58
Views
0
CrossRef citations to date
0
Altmetric
Review

Functional roles of microRNAs in vasculogenic mimicry and resistance to therapy in human cancers: an update

, , & ORCID Icon
Received 06 Dec 2023, Accepted 03 May 2024, Published online: 09 May 2024

References

  • Rosinska S, Gavard J. Tumor vessels fuel the fire in glioblastoma. Int J Mol Sci. 2021;22(12):6514. doi: 10.3390/ijms22126514
  • Fathi Maroufi N, Taefehshokr S, Rashidi M-R, et al. Vascular mimicry: changing the therapeutic paradigms in cancer. Mol Biol Rep. 2020;47(6):4749–4765. doi: 10.1007/s11033-020-05515-2
  • Wei X, Chen Y, Jiang X, et al. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. mol cancer, 2021. Mol Cancer. 2021;20(1):7. doi: 10.1186/s12943-020-01288-1
  • Zhang JG, Zhou H-M, Zhang X, et al. Hypoxic induction of vasculogenic mimicry in hepatocellular carcinoma: role of HIF-1 α, RhoA/ROCK and Rac1/PAK signaling. BMC Cancer. 2020;20(1):32. doi: 10.1186/s12885-019-6501-8
  • Wang M, Zhao X, Zhu D, et al. HIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment. J Exp Clin Cancer Res. 2017;36(1):60. doi: 10.1186/s13046-017-0533-1
  • Ou H, Chen Z, Xiang L, et al. Frizzled 2-induced epithelial-mesenchymal transition correlates with vasculogenic mimicry, stemness, and Hippo signaling in hepatocellular carcinoma. Cancer Sci. 2019;110(4):1169–1182. doi: 10.1111/cas.13949
  • Galka-Marciniak P, Urbanek-Trzeciak M, Nawrocka P, et al. A pan-cancer atlas of somatic mutations in miRNA biogenesis genes. Nucleic Acids Res. 2021;49(2):601–620. doi: 10.1093/nar/gkaa1223
  • Lim D, Cho JG, Yun E, et al. MicroRNA 34a–AXL axis regulates vasculogenic mimicry formation in breast cancer cells. Genes (Basel). 2020;12(1):9. doi: 10.3390/genes12010009
  • Deng YI, Verron E, Rohanizadeh R. Molecular mechanisms of anti-metastatic activity of curcumin. Anticancer Res. 2016;36(11):5639–5647. doi: 10.21873/anticanres.11147
  • Zoi V, Galani V, Lianos GD, et al. The role of curcumin in cancer treatment. Biomedicines. 2021;9(9):1086. doi: 10.3390/biomedicines9091086
  • Lopez-Camarillo C, Marchat LA, Arechaga-Ocampo E, et al. MetastamiRs: non-coding MicroRNAs driving cancer invasion and metastasis. Int J Mol Sci. 2012;13(2):1347–1379. doi: 10.3390/ijms13021347
  • O’Brien J, Hayder H, Zayed Y, et al. Overview of MicroRNA Biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402. doi: 10.3389/fendo.2018.00402
  • Stavast CJ, Erkeland SJ. The non-canonical aspects of MicroRNAs: many roads to gene regulation. Cells; 2019;8(11).
  • Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18(1):59. doi: 10.1186/s12964-020-0530-4
  • Chong MMW, Zhang G, Cheloufi S, et al. Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev. 2010;24(17):1951–1960. doi: 10.1101/gad.1953310
  • Abdelfattah AM, Park C, Choi MY. Update on non-canonical microRnas. Biomol Concepts. 2014;5(4):275–287. doi: 10.1515/bmc-2014-0012
  • Lin H, Hong Y, Huang B, et al. Vimentin overexpressions induced by cell hypoxia promote vasculogenic mimicry by renal cell carcinoma cells. Biomed Res Int. 2019;2019:1–12. doi: 10.1155/2019/7259691
  • Wang Y, Sun H, Zhang D, et al. TP53INP1 inhibits hypoxia-induced vasculogenic mimicry formation via the ROS/snail signalling axis in breast cancer. J Cell Mol Med. 2018;22(7):3475–3488. doi: 10.1111/jcmm.13625
  • Morales-Guadarrama G, García-Becerra R, Méndez-Pérez EA, et al. Vasculogenic Mimicry in Breast Cancer: Clinical Relevance and Drivers. Cells. 2021;10(7):1758. doi: 10.3390/cells10071758
  • Andreucci E, Peppicelli S, Ruzzolini J, et al. Physicochemical aspects of the tumour microenvironment as drivers of vasculogenic mimicry. Cancer Metastasis Rev. 2022;41(4):935–951. doi: 10.1007/s10555-022-10067-x
  • Sun T, Zhao N, Zhao X-L, et al. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology. 2010;51(2):545–556. doi: 10.1002/hep.23311
  • Wang L, Lin L, Chen X, et al. Metastasis-associated in colon cancer-1 promotes vasculogenic mimicry in gastric cancer by upregulating TWIST1/2. Oncotarget. 2015;6(13):11492–11506. doi: 10.18632/oncotarget.3416
  • Drasin DJ, Robin TP, Ford HL. Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity. Breast Cancer Res. 2011;13(6):226. doi: 10.1186/bcr3037
  • Che N, Zhao X-L, Sun T, et al. The role of Twist1 in hepatocellular carcinoma angiogenesis: a clinical study. Hum Pathol. 2011;42(6):840–847. doi: 10.1016/j.humpath.2010.03.010
  • Liu Z, Qi L, Li H, et al. Zinc finger E-box binding homeobox 1 promotes vasculogenic mimicry in colorectal cancer through induction of epithelial-to-mesenchymal transition. Cancer Sci. 2012;103(4):813–820. doi: 10.1111/j.1349-7006.2011.02199.x
  • Qi L, Sun B, Liu Z, et al. Dickkopf-1 inhibits epithelial-mesenchymal transition of colon cancer cells and contributes to colon cancer suppression. Cancer Sci. 2012;103(4):828–835. doi: 10.1111/j.1349-7006.2012.02222.x
  • Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(6):1429–1437. doi: 10.1172/JCI36183
  • McCoy EL, Iwanaga R, Jedlicka P, et al. Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition. J Clin Invest. 2009;119(9):2663–2677. doi: 10.1172/JCI37691
  • Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vivo: vasculogenic mimicry. Am J Pathol. 1999;155(3):739–752. doi: 10.1016/S0002-9440(10)65173-5
  • Zhang D, Sun B, Zhao X, et al. Twist1 expression induced by sunitinib accelerates tumor cell vasculogenic mimicry by increasing the population of CD133+ cells in triple-negative breast cancer. Mol Cancer. 2014;13(1):207. doi: 10.1186/1476-4598-13-207
  • Meng J, Chen S, Lei Y-Y, et al. Hsp90β promotes aggressive vasculogenic mimicry via epithelial–mesenchymal transition in hepatocellular carcinoma. Oncogene. 2019;38(2):228–243. doi: 10.1038/s41388-018-0428-4
  • Xiao T, Zhang Q, Zong S, et al. Protease-activated receptor-1 (PAR1) promotes epithelial-endothelial transition through Twist1 in hepatocellular carcinoma. J Exp Clin Cancer Res. 2018;37(1):185. doi: 10.1186/s13046-018-0858-4
  • Zhang JG, Zhang D-D, Liu Y, et al. RhoC/ROCK2 promotes vasculogenic mimicry formation primarily through ERK/MMPs in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis. 2019;1865(6):1113–1125. doi: 10.1016/j.bbadis.2018.12.007
  • Sun B, Zhang D, Zhao N, et al. Epithelial-to-endothelial transition and cancer stem cells: two cornerstones of vasculogenic mimicry in malignant tumors. Oncotarget. 2017;8(18):30502–30510.
  • Si W, Shen J, Zheng H, et al. The role and mechanisms of action of microRnas in cancer drug resistance. Clin Epigenetics. 2019;11(1):25. doi: 10.1186/s13148-018-0587-8
  • Zablon FM, Desai P, Dellinger K, et al. Cellular and exosomal MicroRNAs: emerging clinical relevance as targets for breast cancer diagnosis and prognosis. Adv Biol (Weinh). 2024;8(4):e2300532. doi: 10.1002/adbi.202300532
  • Salinas-Vera YM, Marchat LA, García-Vázquez R, et al. Cooperative multi-targeting of signaling networks by angiomiR-204 inhibits vasculogenic mimicry in breast cancer cells. Cancer Lett. 2018;432:17–27. doi: 10.1016/j.canlet.2018.06.003
  • Lozano-Romero A. HOX transcript antisense RNA HOTAIR abrogates vasculogenic mimicry by targeting the AngiomiR-204/FAK axis in triple negative breast cancer cells. Noncoding RNA. 2020;6(2):19.
