336
Views
1
CrossRef citations to date
0
Altmetric
Review

Neurological adverse effects of chimeric antigen receptor T-cell therapy

ORCID Icon, , & ORCID Icon
Pages 1361-1383 | Received 14 Jun 2022, Accepted 10 Aug 2023, Published online: 04 Sep 2023

References

  • Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540. doi: 10.1200/JCO.2014.56.2025
  • Srivastava S, Riddell SR. Engineering CAR-T cells: design concepts. Trends Immunol. 2015;36(8):494–502. doi: 10.1016/j.it.2015.06.004
  • National Cancer Institute. CAR T Cells: Engineering Patients’ Immune Cells to Treat Their Cancers. USA: National Cancer Institute; 2022.
  • Times O. Neurological side effects of CAR T-Cell therapy. Oncol Times. 2019;41(11):12.
  • Rubin DB, Danish HH, Ali AB, et al. Neurological toxicities associated with chimeric antigen receptor T-cell therapy. Brain. 2019;142(5):1334–1348. doi: 10.1093/brain/awz053
  • Yáñez L, Alarcón A, Sánchez-Escamilla M, et al. How I treat adverse effects of CAR-T cell therapy. ESMO Open. 2020 Jan 01;4:e000746.
  • Park JH, Rivière I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–459. doi: 10.1056/NEJMoa1709919
  • Gardner RA, Finney O, Annesley C, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood J Am Soc Hematology. 2017;129(25):3322–3331. doi: 10.1182/blood-2017-02-769208
  • Rivera AM, May S, Lei M, et al. CAR T-cell-associated neurotoxicity: current management and emerging treatment strategies. Crit Care Nurs Q. 2020;43(2):191–204. doi: 10.1097/CNQ.0000000000000302
  • Grupp S, Hu Z-H, Zhang Y, et al. Tisagenlecleucel chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory children and young adults with acute lymphoblastic leukemia (ALL): real world experience from the center for International blood and Marrow Transplant research (CIBMTR) and cellular therapy (CT) registry. (WA), DC: American Society of Hematology; 2019.
  • Pasquini MC, Locke FL, Herrera AF, et al. Post-marketing use outcomes of an anti-CD19 chimeric antigen receptor (CAR) T cell therapy, axicabtagene ciloleucel (axi-cel), for the treatment of large B cell lymphoma (LBCL) in the United States (US). (WA), DC: American Society of Hematology; 2019.
  • Jaglowski S, Hu Z-H, Zhang Y, et al. Tisagenlecleucel chimeric antigen receptor (CAR) T-cell therapy for adults with diffuse large B-cell lymphoma (DLBCL): real world experience from the center for International blood & Marrow Transplant research (CIBMTR) cellular therapy (CT) registry. (WA), DC: American Society of Hematology; 2019.
  • Turtle CJ, Hanafi L-A, Berger C, et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor–modified T cells. Sci, trans med. 2016;8(355):ra355116–ra355116. doi: 10.1126/scitranslmed.aaf8621
  • Turtle CJ, Hay KA, Hanafi L-A, et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor–modified T cells after failure of ibrutinib. J Clin Oncol. 2017;35(26):3010. doi: 10.1200/JCO.2017.72.8519
  • Porter D, Frey N, Wood PA, et al. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J Hematol Oncol. 2018;11(1):1–12. doi: 10.1186/s13045-018-0571-y
  • Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380(18):1726–1737. doi: 10.1056/NEJMoa1817226
  • Cohen AD, Garfall AL, Stadtmauer EA, et al. B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma. J Clin Investig. 2019;129(6):2210–2221. doi: 10.1172/JCI126397
  • Schuster S, Bishop MR, Tam C, et al. Global pivotal phase 2 trial of the CD19-targeted therapy CTL019 in adult patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL)-an interim analysis. Clin Lymphoma Myeloma Leuk. 2017;17:S373–2. doi: 10.1016/j.clml.2017.07.213
  • Turtle CJ, Hay KA, Gust J, et al. Cytokine release syndrome (CRS) and neurotoxicity (NT) after CD19-specific chimeric antigen receptor-(CAR-) modified T cells. Am Soc Clin Oncol. 2017;35(15_suppl):3020–3020. doi: 10.1200/JCO.2017.35.15_suppl.3020
  • Santomasso B, Park JH, Riviere I, et al. Neurotoxicity associated with CD19-specific chimeric antigen receptor T cell therapy for adult acute lymphoblastic leukemia (B-ALL)(S23008). Cancer Discov. 2018 Aug 8;(8):958–971. doi: 10.1158/2159-8290.CD-17-1319. Epub 2018 Jun 7 .
