33
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Molecular investigations on T cell subsets in patients affected by hypomorphic DCLRE1C mutation

ORCID Icon, , , , , , , & show all
Received 23 Jan 2024, Accepted 26 Apr 2024, Published online: 09 May 2024

References

  • Buckley RH, Schiff RI, Schiff SE, et al. Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr. 1997;130(3):378–387. doi: 10.1016/s0022-3476(97)70199-9
  • Moshous D, Callebaut I, de Chasseval R, et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell. 2001;105(2):177–186. doi: 10.1016/s0092-8674(01)00309-9
  • Moshous D, Pannetier C, Chasseval RR, et al. Partial T and B lymphocyte immunodeficiency and predisposition to lymphoma in patients with hypomorphic mutations in artemis. J Clin Invest. 2003;111(3):381–387. doi: 10.1172/JCI16774
  • Rohr J, Pannicke U, Döring M, et al. Chronic inflammatory bowel disease as key manifestation of atypical ARTEMIS deficiency. J Clin Immunol. 2010;30(2):314–320. doi: 10.1007/s10875-009-9349-x
  • Volk T, Pannicke U, Reisli I, et al. DCLRE1C (ARTEMIS) mutations causing phenotypes ranging from atypical severe combined immunodeficiency to mere antibody deficiency. Hum Mol Genet. 2015;24(25):7361–7372. doi: 10.1093/hmg/ddv437
  • Fevang B, Fagerli UM, Sorte H, et al. Runaway train: a leaky radiosensitive SCID with skin lesions and multiple lymphomas. Case Rep Immunol. 2018;2018:1–6. doi: 10.1155/2018/2053716
  • Ijspeert H, Lankester AC, van den Berg JM, et al. Artemis splice defects cause atypical SCID and can be restored in vitro by an antisense oligonucleotide. Genes Immun. 2011;12(6):434–444. doi: 10.1038/gene.2011.16
  • Bajin İY, Ayvaz DÇ, Ünal S, et al. Atypical combined immunodeficiency due to Artemis defect: a case presenting as hyperimmunoglobulin M syndrome and with LGLL. Mol Immunol. 2013;56(4):354–357. doi: 10.1016/j.molimm.2013.05.004
  • Nahum A, Somech R, Shubinsky G, et al. Unusual phenotype in patients with a hypomorphic mutation in the DCLRE1C gene: IgG hypergammaglobulinemia with IgA and IgE deficiency. Clin Immunol. 2020;213:108366. doi: 10.1016/j.clim.2020.108366
  • Lee PP, Woodbine L, Gilmour KC, et al. The many faces of Artemis-deficient combined immunodeficiency - two patients with DCLRE1C mutations and a systematic literature review of genotype-phenotype correlation. Clin Immunol. 2013;149(3):464–474. doi: 10.1016/j.clim.2013.08.006
  • Pannicke U, Hönig M, Schulze I, et al. The most frequent DCLRE1C (ARTEMIS) mutations are based on homologous recombination events. Hum Mutat. 2010;31(2):197–207. doi: 10.1002/humu.21168
  • Felgentreff K, Perez-Becker R, Speckmann C, et al. Clinical and immunological manifestations of patients with atypical severe combined immunodeficiency. Clin Immunol. 2011;141(1):73–82. doi: 10.1016/j.clim.2011.05.007
  • Keles S, Charbonnier LM, Kabaleeswaran V, et al. Dedicator of cytokinesis 8 regulates signal transducer and activator of transcription 3 activation and promotes TH17 cell differentiation. J Allergy Clin Immunol. 2016;138(5):1384–94.e2. doi: 10.1016/j.jaci.2016.04.023
  • Küççüktürk S, Karaselek MA, Duran T, et al. Evaluation of transcription factors and cytokine expressions of T-cell subsets in CD19 deficiency and their possible relationship with autoimmune disease. APMIS. 2024;132(2):122–129. doi: 10.1111/apm.13363
  • Karaselek MA, Kapaklı H, Keleş S, et al. Intrauterine detection of DCLRE1C (Artemis) mutation by restriction fragment length polymorphism. Pediatr Allergy Immunol. 2019;30(6):668–671. doi: 10.1111/pai.13056
  • Tangye SG, Al-Herz W, Bousfiha A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee [published correction appears in J Clin Immunol. 2020 Feb 22]. J Clin Immunol. 2020;40(1):24–64. doi: 10.1007/s10875-019-00737-x
  • Bousfiha A, Moundir A, Tangye SG, et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J Clin Immunol. 2022;42(7):1508–1520. doi: 10.1007/s10875-022-01352-z
  • Karaselek MA, Küççüktürk S, Kapaklı H, et al. Identification of the mutation in DCLRE1C gene by PCR-RFLP. Selcuk Med J. 2023;39(1):24–28. doi: 10.30733/std.2023.01605
  • Ruterbusch M, Pruner KB, Shehata L, et al. In vivo CD4+ T cell differentiation and function: revisiting the Th1/Th2 Paradigm. Annu Rev Immunol. 2020;38(1):705–725. doi: 10.1146/annurev-immunol-103019-085803
  • Gul E, Sayar EH, Gungor B, et al. Type I IFN-related NETosis in ataxia telangiectasia and Artemis deficiency. J Allergy Clin Immunol. 2018;142(1):246–257. doi: 10.1016/j.jaci.2017.10.030
  • Ren X, Wang D, Zhang G, et al. Nucleic DHX9 cooperates with STAT1 to transcribe interferon-stimulated genes. Sci Adv. 2023;9(5):eadd5005. doi: 10.1126/sciadv.add5005
  • Scott P. IFN-gamma modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. J Immunol. 1991;147(9):3149–3155. doi: 10.4049/jimmunol.147.9.3149
  • Aoki T, Chong LC, Takata K, et al. Single-Cell Transcriptome Analysis Reveals Disease-Defining T-cell Subsets in the tumor microenvironment of classic Hodgkin Lymphoma. Cancer Discov. 2020;10(3):406–421. doi: 10.1158/2159-8290.CD-19-0680
  • Shevyrev D, Tereshchenko V. Treg Heterogeneity, Function, and Homeostasis. Front Immunol. 2020;10:3100. doi: 10.3389/fimmu.2019.03100
  • Rajendeeran A, Tenbrock K. Regulatory T cell function in autoimmune disease. J Transl Autoimmun. 2021;4:100130. doi: 10.1016/j.jtauto.2021.100130
  • Levine AG, Mendoza A, Hemmers S, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet [published correction appears in nature. 2017 Sep 20;:]. Nature. 2017;546(7658):421–425. doi: 10.1038/nature22360
  • Chaudhry A, Rudra D, Treuting P, et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science. 2009;326(5955):986–991. doi: 10.1126/science.1172702
  • Ghoreschi K, Laurence A, Yang XP, et al. T helper 17 cell heterogeneity and pathogenicity in autoimmune disease. Trends Immunol. 2011;32(9):395–401. doi: 10.1016/j.it.2011.06.007
  • Wang S, Gao X, Shen G, et al. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity. Sci Rep. 2016;6(1):24249. doi: 10.1038/srep24249

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.