  • Tao W, Sun W, Zhu H, et al. Knockdown of long non-coding RNA TP73-AS1 suppresses triple negative breast cancer cell vasculogenic mimicry by targeting miR-490-3p/TWIST1 axis. Biochem Biophys Res Commun. 2018;504(4):629–634. doi: 10.1016/j.bbrc.2018.08.122
  • Langer EM, Kendsersky ND, Daniel CJ, et al. ZEB1-repressed microRnas inhibit autocrine signaling that promotes vascular mimicry of breast cancer cells. Oncogene. 2018;37(8):1005–1019. doi: 10.1038/onc.2017.356
  • Hulin JA, Tommasi S, Elliot D, et al. MiR-193b regulates breast cancer cell migration and vasculogenic mimicry by targeting dimethylarginine dimethylaminohydrolase 1. Sci Rep. 2017;7(1):13996. doi: 10.1038/s41598-017-14454-1
  • Li C, Wang A, Chen Y, et al. MicroRNA‑299‑5p inhibits cell metastasis in breast cancer by directly targeting serine/threonine kinase 39. Oncol Rep. 2020;43(4):1221–1233. doi: 10.3892/or.2020.7486
  • An G, Lu F, Huang S, et al. Effects of miR‑93 on epithelial‑to‑mesenchymal transition and vasculogenic mimicry in triple‑negative breast cancer cells. Mol Med Rep. 2021;23(1):1–1. doi: 10.3892/mmr.2020.11668
  • Wu W, Qin Y, Li Z, et al. Genome-wide microRNA expression profiling in idiopathic non-obstructive azoospermia: significant up-regulation of miR-141, miR-429 and miR-7-1-3p. Hum Reprod. 2013;28(7):1827–1836. doi: 10.1093/humrep/det099
  • Li G, Huang M, Cai Y, et al. miR‑141 inhibits glioma vasculogenic mimicry by controlling EphA2 expression. Mol Med Rep. 2018;18(2):1395–1404. doi: 10.3892/mmr.2018.9108
  • Wu N, Zhao X, Liu M, et al. Role of microRNA-26b in glioma development and its mediated regulation on EphA2. PLOS ONE. 2011;6(1):e16264. doi: 10.1371/journal.pone.0016264
  • Guo J, Cai H, Liu X, et al. Long non-coding RNA LINC00339 stimulates glioma vasculogenic mimicry formation by regulating the miR-539-5p/TWIST1/MMPs axis. Mol Ther Nucleic Acids. 2018;10:170–186. doi: 10.1016/j.omtn.2017.11.011
  • Zhou XY, Liu H, Ding Z-B, et al. lncRNA SNHG16 promotes glioma tumorigenicity through miR-373/EGFR axis by activating PI3K/AKT pathway. Genomics. 2020;112(1):1021–1029. doi: 10.1016/j.ygeno.2019.06.017
  • Xue H, Gao X, Xu S, et al. MicroRNA-let-7f reduces the vasculogenic mimicry of human glioma cells by regulating periostin-dependent migration. Oncol Rep. 2016;35(3):1771–1777. doi: 10.3892/or.2016.4548
  • Yuan H. SUMO1 modification of KHSRP regulates tumorigenesis by preventing the TL-G-Rich miRNA biogenesis. Mol Cancer. 2017;16(1):157.
