3,741
Views
0
CrossRef citations to date
0
Altmetric
Review

A review of genetic risk in systemic lupus erythematosus

, , &
Pages 1247-1258 | Received 25 Oct 2022, Accepted 10 May 2023, Published online: 26 Jul 2023

References

  • Wang L, Wang F-S, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med. 2015;278(4):369–395. doi: 10.1111/joim.12395
  • Barber MRW, Drenkard C, Falasinnu T, et al. Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17(9):515–532. doi: 10.1038/s41584-021-00668-1
  • Chen L, Morris DL, Vyse TJ. Genetic advances in systemic lupus erythematosus: an update. Curr Opin Rheumatol. 2017;29(5):423–433. doi: 10.1097/BOR.0000000000000411
  • Yin X, Kim K, Suetsugu H, et al. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. Ann Rheumatic Dis. 2020;80(5):632–640. doi: 10.1136/annrheumdis-2020-219209
  • Wen L, Zhu C, Zhu Z, et al. Exome-wide association study identifies four novel loci for systemic lupus erythematosus in Han Chinese population. Ann Rheumatic Dis. 2017;77(3):417. doi: 10.1136/annrheumdis-2017-211823
  • Tangtanatakul P, Thumarat C, Satproedprai N, et al. Meta-analysis of genome-wide association study identifies FBN2 as a novel locus associated with systemic lupus erythematosus in Thai population. Arthritis Res Ther. 2020;22(1). doi: 10.1186/s13075-020-02276-y
  • Akizuki S, Ishigaki K, Kochi Y, et al. PLD4 is a genetic determinant to systemic lupus erythematosus and involved in murine autoimmune phenotypes. Ann Rheumatic Dis. 2019;78(4):509–518. doi: 10.1136/annrheumdis-2018-214116
  • Julià A, López-Longo FJ, Venegas JJP, et al. Genome-wide association study meta-analysis identifies five new loci for systemic lupus erythematosus. Arthritis Res Ther. 2018;20(1). doi: 10.1186/s13075-018-1604-1
  • Zhang H, Zhang Y, Wang Y-F, et al. Meta-analysis of GWAS on both Chinese and European populations identifies GPR173 as a novel X chromosome susceptibility gene for SLE. Arthritis Res Ther. 2018;20(1). doi: 10.1186/s13075-018-1590-3
  • Wang YF, Wei W, Tangtanatakul P, et al. Identification of shared and asian-specific loci for systemic lupus erythematosus and evidence for roles of type iii interferon signaling and lysosomal function in the disease: a multi-ancestral genome-wide association study. Arthritis & rheumat. 2022;74(5):840–848. doi: 10.1002/art.42021
  • Wang Y-F, Zhang Y, Zhu Z, et al. Identification of ST3AGL4, MFHAS1, CSNK2A2 and CD226 as loci associated with systemic lupus erythematosus (SLE) and evaluation of SLE genetics in drug repositioning. Ann Rheumatic Dis. 2018;77(7):1078–1084. doi: 10.1136/annrheumdis-2018-213093
  • Wang Y-F, Zhang Y, Lin Z, et al. Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups. Nat Commun. 2021;12(1). doi: 10.1038/s41467-021-21049-y
  • Song Q, Lei Y, Shao L, et al. Genome-wide association study on Northern Chinese identifies KLF2, DOT1L and STAB2 associated with systemic lupus erythematosus. Rheumatology. 2021;60(9):4407–4417. doi: 10.1093/rheumatology/keab016
  • Morris DL, Sheng Y, Zhang Y, et al. Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nature Genet. 2016;48(8):940–946. doi: 10.1038/ng.3603
  • López-Cortegano E, Caballero A. Inferring the nature of missing heritability in human traits using data from the GWAS catalog. Genetics. 2019;212(3):891–904. doi: 10.1534/genetics.119.302077
  • MacArthur J, Bowler E, Cerezo M, et al. The new NHGRI-EBI catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2016;45(D1):D896–D901. doi: 10.1093/nar/gkw1133
  • Connolly JJ, Hakonarson H. Role of cytokines in systemic lupus erythematosus: recent progress from GWAS and sequencing. J Biomed And Biotech. 2012;2012:1–17. doi: 10.1155/2012/798924
  • Rao S, Yao Y, Bauer DE. Editing GWAS: experimental approaches to dissect and exploit disease-associated genetic variation. Genome Med. 2021;13(1). doi: 10.1186/s13073-021-00857-3
  • Giambartolomei C, Liu JZ, Zhang W, et al. A Bayesian framework for multiple trait colocalization from summary association statistics. Bioinformatics. 2018;34(15):2538–2545. doi: 10.1093/bioinformatics/bty147
  • Maller JB, McVean G, Byrnes J, et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nature Genet. 2012;44(12):1294–1301. doi: 10.1038/ng.2435
  • Chung CC, Ciampa J, Yeager M, et al. Fine mapping of a region of chromosome 11q13 reveals multiple independent loci associated with risk of prostate cancer. Hum Mol Genet. 2011;20(14):2869–2878. doi: 10.1093/hmg/ddr189
  • Allen HL, Estrada K, Lettre G, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467(7317):832–838. doi: 10.1038/nature09410
  • Newcombe PJ, Conti DV, Richardson S. JAM: a scalable bayesian framework for joint analysis of marginal SNP effects. Genet Epidemiol. 2016;40(3):188–201. doi: 10.1002/gepi.21953
  • Benner C, Spencer CCA, Havulinna AS, et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics. 2016;32(10):1493–1501. doi: 10.1093/bioinformatics/btw018
  • Wang G, Sarkar A, Carbonetto P, et al. A simple new approach to variable selection in regression, with application to genetic fine-mapping. J R Stat Soc Series B Stat Methodol. 2018;82(5): 1273–1300 .