  • Neelapu SS. Managing the toxicities of car T‐cell therapy. Hematol Oncol. 2019;37(S1):48–52. doi: 10.1002/hon.2595
  • Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–2554. doi: 10.1056/NEJMoa1708566
  • Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–2544. doi: 10.1056/NEJMoa1707447
  • Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45–56. doi: 10.1056/NEJMoa1804980
  • Locke FL, Neelapu SS, Bartlett NL, et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther. 2017;25(1):285–295. doi: 10.1016/j.ymthe.2016.10.020
  • Zhang H, Zhao P, Huang H. Engineering better chimeric antigen receptor T cells. Exp Hematol Oncol. 2020;9(1):1–13. doi: 10.1186/s40164-020-00190-2
  • Jensen TI, Axelgaard E, Bak RO. Therapeutic gene editing in haematological disorders with CRISPR/Cas9. Br J Haematol. 2019;185(5):821–835. doi: 10.1111/bjh.15851
  • Lukjanov V, Koutná I, Šimara P. CAR T-Cell production using nonviral approaches. J Immunol Res. 2021 Mar 27;2021:6644685. doi: 10.1155/2021/6644685
  • Feins S, Kong W, Williams EF, et al. An introduction to chimeric antigen receptor (CAR) T‐cell immunotherapy for human cancer. Am J Hematol. 2019;94(S1):S3–S9. doi: 10.1002/ajh.25418
  • Chang ZL, Chen YY. Cars: synthetic immunoreceptors for Cancer therapy and beyond. Trends Mol Med. 2017 May;23(5):430–450. doi: 10.1016/j.molmed.2017.03.002
  • Schultz L, Mackall C. Driving CAR T cell translation forward. Sci, trans med. 2019;11(481). doi: 10.1126/scitranslmed.aaw2127
  • Zhang Q, Lu W, Liang C-L, et al. Chimeric antigen receptor (CAR) treg: a promising approach to inducing immunological tolerance. Front Immunol. 2018;9:2359. doi: 10.3389/fimmu.2018.02359
  • Kansal R, Richardson N, Neeli I, et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci, trans med. 2019;11(482):eaav1648. doi: 10.1126/scitranslmed.aav1648
  • Qin C, Tian D-S, Zhou L-Q, et al. Anti-BCMA CAR T-cell therapy CT103A in relapsed or refractory AQP4-IgG seropositive neuromyelitis optica spectrum disorders: phase 1 trial interim results. Sig Transduct Target Ther. 2023 Jan 04;8(1):5.
  • Bonifant CL, Jackson HJ, Brentjens RJ, et al. Toxicity and management in CAR T-cell therapy. Molecular Therapy-Oncolytics. 2016;3:16011. doi: 10.1038/mto.2016.11
  • Kamal M, Joseph J, Greenbaum U, et al. Patient-reported outcomes for cancer patients with hematological malignancies undergoing chimeric antigen receptor T cell therapy: a systematic review. Transplant Cell Ther. 2021;27(5):. e390. 1–. e390. 7. doi: 10.1016/j.jtct.2021.01.003
  • Chakraborty R, Sidana S, Shah GL, et al. Patient-reported outcomes with chimeric antigen receptor T cell therapy: challenges and opportunities. Biol Blood Marrow Transplant. 2019;25(5):e155–e162. doi: 10.1016/j.bbmt.2018.11.025
  • Chatenoud L, Ferran C, Legendre C, et al. In vivo cell activation following OKT3 administration. Systemic cytokine release and modulation by corticosteroids. Transplantation. 1990;49(4):697–702. doi: 10.1097/00007890-199004000-00009
  • Pihusch R, Holler E, Mühlbayer D, et al. The impact of antithymocyte globulin on short-term toxicity after allogeneic stem cell transplantation. Bone Marrow Transplant. 2002;30(6):347–354. doi: 10.1038/sj.bmt.1703640
  • Suntharalingam G, Perry MR, Ward S, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355(10):1018–1028. doi: 10.1056/NEJMoa063842
  • Winkler U, Jensen M, Manzke O, et al. Cytokine-release syndrome in patients with B-cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (rituximab, IDEC-C2B8). Blood. J Am Society Hematol. 1999;94(7):2217–2224. doi: 10.1182/blood.V94.7.2217.419k02_2217_2224
  • Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382(14):1331–1342. doi: 10.1056/NEJMoa1914347
  • Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–448. doi: 10.1056/NEJMoa1709866
  • Li J, Piskol R, Ybarra R, et al. CD3 bispecific antibody–induced cytokine release is dispensable for cytotoxic T cell activity. Sci, trans med. 2019;11(508):eaax8861. doi: 10.1126/scitranslmed.aax8861
  • Selvaggio G, Parolo S, Bora P, et al. Computational analysis of cytokine release following bispecific T-Cell engager therapy: applications of a logic-based model. Front Oncol. 2022;12:12. doi: 10.3389/fonc.2022.818641