  • Xu S, Zhang J, Xue H, et al. MicroRNA-584-3p reduces the vasculogenic mimicry of human glioma cells by regulating hypoxia-induced ROCK1 dependent stress fiber formation. Neoplasma. 2017;64(1):13–21. doi: 10.4149/neo_2017_102
  • Song Y, Mu L, Han X, et al. MicroRNA-9 inhibits vasculogenic mimicry of glioma cell lines by suppressing stathmin expression. J Neurooncol. 2013;115(3):381–390. doi: 10.1007/s11060-013-1245-9
  • Yu S, Ruan X, Liu X, et al. HNRNPD interacts with ZHX2 regulating the vasculogenic mimicry formation of glioma cells via linc00707/miR-651-3p/SP2 axis. Cell Death Dis. 2021;12(2):153. doi: 10.1038/s41419-021-03432-1
  • Zhao X, Wang Y, Deng R, et al. miR186 suppresses prostate cancer progression by targeting Twist1. Oncotarget. 2016;7(22):33136–33151. doi: 10.18632/oncotarget.8887
  • Zhao N, Sun H, Sun B, et al. miR-27a-3p suppresses tumor metastasis and VM by down-regulating VE-cadherin expression and inhibiting EMT: an essential role for twist-1 in HCC. Sci Rep. 2016;6(1):23091. doi: 10.1038/srep23091
  • Liu H, Tang T, Hu X, et al. miR-138-5p inhibits vascular mimicry by targeting the HIF-1α/VEGFA pathway in hepatocellular carcinoma. J Immunol Res. 2022;2022:1–10. doi: 10.1155/2022/7318950
  • Fang JH, Zheng Z-Y, Liu J-Y, et al. Regulatory role of the MicroRNA-29b-IL-6 signaling in the formation of vascular mimicry. Mol Ther Nucleic Acids. 2017;8:90–100. doi: 10.1016/j.omtn.2017.06.009
  • Yang J, Lu Y, Lin Y-Y, et al. Vascular mimicry formation is promoted by paracrine TGF-β and SDF1 of cancer-associated fibroblasts and inhibited by miR-101 in hepatocellular carcinoma. Cancer Lett. 2016;383(1):18–27. doi: 10.1016/j.canlet.2016.09.012
  • Gao R, Cai C, Gan J, et al. miR-1236 down-regulates alpha-fetoprotein, thus causing PTEN accumulation, which inhibits the PI3K/Akt pathway and malignant phenotype in hepatoma cells. Oncotarget. 2015;6(8):6014–6028. doi: 10.18632/oncotarget.3338
  • Liu W, Lv C, Zhang B, et al. MicroRNA-27b functions as a new inhibitor of ovarian cancer-mediated vasculogenic mimicry through suppression of VE-cadherin expression. RNA. 2017;23(7):1019–1027. doi: 10.1261/rna.059592.116
  • Salinas-Vera YM, Gallardo-Rincón D, García-Vázquez R, et al. HypoxamiRs profiling identify miR-765 as a regulator of the early stages of vasculogenic mimicry in SKOV3 ovarian cancer Cells. Front Oncol. 2019;9:381. doi: 10.3389/fonc.2019.00381
  • Sun X, He Y, Ma T-T, et al. Participation of miR-200a in TGF-β1-mediated hepatic stellate cell activation. Mol Cell Biochem. 2014;388(1–2):11–23. doi: 10.1007/s11010-013-1895-0
  • Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. doi: 10.3322/caac.21763
  • Wan HY, Li Q-Q, Zhang Y, et al. MiR-124 represses vasculogenic mimicry and cell motility by targeting amotL1 in cervical cancer cells. Cancer Lett. 2014;355(1):148–158. doi: 10.1016/j.canlet.2014.09.005
  • Weng C, Dong H, Chen G, et al. miR-409-3p inhibits HT1080 cell proliferation, vascularization and metastasis by targeting angiogenin. cancer Lett. Cancer Lett. 2012;323(2):171–179. doi: 10.1016/j.canlet.2012.04.010
  • Yu W, Ding J, He M, et al. Estrogen receptor β promotes the vasculogenic mimicry (VM) and cell invasion via altering the lncRNA-MALAT1/miR-145-5p/NEDD9 signals in lung cancer. Oncogene. 2019;38(8):1225–1238. doi: 10.1038/s41388-018-0463-1
  • Gervin E, Shin B, Opperman R, et al. Chemically induced hypoxia enhances miRNA functions in breast cancer. Cancers (Basel). 2020;12(8):2008. doi: 10.3390/cancers12082008