  • Zou Y, Carbonetto P, Wang G, et al. Fine-mapping from summary data with the “Sum of single effects” model. PLoS Genet. 2022;18(7):e1010299. doi: 10.1371/journal.pgen.1010299
  • Kichaev G, Yang W-Y, Lindstrom S, et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 2014;10(10):e1004722. doi: 10.1371/journal.pgen.1004722
  • Morris AP. Transethnic meta-analysis of genomewide association studies. Genet Epidemiol. 2011;35(8):809–822. doi: 10.1002/gepi.20630
  • Mägi R, Horikoshi M, Sofer T, et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum Mol Genet. 2017;26(18):3639–3650. doi: 10.1093/hmg/ddx280
  • Morris DL, Fernando MMA, Taylor KE, et al. MHC associations with clinical and autoantibody manifestations in European SLE. Genes Immunity. 2014;15(4):210–217. doi: 10.1038/gene.2014.6
  • Langefeld CD, Ainsworth HC, Graham DSC, et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat Commun. 2017;8(1). doi: 10.1038/ncomms16021
  • Hanscombe KB, Morris DL, Noble JA, et al. Genetic fine mapping of systemic lupus erythematosus MHC associations in Europeans and African Americans. Hum Mol Genet. 2018;27(21):3813–3824. doi: 10.1093/hmg/ddy280
  • Yang Y, Chung EK, Wu YL, et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet. 2007;80(6):1037–1054. doi: 10.1086/518257
  • Kamitaki N, Sekar A, Handsaker RE, et al. Complement genes contribute sex-biased vulnerability in diverse disorders. Nature. 2020;582(7813):577–581. doi: 10.1038/s41586-020-2277-x
  • Costa M, Poppelaars F, Kooten C, et al. Age and sex-associated changes of complement activity and complement levels in a healthy caucasian population. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.02664
  • Deng Y, Tsao BP. Advances in lupus genetics and epigenetics. Curr Opin Rheumatol. 2014;26(5):482–492. doi: 10.1097/BOR.0000000000000086
  • Cui Y, Sheng Y, Zhang X. Genetic susceptibility to SLE: recent progress from GWAS. J Autoimmun. 2013;41:25–33. doi: 10.1016/j.jaut.2013.01.008
  • Ota M, Nagafuchi Y, Hatano H, et al. Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell. 2021;184(11):3006–21.e17. doi: 10.1016/j.cell.2021.03.056
  • Kundaje A, Meuleman W, Ernst J, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–330. doi: 10.1038/nature14248
  • Ghodke-Puranik Y, Jin Z, Zimmerman KD, et al. Single-cell expression quantitative trait loci (eQTL) analysis of SLE-risk loci in lupus patient monocytes. Arthritis Res Ther. 2021;23(1):290. doi: 10.1186/s13075-021-02660-2
  • Perez RK, Gordon MG, Subramaniam M, et al. Single-cell RNA-seq reveals cell type–specific molecular and genetic associations to lupus. Science. 2022;376(6589). doi: 10.1126/science.abf1970
  • Yin X, Kim K, Suetsugu H, et al. Biological insights into systemic lupus erythematosus through an immune cell-specific transcriptome-wide association study. Ann Rheumatic Dis. 2022;81(9):1273–1280. doi: 10.1136/annrheumdis-2022-222345
  • Yazar S, Alquicira-Hernandez J, Wing K, et al. Single-cell eQTL mapping identifies cell type–specific genetic control of autoimmune disease. Science. 2022;376(6589). doi: 10.1126/science.abf3041
  • Võsa U, Claringbould A, Westra H-J, et al. Large-scale cis- and trans-Eqtl analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nature Genet. 2021;53(9):1300–1310. doi: 10.1038/s41588-021-00913-z
  • Patwardhan RP, Lee C, Litvin O, et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nature Biotechnol. 2009;27(12):1173–1175. doi: 10.1038/nbt.1589