  • Iwata Y, Narushima Y, Harada A, et al. Priming treatment with T-cell redirecting bispecific antibody ERY974 reduced cytokine induction without losing cytotoxic activity in vitro by changing the chromatin state in T cells. Toxicol Appl Pharmacol. 2022;441:115986. doi: 10.1016/j.taap.2022.115986
  • Kauer J, Hörner S, Osburg L, et al. Tocilizumab, but not dexamethasone, prevents CRS without affecting antitumor activity of bispecific antibodies. Journal For ImmunoTherapy Of Cancer. 2020;8(1):e000621. doi: 10.1136/jitc-2020-000621
  • Zhou S, Liu M, Ren F, et al. The landscape of bispecific T cell engager in cancer treatment. Biomark Res. 2021;9(1):38. doi: 10.1186/s40364-021-00294-9
  • Santomasso BD, Park JH, Salloum D, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discovery. 2018;8(8):958–971. doi: 10.1158/2159-8290.CD-17-1319
  • Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019;25(4):625–638. doi: 10.1016/j.bbmt.2018.12.758
  • Meng J, Wu X, Sun Z, et al. Efficacy and safety of CAR-T cell products axicabtagene ciloleucel, tisagenlecleucel, and lisocabtagene maraleucel for the treatment of hematologic malignancies: a systematic review and meta-analysis. Front Oncol. 2021;11:2699. doi: 10.3389/fonc.2021.698607
  • Yáñez L, Sánchez-Escamilla M, Perales M-A. CAR T cell toxicity: current management and future directions. Hemasphere. 2019;3(2):e186. doi: 10.1097/HS9.0000000000000186
  • Santomasso BD, Park JH, Salloum D, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018;8(8):958–971. Details the biomarkers and cytokines in serum and CSF as well as neuroimaging findings associated with neurotoxicity associated with CAR T-cell therapy CAS PubMed PubMed Central. doi: 10.1158/2159-8290
  • Hey SP, Kesselheim AS. The FDA, Juno therapeutics, and the ethical imperative of transparency. BMJ. 2016;i4435. doi: 10.1136/bmj.i4435
  • Kassim SH. Toward an integrated model of product characterization for CAR-T cell therapy drug development efforts. Cell Gene Ther Insights. 2017;3(4):227–23. doi: 10.18609/cgti.2017.026
  • Chen DS, Mellman I. Elements of cancer immunity and the cancer–immune set point. Nature. 2017;541(7637):321–330. doi: 10.1038/nature21349
  • Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nature Med. 2018;24(6):739–748. doi: 10.1038/s41591-018-0036-4
  • Sterner RM, Sakemura R, Cox MJ, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood J Am Soc Hematology. 2019;133(7):697–709. doi: 10.1182/blood-2018-10-881722
  • Gust J, Hay KA, Hanafi LA, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017 Dec;7(12):1404–1419. doi: 10.1158/2159-8290.CD-17-0698
  • Locke FL, Neelapu SS, Bartlett NL, et al. Preliminary results of prophylactic tocilizumab after axicabtageneciloleucel (axi-cel; KTE-C19) treatment for patients with refractory, aggressive non-Hodgkin lymphoma (NHL). (WA), DC: American Society of Hematology; 2017.
  • Torre M, Solomon IH, Sutherland CL, et al. Neuropathology of a case with fatal CAR T-Cell-associated cerebral edema. J Neuropathol Exp Neurol. 2018 Oct 1;77(10):877–882.
  • Shimabukuro-Vornhagen A, Gödel P, Subklewe M, et al. Cytokine release syndrome. Journal For ImmunoTherapy Of Cancer. 2018;6(1):1–14. doi: 10.1186/s40425-018-0343-9
  • Saleki K, Yaribash S, Banazadeh M, et al. Interferon therapy in patients with SARS, MERS, and COVID-19: a systematic review and meta-analysis of clinical studies. Eur J Pharmacol. 2021;906:174248. doi: 10.1016/j.ejphar.2021.174248
  • Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018 Jun;24(6):739–748. doi: 10.1038/s41591-018-0036-4
  • Giavridis T, van der Stegen SJC, Eyquem J, et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018 Jun;24(6):731–738. doi: 10.1038/s41591-018-0041-7
  • Singh N, Hofmann TJ, Gershenson Z, et al. Monocyte lineage-derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy. 2017 Jul;19(7):867–880. doi: 10.1016/j.jcyt.2017.04.001
  • Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood J Am Soc Hematology. 2014;124(2):188–195.
  • Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood J Am Soc Hematology. 2016;127(26):3321–3330. doi: 10.1182/blood-2016-04-703751
  • Hay KA, Hanafi L-A, Li D, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor–modified T-cell therapy. Blood J Am Soc Hematology. 2017;130(21):2295–2306. doi: 10.1182/blood-2017-06-793141
  • Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62. doi: 10.1038/nrclinonc.2017.148
  • Gust J, Hay KA, Hanafi L-A, et al. Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discovery. 2017;7(12):1404–1419. doi: 10.1158/2159-8290.CD-17-0698
  • Locke FL, Go WY, Neelapu SS. Development and use of the anti-CD19 chimeric antigen receptor T-cell therapy axicabtagene ciloleucel in large B-cell lymphoma: a review. JAMA Oncol. 2020;6(2):281–290. doi: 10.1001/jamaoncol.2019.3869
  • Morris EC, Neelapu SS, Giavridis T, et al. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol. 2021;22(2):1–12. doi: 10.1038/s41577-021-00547-6
  • Pennisi M, Jain T, Santomasso BD, et al. Comparing CAR T-cell toxicity grading systems: application of the ASTCT grading system and implications for management. Blood Adv. 2020;4(4):676–686. doi: 10.1182/bloodadvances.2019000952
  • Kansagra AJ, Frey NV, Bar M, et al. Clinical utilization of Chimeric Antigen Receptor T-cells (CAR-T) in B-cell acute lymphoblastic leukemia (ALL)-an expert opinion from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT). Bone Marrow Transplant. 2019;54(11):1868–1880. doi: 10.1038/s41409-019-0451-2
  • Jain T, Bar M, Kansagra AJ, et al. Use of chimeric antigen receptor T cell therapy in clinical practice for relapsed/refractory aggressive B cell non-Hodgkin lymphoma: an expert panel opinion from the American Society for Transplantation and cellular therapy. Biol Blood Marrow Transplant. 2019;25(12):2305–2321. doi: 10.1016/j.bbmt.2019.08.015
  • Health UDo, Services H. Common Terminology criteria for adverse events (CTCAE). Version 5.0. (WA): HHS; 2017. 2021.
  • Health UDo, Services H. Common terminology criteria for adverse events (CTCAE) version 4.0. National Institutes Of Health, National Cancer Institute. 2009;4(3):1–78.
  • Makita S, Yoshimura K, Tobinai K. Clinical development of anti‐CD 19 chimeric antigen receptor T‐cell therapy for B‐cell non‐Hodgkin lymphoma. Cancer Sci. 2017;108(6):1109–1118. doi: 10.1111/cas.13239
  • Li D, Li N, Zhang Y-F, et al. Persistent polyfunctional chimeric antigen receptor T cells that target glypican 3 eliminate orthotopic hepatocellular carcinomas in mice. Gastroenterology. 2020;158(8):2250–2265. e20. doi: 10.1053/j.gastro.2020.02.011
  • Schubert ML, Schmitt M, Wang L, et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann Oncol. 2021 Jan;32(1):34–48. doi: 10.1016/j.annonc.2020.10.478
  • Busque L, Patel JP, Figueroa ME, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nature Genet. 2012;44(11):1179–1181. doi: 10.1038/ng.2413
  • Tefferi A, Lim K, Abdel-Wahab O, et al. Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia. 2009;23(7):1343–1345. doi: 10.1038/leu.2009.59
  • Delhommeau F, Dupont S, Valle VD, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289–2301. doi: 10.1056/NEJMoa0810069
  • Quivoron C, Couronné L, Della Valle V, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell. 2011;20(1):25–38. doi: 10.1016/j.ccr.2011.06.003
  • Yeh C-H, Bai XT, Moles R, et al. Mutation of epigenetic regulators TET2 and MLL3 in patients with HTLV-I-induced acute adult T-cell leukemia. Mol Cancer. 2016;15(1):1–7. doi: 10.1186/s12943-016-0500-z
  • Zang S, Li J, Yang H, et al. Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis. J Clin Investig. 2017;127(8):2998–3012. doi: 10.1172/JCI92026
  • Fraietta JA, Nobles CL, Sammons MA, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature. 2018;558(7709):307–312. doi: 10.1038/s41586-018-0178-z
  • Sheth VS, Gauthier J. Taming the beast: CRS and ICANS after CAR T-cell therapy for all. Bone marrow transplantation. Bone Marrow Transplant. 2021;56(3):552–566. doi: 10.1038/s41409-020-01134-4
  • Turtle CJ, Hanafi L-A, Berger C, et al. CD19 CAR–T cells of defined CD4+: CD8+ composition in adult B cell all patients. J Clin Investig. 2016;126(6):2123–2138. doi: 10.1172/JCI85309
  • Kochenderfer JN, Somerville RP, Lu T, et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol. 2017;35(16):1803. doi: 10.1200/JCO.2016.71.3024
  • Neelapu SS, Locke FL, Bartlett NL, et al. Kte-C19 (anti-CD19 CAR T cells) induces complete remissions in patients with refractory diffuse large B-cell lymphoma (DLBCL): results from the pivotal phase 2 Zuma-1. Blood. 2016;128(22):LBA–6. doi: 10.1182/blood.V128.22.998.998
  • Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel (axi-cel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (NHL): long-term follow-up of the pivotal Zuma-1 trial. Biol Blood Marrow Transplant. 2018;24(3):S74–S75. doi: 10.1016/j.bbmt.2017.12.644
  • Santomasso B, Park JH, Riviere I, et al. Biomarkers associated with neurotoxicity in adult patients with relapsed or refractory B-ALL (R/R B-ALL) treated with CD19 CAR T cells. Am Soc Clin Oncol. 2017;35(15_suppl):3019–3019. doi: 10.1200/JCO.2017.35.15_suppl.3019
  • Teachey DT, Lacey SF, Shaw PA, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discovery. 2016;6(6):664–679. doi: 10.1158/2159-8290.CD-16-0040
  • Tallantyre EC, Evans NA, Parry-Jones J, et al. Neurological updates: neurological complications of CAR-T therapy. J Neurol. 2021;268(4):1544–1554. doi: 10.1007/s00415-020-10237-3
  • Van Oekelen O, Aleman A, Upadhyaya B, et al. Neurocognitive and hypokinetic movement disorder with features of parkinsonism after BCMA-targeting CAR-T cell therapy. Nature Med. 2021;27(12):2099–2103. doi: 10.1038/s41591-021-01564-7
  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–528. doi: 10.1016/S0140-6736(14)61403-3
  • Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–1518. doi: 10.1056/NEJMoa1215134
  • Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–1517. doi: 10.1056/NEJMoa1407222
  • Sutter R, Semmlack S, Kaplan PW. Nonconvulsive status epilepticus in adults—insights into the invisible. Nat Rev Neurol. 2016;12(5):281–293. doi: 10.1038/nrneurol.2016.45
  • Walker M, Cross H, Smith S, et al. Nonconvulsive status epilepticus: epilepsy research foundation workshop reports. Epileptic Disord. 2005;7(3):253–296.