  • Ding J, Cui X-G, Chen H-J, et al. Targeting circDGKD Intercepts TKI’s Effects on Up-Regulation of Estrogen Receptor β and Vasculogenic Mimicry in Renal Cell Carcinoma. Cancers (Basel). 2022;14(7):1639. doi: 10.3390/cancers14071639
  • Park Y, Kim J. Regulation of IL-6 signaling by miR-125a and let-7e in endothelial cells controls vasculogenic mimicry formation of breast cancer cells. BMB Rep. 2019;52(3):214–219. doi: 10.5483/BMBRep.2019.52.3.308
  • Li Y, Xun J, Wang B, et al. miR-3065-3p promotes stemness and metastasis by targeting CRLF1 in colorectal cancer. J Transl Med. 2021;19(1):429. doi: 10.1186/s12967-021-03102-y
  • Gao Y, Yu H, Liu Y, et al. Long non-coding RNA HOXA-AS2 regulates malignant glioma behaviors and vasculogenic mimicry formation via the MiR-373/EGFR axis. Cell Physiol Biochem. 2018;45(1):131–147. doi: 10.1159/000486253
  • Zhou JN, Zeng Q, Wang H-Y, et al. MicroRNA-125b attenuates epithelial-mesenchymal transitions and targets stem-like liver cancer cells through small mothers against decapentaplegic 2 and 4. Hepatology. 2015;62(3):801–815. doi: 10.1002/hep.27887
  • Sun Q, Zou X, Zhang T, et al. The role of miR-200a in vasculogenic mimicry and its clinical significance in ovarian cancer. Gynecol Oncol. 2014;132(3):730–738. doi: 10.1016/j.ygyno.2014.01.047
  • Fisher DT, Appenheimer MM, Evans SS. The two faces of IL-6 in the tumor microenvironment. Semin Immunol. 2014;26(1):38–47. doi: 10.1016/j.smim.2014.01.008
  • Jernberg E, Bergh A, Wikstrom P. Clinical relevance of androgen receptor alterations in prostate cancer. Endocr Connect. 2017;6(8):R146–R161. doi: 10.1530/EC-17-0118
  • Yang Z, Chen J, Xie H, et al. Androgen receptor suppresses prostate cancer metastasis but promotes bladder cancer metastasis via differentially altering miRNA525-5p/SLPI-mediated vasculogenic mimicry formation. Cancer Lett. 2020;473:118–129. doi: 10.1016/j.canlet.2019.12.018
  • Chen J, Chen S, Zhuo L, et al. Regulation of cancer stem cell properties, angiogenesis, and vasculogenic mimicry by miR-450a-5p/SOX2 axis in colorectal cancer. Cell Death Dis. 2020;11(3):173. doi: 10.1038/s41419-020-2361-z
  • Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–1134. doi: 10.1038/nm.4409
  • Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells—perspectives on Current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–9344. doi: 10.1158/0008-5472.CAN-06-3126
  • Harris KS, Kerr BA. Prostate cancer stem cell markers drive progression, therapeutic resistance, and bone metastasis. Stem Cells Int. 2017;2017:8629234. doi: 10.1155/2017/8629234
  • Walcher L, Kistenmacher A-K, Suo H, et al. Cancer stem cells—origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol. 2020;11:1280. doi: 10.3389/fimmu.2020.01280
  • Kouros-Mehr H, Bechis SK, Slorach EM, et al. GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell. 2008;13(2):141–152. doi: 10.1016/j.ccr.2008.01.011
  • Was H, Czarnecka J, Kominek A, et al. Some chemotherapeutics-treated colon cancer cells display a specific phenotype being a combination of stem-like and senescent cell features. Cancer Biol Ther. 2018;19(1):63–75. doi: 10.1080/15384047.2017.1385675
  • Satar NA, Fakiruddin K, Lim M, et al. Novel triple‑positive markers identified in human non‑small cell lung cancer cell line with chemotherapy-resistant and putative cancer stem cell characteristics. Oncol Rep. 2018;40(2):669–681. doi: 10.3892/or.2018.6461