  • Lu X, Chen X, Forney C, et al. Global discovery of lupus genetic risk variant allelic enhancer activity. Nat Commun. 2021;12(1). doi: 10.1038/s41467-021-21854-5
  • Bourges C, Groff AF, Burren OS, et al. Resolving mechanisms of immune-mediated disease in primary CD4 T cells. EMBO Mol Med. 2020;12(5). doi: 10.15252/emmm.202012112
  • Simeonov DR, Gowen BG, Boontanrart M, et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature. 2017;549(7670):111–115. doi: 10.1038/nature23875
  • Fulco CP, Nasser J, Jones TR, et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat Genet. 2019;51(12):1664–1669. doi: 10.1038/s41588-019-0538-0
  • Taliun SAG, Evans DM, Schwartz R. Ten Simple rules for conducting a Mendelian randomization study. PLoS Comput Biol. 2021;17(8):e1009238. doi: 10.1371/journal.pcbi.1009238
  • Hingorani A, Humphries S. Nature’s randomised trials. Lancet. 2005;366(9501):1906–1908. doi: 10.1016/S0140-6736(05)67767-7
  • Lai C-H, Hsieh C-Y, Barnado A, et al. Outcomes of acute cardiovascular events in rheumatoid arthritis and systemic lupus erythematosus: a population-based study. Rheumatology. 2019;59(6):1355–1363. doi: 10.1093/rheumatology/kez456
  • Kain J, Owen KA, Marion MC, et al. Mendelian randomization and pathway analysis demonstrate shared genetic associations between lupus and coronary artery disease. Cell Rep Med. 2022;3(11):100805. doi: 10.1016/j.xcrm.2022.100805
  • Tallbacka K, Pettersson T, Pukkala E. Increased incidence of cancer in systemic lupus erythematosus: a finnish cohort study with more than 25 years of follow-up. Scand J Rheumatol. 2018;47(6):461–464. doi: 10.1080/03009742.2017.1384054
  • Bae EH, Lim SY, Han K-D, et al. Systemic lupus erythematosus is a risk factor for cancer: a nationwide population-based study in Korea. Lupus. 2019;28(3):317–323. doi: 10.1177/0961203319826672
  • Zhang M, Wang Y, Wang Y, et al. Association between systemic lupus erythematosus and cancer morbidity and mortality: findings from cohort studies. Front Oncol. 2022;12:12. doi: 10.3389/fonc.2022.860794
  • Gu D, Tang M, Wang Y, et al. The causal relationships between extrinsic exposures and risk of prostate cancer: a phenome-wide mendelian randomization study. Front Oncol. 2022;12:12. doi: 10.3389/fonc.2022.829248
  • Peng H, Li C, Wu X, et al. Association between systemic lupus erythematosus and lung cancer: results from a pool of cohort studies and Mendelian randomization analysis. J Thoracic Dis. 2020;12(10):5299–5312. doi: 10.21037/jtd-20-2462
  • Moustafa AT, Moazzami M, Engel L, et al. Prevalence and metric of depression and anxiety in systemic lupus erythematosus: A systematic review and meta-analysis. Semin Arthritis Rheum. 2020;50(1):84–94. doi: 10.1016/j.semarthrit.2019.06.017
  • Chen J, Xu T, Wu M. Depression in systemic lupus erythematosus: modifiable or inheritable? a two-sample mendelian randomization study. Front Genet. 2022;13: doi: 10.3389/fgene.2022.988022
  • Luan HH, Wang A, Hilliard BK, et al. GDF15 is an inflammation-induced central mediator of tissue tolerance. Cell. 2019;178(5):1231–44.e11. doi: 10.1016/j.cell.2019.07.033
  • Ye D, Liu B, He Z, et al. Assessing the associations of growth differentiation factor 15 with rheumatic diseases using genetic data. Clin Epidemiol. 2021;13:245–252. doi: 10.2147/CLEP.S305024
  • Mo X, Guo Y, Qian Q, et al. Mendelian randomization analysis revealed potential causal factors for systemic lupus erythematosus. Immunology. 2019;159(3):279–288. doi: 10.1111/imm.13144
  • Chen L, Wang Y-F, Liu L, et al. Genome-wide assessment of genetic risk for systemic lupus erythematosus and disease severity. Hum Mol Genet. 2020;29(10):1745–1756. doi: 10.1093/hmg/ddaa030
