–e125. doi: 10.1016/S2666-5247(22)00303-2
  • Super M, Doherty EJ, Cartwright MJ, et al. Biomaterial vaccines capturing pathogen-associated molecular patterns protect against bacterial infections and septic shock. Nat Biomed Eng. 2022;6:8–18. doi: 10.1038/s41551-021-00756-3
  • Yu YJ, Yan JH, Chen QW, et al. Polymeric nano-system for macrophage reprogramming and intracellular MRSA eradication. J Control Release. 2022;353:591–610. doi: 10.1016/j.jconrel.2022.12.014
  • Pan T, Chen H, Gao X, et al. Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication. J Hazard Mater. 2022;435:128996. doi: 10.1016/j.jhazmat.2022.128996
  • Zheng J, Wang W, Gao X, et al. Cascade catalytically released nitric oxide-driven nanomotor with enhanced penetration for antibiofilm. Small. 2022;18(52):e2205252. doi: 10.1002/smll.202205252
  • He X, Dai L, Ye L, et al. A vehicle-free antimicrobial polymer hybrid gold nanoparticle as synergistically therapeutic platforms for Staphylococcus aureus infected wound healing. Adv Sci. 2022;9:e2105223. doi: 10.1002/advs.202105223
  • Szaleniec J, Gibała A, Stalińska J, et al. Biocidal Activity of tannic acid-prepared silver nanoparticles towards pathogens isolated from patients with exacerbations of chronic rhinosinusitis. Int J Mol Sci. 2022;23(23):23. doi: 10.3390/ijms232315411
  • Van Zele T, Gevaert P, Watelet JB, et al. Staphylococcus aureus colonization and IgE antibody formation to enterotoxins is increased in nasal polyposis. J Allergy Clin Immunol. 2004;114(4):981–983. doi: 10.1016/j.jaci.2004.07.013
  • Schleich F, Moermans C, Gerday S, et al. Asthmatics only sensitized to Staphylococcus aureus enterotoxins have more exacerbations, airflow limitation, and higher levels of sputum IL-5 and IgE. J Allergy Clin Immunol Pract. 2023. doi: 10.1016/j.jaip.2023.05.043
  • Heymans F, Fischer A, Stow NW, et al. Screening for staphylococcal superantigen genes shows no correlation with the presence or the severity of chronic rhinosinusitis and nasal polyposis. PLoS One. 2010;5(3):e9525. doi: 10.1371/journal.pone.0009525
  • Wagner Mackenzie B, Baker J, Douglas RG, et al. Detection and quantification of Staphylococcus in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2019;9(12):1462–1469. doi: 10.1002/alr.22425
  • Damm M, Quante G, Jurk T, et al. Nasal colonization with Staphylococcus aureus is not associated with the severity of symptoms or the extent of the disease in chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2004;131(3):200–206. doi: 10.1016/j.otohns.2004.02.050
  • Wagner Mackenzie B, Zoing M, Clow F, et al. Characterising clinical Staphylococcus aureus isolates from the sinuses of patients with chronic rhinosinusitis. Sci Rep. 2021;11(1):21940. doi: 10.1038/s41598-021-01297-0
  • Altunbulakli C, Costa R, Lan F, et al. Staphylococcus aureus enhances the tight junction barrier integrity in healthy nasal tissue, but not in nasal polyps. J Allergy Clin Immunol. 2018;142(2):665–8.e8. doi: 10.1016/j.jaci.2018.01.046
  • Valera FCP, Ruffin M, Adam D, et al. Staphylococcus aureus impairs sinonasal epithelial repair: effects in patients with chronic rhinosinusitis with nasal polyps and control subjects. J Allergy Clin Immunol. 2019;143(2):591–603.e3. doi: 10.1016/j.jaci.2018.05.035

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.