  • Wang L, Zhi X, Lu Y, et al. Identification of microRNA expression profiles of CD44(+) ovarian cancer stem cells. Arch Gynecol Obstet. 2022;306(2):461–472. doi: 10.1007/s00404-021-06387-y
  • Vora P, Venugopal C, Salim SK, et al. The rational development of CD133-targeting immunotherapies for glioblastoma. Cell Stem Cell. 2020;26(6):832–844 e6. doi: 10.1016/j.stem.2020.04.008
  • Zimmerer RM, Matthiesen P, Kreher F, et al. Putative CD133+ melanoma cancer stem cells induce initial angiogenesis in vivo. Microvasc Res. 2016;104:46–54. doi: 10.1016/j.mvr.2015.12.001
  • Zhou L, Yu KH, Wong TL, et al. Lineage tracing and single-cell analysis reveal proliferative Prom1+ tumour-propagating cells and their dynamic cellular transition during liver cancer progression. Gut. 2022;71(8):1656–1668. doi: 10.1136/gutjnl-2021-324321
  • Park DJ, Sung PS, Kim J-H, et al. EpCAM-high liver cancer stem cells resist natural killer cell–mediated cytotoxicity by upregulating CEACAM1. J Immunother Cancer. 2020;8(1):8(1. doi: 10.1136/jitc-2019-000301
  • Zhou Y, Xia L, Wang H, et al. Cancer stem cells in progression of colorectal cancer. Oncotarget. 2018;9(70):33403–33415. doi: 10.18632/oncotarget.23607
  • Oh SI, Jeong H, Park H-S, et al. Activation of CXCL12-CXCR4 signalling induces conversion of immortalised embryonic kidney cells into cancer stem-like cells. Artif Cells Nanomed Biotechnol. 2020;48(1):1303–1313. doi: 10.1080/21691401.2020.1841783
  • Chen Y, Wang S, Bu S, et al. Low-dose cisplatin-induced CXCR4 expression promotes proliferation of ovarian cancer stem-like cells. Acta Biochim Biophys Sin (Shanghai). 2016;48(3):282–289. doi: 10.1093/abbs/gmv132
  • Vasefifar P, Motafakkerazad R, Maleki LA, et al. Nanog, as a key cancer stem cell marker in tumor progression. Gene. 2022;827:146448. doi: 10.1016/j.gene.2022.146448
  • Novak D, Hüser L, Elton JJ, et al. SOX2 in development and cancer biology. Semin Cancer Biol. 2020;67(Pt 1):74–82. doi: 10.1016/j.semcancer.2019.08.007
  • Wechman SL. Vascular mimicry: triggers, molecular interactions and in vivo models. Adv Cancer Res. 2020;148:27–67.
  • Liu Y, Zhang J, Sun X, et al. EMMPRIN Down-regulating miR-106a/b modifies breast cancer stem-like cell properties via interaction with fibroblasts through STAT3 and HIF-1α. Sci Rep. 2016;6(1):28329. doi: 10.1038/srep28329
  • Chao CH, Chang C-C, Wu M-J, et al. MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. J Clin Invest. 2014;124(7):3093–3106. doi: 10.1172/JCI73351
  • Chen J, Shin VY, Siu MT, et al. miR-199a-5p confers tumor-suppressive role in triple-negative breast cancer. BMC Cancer. 2016;16(1):887. doi: 10.1186/s12885-016-2916-7
  • Liu T, Hu K, Zhao Z, et al. MicroRNA-1 down-regulates proliferation and migration of breast cancer stem cells by inhibiting the Wnt/β-catenin pathway. Oncotarget. 2015;6(39):41638–41649. doi: 10.18632/oncotarget.5873
  • Zhang H, Cai K, Wang J, et al. MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells. 2014;32(11):2858–2868. doi: 10.1002/stem.1795
  • Zhang X, Wan G, Mlotshwa S, et al. Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res. 2010;70(18):7176–7186. doi: 10.1158/0008-5472.CAN-10-0697
  • Kim M, Jang K, Miller P, et al. VEGFA links self-renewal and metastasis by inducing Sox2 to repress miR-452, driving slug. Oncogene. 2017;36(36):5199–5211. doi: 10.1038/onc.2017.4