  • Knevel R, Cessie S, Terao CC, et al. Using genetics to prioritize diagnoses for rheumatology outpatients with inflammatory arthritis. Sci, trans med. 2020;12(545). doi: 10.1126/scitranslmed.aay1548
  • Reid S, Alexsson A, Frodlund M, et al. High genetic risk score is associated with early disease onset, damage accrual and decreased survival in systemic lupus erythematosus. Ann Rheumatic Dis. 2019;79(3):363–369. doi: 10.1136/annrheumdis-2019-216227
  • Privé F, Aschard H, Carmi S, et al. Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. Am J Hum Genet. 2022;109(1):12–23. doi: 10.1016/j.ajhg.2021.11.008
  • Xiu-Xiu S, Su-Su L, Man Z, et al. Association of HSP90B1 genetic polymorphisms with efficacy of glucocorticoids and improvement of HRQoL in systemic lupus erythematosus patients from Anhui Province. Am J Clin Exp Immunol. 2018;7:27–39.
  • Li S, Sun X, Xu J, et al. Association study of TRAP1 gene polymorphisms with susceptibility and glucocorticoids efficacy of systemic lupus erythematosus. Gene. 2018;671:117–126. doi: 10.1016/j.gene.2018.05.109
  • Robledo G, Márquez A, Dávila-Fajardo CL, et al. Association of the FCGR3A-158F/V gene polymorphism with the response to rituximab treatment in Spanish systemic autoimmune disease patients. DNA Cell Biol. 2012;31(12):1671–1677. doi: 10.1089/dna.2012.1799
  • Robinson JI, Yusof MYM, Davies V, et al. Comprehensive genetic and functional analyses of Fc gamma receptors influence on response to rituximab therapy for autoimmunity. EBioMedicine. 2022;86:104343. doi: 10.1016/j.ebiom.2022.104343
  • Attia DHS, Eissa M, Samy LA, et al. Influence of glutathione S transferase A1 gene polymorphism (-69C > T, rs3957356) on intravenous cyclophosphamide efficacy and side effects: a case-control study in Egyptian patients with lupus nephritis. Clin Rheumatol. 2020;40(2):753–762. doi: 10.1007/s10067-020-05276-0
  • Kim K, Bang S-Y, Joo YB, et al. Response to intravenous cyclophosphamide treatment for lupus nephritis associated with polymorphisms in the FCGR2B-FCRLA locus. J Rheumatol. 2016;43(6):1045–1049. doi: 10.3899/jrheum.150665
  • Ochoa D, Karim M, Ghoussaini M, et al. Human genetics evidence supports two-thirds of the 2021 FDA-approved drugs. Nat Rev Drug Discov. 2022;21(8):551–. doi: 10.1038/d41573-022-00120-3
  • Ghoussaini M, Mountjoy E, Carmona M, et al. Open targets genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic Acids Res. 2020;49(D1):D1311–D20. doi: 10.1093/nar/gkaa840
  • Zhang T, Klein A, Sang J, et al. ezQTL: a web platform for interactive visualization and colocalization of QTLs and GWAS Loci. Int J Genomics Proteomics. 2022;20(3):541–548. doi: 10.1016/j.gpb.2022.05.004
  • Panjwani N, Wang F, Mastromatteo S, et al. LocusFocus: Web-based colocalization for the annotation and functional follow-up of GWAS. PLoS Comput Biol. 2020;16(10):e1008336. doi: 10.1371/journal.pcbi.1008336
  • Martin AR, Kanai M, Kamatani Y, et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nature Genet. 2019;51(4):584–591. doi: 10.1038/s41588-019-0379-x
  • Ochoa D, Hercules A, Carmona M, et al. Open Targets Platform: supporting systematic drug–target identification and prioritisation. Nucleic Acids Res. 2020;49(D1):D1302–D10. doi: 10.1093/nar/gkaa1027
  • Mueller M, Barros P, Witherden Abigail S, et al. Genomic pathology of sle-associated copy-number variation at the FCGR2C/FCGR3B/FCGR2B locus. Am J Hum Genet. 2013;92(1):28–40. doi: 10.1016/j.ajhg.2012.11.013