  • Gust J, Ponce R, Liles WC, et al. Cytokines in CAR T cell–associated neurotoxicity. Front Immunol. 2020;11:3271. doi: 10.3389/fimmu.2020.577027
  • JCAR015 in ALL: A Root-Cause Investigation. Cancer Discov. 2018 Jan:8(1):4–5. doi:10.1158/2159-8290.CD-NB2017-169
  • Borrega JG, Gödel P, Rüger MA, et al. In the eye of the storm: immune-mediated toxicities associated with CAR-T cell therapy. Hemasphere. 2019;3(2):e191. doi: 10.1097/HS9.0000000000000191
  • Parker KR, Migliorini D, Perkey E, et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell. 2020;183(1):126–142. e17. doi: 10.1016/j.cell.2020.08.022
  • Wolf SA, Boddeke HW, Kettenmann H. Microglia in physiology and disease. Annu Rev Physiol. 2017 Feb 10;79(1):619–643.
  • Rasoulinejad SA, Karkhah A, Paniri A, et al. Contribution of inflammasome complex in inflammatory-related eye disorders and its implications for anti-inflammasome therapy. Immunopharmacol Immunotoxicol. 2020 Sep 02;42(5):400–407.
  • Rostamtabar M, Esmaeilzadeh S, Tourani M, et al. Pathophysiological roles of chronic low‐grade inflammation mediators in polycystic ovary syndrome. J Cell Physiol. 2021;236(2):824–838. doi: 10.1002/jcp.29912
  • Middeldorp J, Hol EM. GFAP in health and disease. Prog Neurobiol. 2011 Mar;93(3):421–443. doi: 10.1016/j.pneurobio.2011.01.005
  • Gust J, Finney OC, Li D, et al. Glial injury in neurotoxicity after pediatric CD19-directed chimeric antigen receptor T cell therapy. Ann Neurol. 2019 Jul;86(1):42–54. doi: 10.1002/ana.25502
  • Rahmani A, Saleki K, Javanmehr N, et al. Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke. Ageing Res Rev. 2020;62:101106.
  • Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36(3):513–538. doi: 10.1177/0271678X15617172
  • Kaji R. Global burden of neurological diseases highlights stroke. Nat Rev Neurol. 2019 Jul 01;15(7):371–372.
  • Saleki K, Banazadeh M, Saghazadeh A, et al. The involvement of the central nervous system in patients with COVID-19. Rev Neurosci. 2020;31(4):453–456. doi: 10.1515/revneuro-2020-0026
  • Saleki K, Banazadeh M, Miri NS, et al. Triangle of cytokine storm, central nervous system involvement, and viral infection in COVID-19: the role of sFasl and neuropilin-1. Rev Neurosci. 2022;33(2):147–160. doi: 10.1515/revneuro-2021-0047
  • Mohseni Afshar Z, Babazadeh A, Janbakhsh A, et al. Vaccine-induced immune thrombotic thrombocytopenia after vaccination against Covid-19: a clinical dilemma for clinicians and patients. Rev Med Virol. 2022;32(2):e2273. doi: 10.1002/rmv.2273
  • Rahmani A, Baee M, Saleki K, et al. Applying high throughput and comprehensive immunoinformatics approaches to design a trivalent subunit vaccine for induction of immune response against emerging human coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2. J Biomol Struct Dynamics. 2021Jan 29: 1–17. doi: 10.1080/07391102.2021.1876774.
  • Kakovan M, Ghorbani Shirkouhi S, Zarei M, et al. Stroke associated with COVID-19 Vaccines. J Stroke Cerebrovascular Dis. 2022 Jun 01;31(6):106440.
  • Aho K, Harmsen P, Hatano S, et al. Cerebrovascular disease in the community: results of a WHO collaborative study. Bullet World Health Organ. 1980;58(1):113–130.
  • Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American stroke Association. Stroke. 2013 Jul;44(7):2064–2089. doi: 10.1161/STR.0b013e318296aeca
  • Coupland AP, Thapar A, Qureshi MI, et al. The definition of stroke. J R Soc Med. 2017;110(1):9–12. doi: 10.1177/0141076816680121
  • Grant SJ, Grimshaw AA, Silberstein J, et al. Clinical presentation, risk factors, and outcomes of immune effector cell-associated neurotoxicity syndrome following chimeric antigen receptor T cell therapy: a systematic review. Transplant Cell Ther. 2022 Mar 11;28(6):294–302.
  • Karschnia P, Jordan JT, Forst DA, et al. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells. Blood J Am Soc Hematology. 2019;133(20):2212–2221. doi: 10.1182/blood-2018-12-893396
  • Holtzman NG, Xie H, Bentzen S, et al. Immune effector cell–associated neurotoxicity syndrome after chimeric antigen receptor T-cell therapy for lymphoma: predictive biomarkers and clinical outcomes. Neuro Oncol. 2021;23(1):112–121. doi: 10.1093/neuonc/noaa183
  • Gajra A, Zettler ME, Phillips Jr EG Jr, et al. Neurological adverse events following CAR T-cell therapy: a real-world analysis. Immunotherapy. 2020;12(14):1077–1082. doi: 10.2217/imt-2020-0161
  • Brown BD, Tambaro FP, Kohorst M, et al. Immune effector cell associated neurotoxicity (ICANS) in pediatric and young adult patients following chimeric antigen receptor (CAR) T-Cell therapy: can We optimize early diagnosis? Front Oncol. 2021;11:409. doi: 10.3389/fonc.2021.634445
  • Huff JS, Murr N. Psychogenic nonepileptic seizures. In: StatPearls. (Internet). USA: StatPearls Publishing; 2021.
  • Maude SL, Barrett D, Teachey DT, et al. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 2014;20(2):119. doi: 10.1097/PPO.0000000000000035
  • Hu Y, Sun J, Wu Z, et al. Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy. J Hematol Oncol. 2016;9(1):1–5. doi: 10.1186/s13045-016-0299-5
  • Herlopian A, Dietrich J, Abramson JS, et al. EEG findings in CAR T-cell therapy-related encephalopathy. Neurology. 2018;91(5):227–229. doi: 10.1212/WNL.0000000000005910
  • Hirsch LJ, Fong MW, Leitinger M, et al. American clinical Neurophysiology Society’s standardized critical care EEG terminology: 2021 version. J Clinical Neurophysiol: Official Publica Am Electroencephalographic Society. 2021;38(1):1. doi: 10.1097/WNP.0000000000000806
  • Trotti A, Colevas AD, Setser A, et al. CTCAE v3. 0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003 Jul 13;(3):176–81. doi: 10.1016/S1053-4296(03)00031-6
  • Saw J-L, Sidiqi MH, Ruff M, et al. Acute seizures and status epilepticus in immune effector cell associated neurotoxicity syndrome (ICANS). Blood Cancer J. 2022 Apr 13;12(4):62.
  • Santomasso BD, Park JH, Salloum D, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with b-cell acute lymphoblastic LeukemiaBiomarkers of neurotoxicity in CD19 CAR T cell therapy. Cancer Discovery. 2018;8(8):958–971. doi: 10.1158/2159-8290.CD-17-1319
  • Locke FL, Neelapu SS, Bartlett NL, et al. Preliminary results of prophylactic tocilizumab after axicabtageneciloleucel (axi-cel; KTE-C19) treatment for patients with refractory, aggressive non-Hodgkin lymphoma (NHL). Blood. 2017;130(Suppl_1):1547. doi: 10.1182/blood.V130.Suppl_1.1547.1547
  • Le H, MY L. Aphasia. In: StatPearls. Treasure Island (FL), USA: StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.
  • FDA US. FDA approves axicabtagene ciloleucel for second-line treatment of large B-cell lymphoma. FDA; 2022 [cited 2022]. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-axicabtagene-ciloleucel-second-line-treatment-large-b-cell-lymphoma
  • Wudhikarn K, Bansal R, Khurana A, et al. Characteristics, outcomes, and risk factors of ICANS after axicabtagene ciloleucel: does age matter? JCO. 2021 May 20;39(15_suppl):e19556–e19556.
  • Sievers S, Watson G, Johncy S, et al. Recognizing and grading CAR T-Cell toxicities: an advanced practitioner perspective [review]. Front Oncol. 2020 Jun 24;10:10.
  • Brown BD, Tambaro FP, Kohorst M, et al. Immune effector cell associated neurotoxicity (ICANS) in pediatric and young adult patients following chimeric antigen receptor (CAR) T-Cell therapy: can We optimize early diagnosis? Front Oncol. 2021 Mar 08;11:11.
  • Strati P, Nastoupil LJ, Westin J, et al. Clinical and radiologic correlates of neurotoxicity after axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020;4(16):3943–3951. doi: 10.1182/bloodadvances.2020002228
  • Beuchat I, Danish HH, Rubin DB, et al. EEG findings in CAR T-cell-associated neurotoxicity: clinical and radiological correlations. Neuro Oncol. 2022 Feb 1;24(2):313–325.
  • Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat Rev Clin Oncol. 2018 Jan 01;15(1):47–62.
  • Neelapu SS, Locke FL, Bartlett NL, et al. Kte-C19 (anti-CD19 CAR T cells) induces complete remissions in patients with refractory diffuse large B-cell lymphoma (DLBCL): results from the pivotal phase 2 Zuma-1. (WA), DC: American Society of Hematology; 2016.
  • Neelapu S, Locke F, Bartlett N, et al. Axicabtagene ciloleucel (AXI‐CEL; KTE‐C19) in patients with refractory aggressive non‐Hodgkin lymphomas (NHL): primary results of the pivotal trial ZUMA‐1. Hematol Oncol. 2017;35:28–28. doi: 10.1002/hon.2437_7
  • Wehrli M, Gallagher K, Chen Y-B, et al. Single-center experience using anakinra for steroid-refractory immune effector cell-associated neurotoxicity syndrome (ICANS). Journal For ImmunoTherapy Of Cancer. 2022;10(1):e003847. doi: 10.1136/jitc-2021-003847
  • Gazeau N, Barba P, Iacoboni G, et al. Safety and efficacy of two anakinra dose regimens for refractory CRS or ICANS after CAR T-cell therapy. Blood. 2021;138(Supplement 1):2816. doi: 10.1182/blood-2021-147454
  • Diorio C, Vatsayan A, Talleur AC, et al. Anakinra utilization in refractory pediatric CAR T-cell associated toxicities. Blood Adv. 2022;6(11):3398–3403. doi: 10.1182/bloodadvances.2022006983
  • Zurko JC, Johnson BD, Aschenbrenner E, et al. Use of early intrathecal therapy to manage high-grade immune effector cell-associated neurotoxicity syndrome. JAMA Oncol. 2022;8(5):773–775. doi: 10.1001/jamaoncol.2022.0070
  • Hernandez I, Prasad V, Gellad WF. Accounting for all costs in the total cost of chimeric antigen receptor T-Cell immunotherapy—reply. JAMA Oncol. 2018;4(12):1785–1786. doi: 10.1001/jamaoncol.2018.4657
  • Wudhikarn K, Pennisi M, Garcia-Recio M, et al. DLBCL patients treated with CD19 CAR T cells experience a high burden of organ toxicities but low nonrelapse mortality. Blood Adv. 2020;4(13):3024–3033. doi: 10.1182/bloodadvances.2020001972
  • Muccioli L, Pensato U, Cani I, et al. COVID-19-associated encephalopathy and cytokine-mediated neuroinflammation. Ann Neurol. 2020;88(4):860–861. doi: 10.1002/ana.25855
  • Krishnan P, Glenn OA, Samuel MC, et al. Acute fulminant cerebral edema: a newly recognized phenotype in children with suspected encephalitis. J Pediatric Infect Dis Soc. 2021;10(3):289–294. doi: 10.1093/jpids/piaa063
  • LaRovere KL, Riggs BJ, Poussaint TY, et al. Neurologic involvement in children and adolescents hospitalized in the United States for COVID-19 or multisystem inflammatory syndrome. JAMA Neurol. 2021;78(5):536–547. doi: 10.1001/jamaneurol.2021.0504
  • Seydel KB, Kampondeni SD, Valim C, et al. Brain swelling and death in children with cerebral malaria. N Engl J Med. 2015;372(12):1126–1137. doi: 10.1056/NEJMoa1400116
  • Lan S-Y, Lin J-J, Hsia S-H, et al. Analysis of fulminant cerebral edema in acute pediatric encephalitis. Pediatr Neonatol. 2016;57(5):402–407. doi: 10.1016/j.pedneo.2015.11.002
  • Pensato U, Muccioli L, Zinzani P, et al. Fulminant cerebral edema following CAR T-cell therapy: case report and pathophysiological insights from literature review. J Neurol. 2022 Aug 01;269(8):4560–4563.
  • Pensato U, Muccioli L, Cani I, et al. Brain dysfunction in COVID‐19 and CAR‐T therapy: cytokine storm‐associated encephalopathy. Ann Clin Transl Neurol. 2021;8(4):968–979. doi: 10.1002/acn3.51348
  • Oluwole OO, Forcade E, Muñoz J, et al. Prophylactic corticosteroid use with axicabtagene ciloleucel (axi-cel) in patients (Pts) with relapsed/refractory large B-Cell lymphoma (R/R LBCL): one-year follow-up of ZUMA-1 cohort 6 (C6). Blood. 2021;138(Supplement 1):2832. doi: 10.1182/blood-2021-147403
  • Castaneda-Puglianini O, Chavez JC. Assessing and management of neurotoxicity after CAR-T therapy in diffuse large B-Cell lymphoma. JBM. 2021;12:775. doi: 10.2147/JBM.S281247
  • Paccagnella A, Farolfi A, Casadei B, et al. 2-[18F]FDG-PET/CT for early response and brain metabolic pattern assessment after CAR-T cell therapy in a diffuse large B cell lymphoma patient with ICANS. Eur J Nucl Med Mol Imaging. 2022 Feb 01;49(3):1090–1091.