  • Han S, Shi Y, Sun L, et al. MiR-4319 induced an inhibition of epithelial-mesenchymal transition and prevented cancer stemness of HCC through targeting FOXQ1. Int J Biol Sci. 2019;15(13):2936–2947. doi: 10.7150/ijbs.38000
  • Guan B, Mu L, Zhang L, et al. MicroRNA‑218 inhibits the migration, epithelial‑mesenchymal transition and cancer stem cell properties of prostate cancer cells. Oncol Lett. 2018;16(2):1821–1826. doi: 10.3892/ol.2018.8877
  • Tian X, Tao F, Zhang B, et al. The mi R-203/ SNAI 2 axis regulates prostate tumor growth, migration, angiogenesis and stemness potentially by modulating GSK-3 β / β-CATENIN signal pathway. IUBMB Life. 2018;70(3):224–236. doi: 10.1002/iub.1720
  • Farhana L, Antaki F, Anees MR, et al. Role of cancer stem cells in racial disparity in colorectal cancer. Cancer Med. 2016;5(6):1268–1278. doi: 10.1002/cam4.690
  • Ni H, Qin H, Sun C, et al. MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis. Stem Cell Res Ther. 2021;12(1):325. doi: 10.1186/s13287-021-02394-7
  • Liu Q, Guan Y, Li Z, et al. miR-504 suppresses mesenchymal phenotype of glioblastoma by directly targeting the FZD7-mediated wnt–β-catenin pathway. J Exp Clin Cancer Res. 2019;38(1):358. doi: 10.1186/s13046-019-1370-1
  • Feliciano A, Garcia-Mayea Y, Jubierre L, et al. miR-99a reveals two novel oncogenic proteins E2F2 and EMR2 and represses stemness in lung cancer. Cell Death Dis. 2017;8(10):e3141. doi: 10.1038/cddis.2017.544
  • Meidhof S, Brabletz S, Lehmann W, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7(6):831–847. doi: 10.15252/emmm.201404396
  • Kotiyal S, Bhattacharya S. Epithelial mesenchymal transition and vascular mimicry in breast cancer stem cells. Crit Rev Eukaryot Gene Expr. 2015;25(3):269–280. doi: 10.1615/CritRevEukaryotGeneExpr.2015014042
  • Mathieu J, Zhang Z, Zhou W, et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011;71(13):4640–4652. doi: 10.1158/0008-5472.CAN-10-3320
  • Thomas S, Harding MA, Smith SC, et al. CD24 is an effector of HIF-1–driven primary tumor growth and metastasis. Cancer Res. 2012;72(21):5600–5612. doi: 10.1158/0008-5472.CAN-11-3666
  • Ohnishi S, Maehara O, Nakagawa K, et al. Hypoxia-inducible factors activate CD133 promoter through ETS family transcription factors. PLOS ONE. 2013;8(6):e66255. doi: 10.1371/journal.pone.0066255
  • Soeda A, Park M, Lee D, et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α. Oncogene. 2009;28(45):3949–3959. doi: 10.1038/onc.2009.252
  • Shiraishi A, Tachi K, Essid N, et al. Hypoxia promotes the phenotypic change of aldehyde dehydrogenase activity of breast cancer stem cells. Cancer Sci. 2017;108(3):362–372. doi: 10.1111/cas.13147
  • Gong W. Nodal signaling activates the Smad2/3 pathway to regulate stem cell-like properties in breast cancer cells. Am J Cancer Res. 2017;7(3):503–517.
  • Cao W, Xu C, Li X, et al. Twist1 promotes astrocytoma development by stimulating vasculogenic mimicry. Oncol Lett. 2019;18(1):846–855. doi: 10.3892/ol.2019.10380
  • Rich JN. Cancer stem cells: understanding tumor hierarchy and heterogeneity. Medicine (Baltimore). 2016;95(1 Suppl 1):S2–S7. doi: 10.1097/MD.0000000000004764
  • Chen Y, Li D, Wang D, et al. Quiescence and attenuated DNA damage response promote survival of esophageal cancer stem cells. J Cell Biochem. 2012;113(12):3643–3652. doi: 10.1002/jcb.24228
  • Yang JW, de Isla N, Huselstein C, et al. Evaluation of human MSCs cell cycle, viability and differentiation in micromass culture. Biorheology. 2006;43(3,4):489–496.