  • Holroyd KB, Rubin DB, LaRose S, et al. Use of transcranial Doppler as a Biomarker of CAR T cell–related neurotoxicity. Neurol Clin Pract. 2022;12(1):22–28. doi: 10.1212/CPJ.0000000000001130
  • Ruff MW, Siegler EL, Kenderian SS. A concise review of neurologic complications associated with chimeric antigen receptor T-cell immunotherapy. Neurol Clinics. 2020;38(4):953–963. doi: 10.1016/j.ncl.2020.08.001
  • Greenbaum U, Strati P, Saliba RM, et al. CRP and ferritin in addition to the EASIX score predict CAR-T–related toxicity. Blood Adv. 2021;5(14):2799–2806. doi: 10.1182/bloodadvances.2021004575
  • Hu B, Ren J, Luo Y, et al. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 2017;20(13):3025–3033. doi: 10.1016/j.celrep.2017.09.002
  • Pretre V, Papadopoulos D, Regard J, et al. Interleukin-1 (IL-1) and the inflammasome in cancer. Cytokine. 2022;153:155850. doi: 10.1016/j.cyto.2022.155850
  • Fu W, Lei C, Liu S, et al. CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat Commun. 2019;10(1):4355. doi: 10.1038/s41467-019-12321-3
  • Baur K, Heim D, Beerlage A, et al. Dasatinib for treatment of CAR T-cell therapy-related complications. Journal For ImmunoTherapy Of Cancer. 2022;10(12):e005956. doi: 10.1136/jitc-2022-005956
  • Weinkove R, George P, Dasyam N, et al. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin Transl Immunology. 2019;8(5):e1049. doi: 10.1002/cti2.1049
  • Zhang H, Snyder KM, Suhoski MM, et al. 4-1BB is superior to CD28 costimulation for generating CD8+ cytotoxic lymphocytes for adoptive immunotherapy. J Immunol. 2007;179(7):4910–4918. doi: 10.4049/jimmunol.179.7.4910
  • Vinay DS, Kwon BS. Therapeutic potential of anti-CD137 (4-1BB) monoclonal antibodies. Expert Opin Ther Targets. 2016;20(3):361–373. doi: 10.1517/14728222.2016.1091448
  • Ying Z, He T, Wang X, et al. Parallel comparison of 4-1BB or CD28 co-stimulated CD19-targeted CAR-T cells for B cell non-Hodgkin’s lymphoma. Molecular Therapy-Oncolytics. 2019;15:60–68. doi: 10.1016/j.omto.2019.08.002
  • Ranjbar H, Soti M, Banazadeh M, et al. Addiction and the cerebellum with a focus on actions of opioid receptors. Neuroscience & Biobehavioral Reviews. 2021 Dec 01;131:229–247.
  • Saleki K, Mohamadi MH, Banazadeh M, et al. In silico design of a TLR4-mediating multiepitope chimeric vaccine against amyotrophic lateral sclerosis via advanced immunoinformatics. J Leukoc Biol. 2022;112(5):1191–1207. doi: 10.1002/JLB.6MA0721-376RR
  • Razavinasab M, Parsania S, Nikootalab M, et al. Early environmental enrichment prevents cognitive impairments and developing addictive behaviours in a mouse model of prenatal psychological and physical stress. Int J Dev Neurosci. 2022;82(1):72–84. doi: 10.1002/jdn.10161
  • Saleki K, Alijanizade P, Moradi S, et al. Engineering a novel immunogenic chimera protein utilizing bacterial infections associated with atherosclerosis to induce a deviation in adaptive immune responses via immunoinformatics approaches. Infect Genet Evol. 2022;102:105290. doi: 10.1016/j.meegid.2022.105290
  • Saleki K, Shirzad M, Javanian M, et al. 3 soluble Fas ligand is a severity and mortality prognostic marker for COVID-19 patients. Front Immunol. 2022;13:947401. doi: 10.3389/fimmu.2022.947401
  • Saleki K, Payandeh P, Shakeri M, et al. Utilizing immunoinformatics to target brain tumors; an aid to current neurosurgical practice. Interv Pain Med Neuromod. 2022;2(1): doi: 10.5812/ipmn-131144
  • Latifi R, Azadmehr A, Mosalla S, et al. Scolicidal effects of the Nicotiana tabacum L. extract at various concentrations and exposure times. J Med Plants. 2022;21(82):111–118. doi: 10.52547/jmp.21.82.111
  • Keshavarz M, Mirmoghtadaie Z, Nayyeri S. Design and validation of the virtual classroom management questionnaire a case study: Iran. Int Rev Res Open Distributed Learning. 2022;23(2):120–135. doi: 10.19173/irrodl.v23i2.5774
  • Finley MJ, Happel CM, Kaminsky DE, et al. Opioid and nociceptin receptors regulate cytokine and cytokine receptor expression. Cell Immunol. 2008 Mar;252(1–2):146–154. doi: 10.1016/j.cellimm.2007.09.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.