  • Begicevic RR, Falasca M. ABC transporters in cancer stem cells: beyond chemoresistance. Int J Mol Sci. 2017;18(11):18(11. doi: 10.3390/ijms18112362
  • Vitale I, Manic G, De Maria R, et al. DNA damage in stem cells. Molecular Cell. 2017;66(3):306–319. doi: 10.1016/j.molcel.2017.04.006
  • Beck B, Lapouge G, Rorive S, et al. Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell. 2015;16(1):67–79. doi: 10.1016/j.stem.2014.12.002
  • Lytle NK, Ferguson LP, Rajbhandari N, et al. A multiscale map of the stem cell state in pancreatic adenocarcinoma. Cell. 2019;177(3):572–586.e22. doi: 10.1016/j.cell.2019.03.010
  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–115. doi: 10.1038/nature05384
  • Dingwall S, Lee JB, Guezguez B, et al. Neoplastic human embryonic stem cells as a model of radiation resistance of human cancer stem cells. Oncotarget. 2015;6(26):22258–22269. doi: 10.18632/oncotarget.4165
  • Huang CP, Tsai M-F, Chang T-H, et al. ALDH-positive lung cancer stem cells confer resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Cancer Lett. 2013;328(1):144–151. doi: 10.1016/j.canlet.2012.08.021
  • Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–567. doi: 10.1016/j.stem.2007.08.014
  • Croker AK, Allan AL. Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44(+) human breast cancer cells. Breast Cancer Res Treat. 2012;133(1):75–87. doi: 10.1007/s10549-011-1692-y
  • Peng CY, Wang T-Y, Lee S-S, et al. Let-7c restores radiosensitivity and chemosensitivity and impairs stemness in oral cancer cells through inhibiting interleukin-8. J Oral Pathol Med. 2018;47(6):590–597. doi: 10.1111/jop.12711
  • Yu CC, Chen Y-W, Chiou G-Y, et al. MicroRNA let-7a represses chemoresistance and tumourigenicity in head and neck cancer via stem-like properties ablation. Oral Oncol. 2011;47(3):202–210. doi: 10.1016/j.oraloncology.2010.12.001
  • Cioffi M, Trabulo SM, Sanchez-Ripoll Y, et al. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut. 2015;64(12):1936–1948. doi: 10.1136/gutjnl-2014-308470
  • Balzeau J, Menezes MR, Cao S, et al. The LIN28/let-7 pathway in cancer. Front Genet. 2017;8:31. doi: 10.3389/fgene.2017.00031
  • Bueno MJ, Gómez de Cedrón M, Gómez-López G, et al. Combinatorial effects of microRnas to suppress the Myc oncogenic pathway. Blood. 2011;117(23):6255–6266. doi: 10.1182/blood-2010-10-315432
  • Forni C, Facchiano F, Bartoli M, et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed Res Int. 2019;2019:1–16. doi: 10.1155/2019/8748253
  • Lin SR, Chang C-H, Hsu C-F, et al. Natural compounds as potential adjuvants to cancer therapy: preclinical evidence. Br J Pharmacol. 2020;177(6):1409–1423. doi: 10.1111/bph.14816
  • Bhosale PB, Ha SE, Vetrivel P, et al. Functions of polyphenols and its anticancer properties in biomedical research: a narrative review. Transl Cancer Res TCR. 2020;9(12):7619–7631. doi: 10.21037/tcr-20-2359
  • Hewlings SJ, Kalman DS. Curcumin: a review of its effects on human health. Foods. 2017;6(10):6(10. doi: 10.3390/foods6100092
  • Wang M, Jiang S, Zhou L, et al. Potential mechanisms of action of curcumin for cancer prevention: Focus on Cellular Signaling Pathways and miRnas. Int J Biol Sci. 2019;15(6):1200–1214. doi: 10.7150/ijbs.33710
  • Toden S, Okugawa Y, Buhrmann C, et al. Novel evidence for curcumin and boswellic acid–induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer. Cancer Prev Res (Phila). 2015;8(5):431–443. doi: 10.1158/1940-6207.CAPR-14-0354
  • Wang J, Li D, Ni W, et al. Molecular networking uncovers steroidal saponins of Paris tengchongensis. Fitoterapia. 2020;145:104629. doi: 10.1016/j.fitote.2020.104629
  • Sheng G, Gao Y, Yang Y, et al. Osteosarcoma and metastasis. Front Oncol. 2021;11:780264. doi: 10.3389/fonc.2021.780264
  • Yao N, Zhou J, Jiang Y, et al. Rhizoma paridis saponins suppresses vasculogenic mimicry formation and metastasis in osteosarcoma through regulating miR-520d-3p/MIG-7 axis. J Pharmacol Sci. 2022;150(3):180–190. doi: 10.1016/j.jphs.2022.08.005
  • Morales-Guadarrama G, Méndez-Pérez EA, García-Quiroz J, et al. Endothelium-dependent induction of vasculogenic mimicry in human triple-negative breast cancer cells is inhibited by calcitriol and curcumin. Int J Mol Sci. 2022;23(14):23(14. doi: 10.3390/ijms23147659

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.